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G03012: Non-Technical Executive Summary 
PI Prof. John Draper, Aberystwyth University 

 

Background 

In a previous co-ordinated research programme (G02) the Foods Standards Agency 

commissioned 12 collaborating research teams in the UK, Germany and France to develop 

technology that would allow the substantial equivalence of genetically manipulated crop versus 

traditionally bred crops to be determined.  A major conclusion emerging from the G02 

programme was that an assessment of overall chemical composition of food raw materials 

provided the most comprehensive, cost effective and reproducible method to assess substantial 

equivalence.  Overall chemical composition was evaluated using techniques which assay the total 

metabolite content (i.e. all small, non-polymer molecules such as sugars, amino acids, vitamins, 

fatty acids) in crude plant tissue extracts. This combination of analytical methods is referred to 

collectively as metabolomics technology.  The metabolomics technology platform depends on a 

combination of analytical chemistry techniques to produce chemical „fingerprints/profiles‟ of 

food raw material samples which are then investigated using powerful data modelling techniques. 

The G02 programme produced data for potato, wheat, barley, Arabidopsis and tomato at a time 

when no widely applied standards for experimental procedure had been developed in the 

emerging research field of metabolomics.  

 

Rationale  

The large amount of data collected in the G02 programme was not necessarily comparable as no 

prior arrangements were defined to ensure or enhance comparability of data from different 

projects. An initial survey of the G02 data sets revealed that potato had provided a common crop 

plant for metabolomics technology development in several research centres (Aberystwyth 

University, Scottish Crops Research Institute, Institute of Food Research) and thus it was agreed 

from the outset that the G03012 project would be centred on potato tubers. The overall aim of the 

G03012 project was to first evaluate the structure of these disparate G02 data, developed on 

different instruments using a range of procedures, and then to determine whether unified data 
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models and standardised data analysis procedures could be debeloped in order that metabolomics 

technology could be used to generate meaningful and durable descriptions of food raw material 

composition for any future safety or quality assessments.  

One major output would be a validated data generation and pre-processing strategy for 

production of a standardised check list of „expected‟ metabolites bespoke for any  crop (in our 

case potato tubers).  As part of this process a survey of external literature and database 

information describing the chemical composition of potato tubers was undertaken as a 

comparator. A pilot database was to be developed (ARMeC: Aberystwyth Repository of 

Metabolite Characteristics) which could hold such information in a unified and searchable 

format.  A robust statistical methodology to generate meaningful metrics for describing 

metabolite baselines in food raw materials was also to be validated within the G03012 project.   

 

Approach and Objectives 

 

The G03012 project was derived from the merger of two contracts initially put out for tender by 

the FSA.  As the G02 data structure was evaluated in the initial phases of the G03012 project the 

research objectives were consolidated into eight major interacting themes with the research lead 

in different subtasks split between Aberystwyth_Biology, Aberystwyth_Computer Science and 

SCRI:  

1) Collation of metabolite profiling/fingerprinting data from selected FSA G02 projects 

based on potato. 

2) Analysis and summary of external literature and database information describing the 

chemical composition of potato tubers. 

3)  Development of a pilot database (ARMeC) to accommodate information describing the 

individual chemical components of a food raw material.  

4) Development of unified data models for G02 metabolomics data. 

5) Development of standardised procedures for data generation and pre-processing of data 

tables to allow comparison and validation of metabolite profiles and fingerprints 

generated in different laboratories. 

6) Development of standardised statistical and data modelling software in a single package. 
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7) Validation of  metrics derived from statistical tests that can be used to compare metabolite 

composition in food raw materials 

8) Generation of a baseline description of metabolite composition in potato tubers. 

 

Outcomes and Key Results 

A major output was the development of standardised methods for chemical fingerprinting based 

on Mass Spectrometry (MS) which was published as part of a series of invited articles in the 

Nature Protocols Journal. Additionally, contributions from G03012 staff to international 

collaborations helped to deliver standardised guidelines for generation and processing of Nuclear 

Magnetic Resonance (NMR) fingerprinting data.  Data tables representing metabolite profiles of 

potato tubers developed in 3 independent laboratories were successfully aligned and standardised 

procedures for metabolite peak identification and quantification were refined. A major output of 

G03012 was a „checklist‟ of metabolite peaks that could be detected in potato tubers using mass 

spectrometric profiling together with the development of the ARMeC database to hold 

information on each chemical. 

 

A substantial assessment of external literature and food-related databases revealed that 

information on the chemical compositional of potato tubers was extremely disparate; importantly 

biological materials and analytical techniques were often not described adequately, the list of 

metabolites measured differed dramatically and a bewildering range of concentration metrics 

were used. We concluded that data unification was essentially impossible and under such 

circumstances there was little value in implementing a new database to accommodate such data.   

 

The data modelling routines used effectively in the G02006 project had been written in several 

software languages and could only be operated by experienced data miners.  A major output of 

the G03012 project was the conversion of all data analysis software into a common package and 

the development of tutorials and example workflows that allowed biologists, with little training in 

statistical routines, to become proficient in data mining.  All software and tutorials are now 

available on the web and their use described in a commissioned Nature Protocols article.  In a 

demonstration project utilising both metabolome fingerprint and metabolite profiling data it was 
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demonstrated that the standardised data mining procedures could be used to compare the total 

chemical composition of potato genotypes. The ultimate output of the G03012 project was 

therefore validated procedures for standardised generation and interrogation of metabolomics 

data which can be used to provide an overview of chemical composition of any food raw 

material.   This technology is expected to have great utility for the development of food 

composition databases in future studies investigating safety, quality and provenance aspects of 

food raw materials.  
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G03012: Technical Summary of Achievements, Outputs, Main 
Conclusions & Recommendations 
PI Prof. John Draper, Aberystwyth University 

 

 

“Development  of unified data models  and  data pre-processing  strategies and 

the generation of  meaningfull, standardised statistical analyses of metabolome 

variability in crop plants” 
 
 

Project Background and Technical Report Overview  

 

Background 

In a previous co-ordinated research programme (G02) the Foods Standards Agency 

commissioned 12 collaborating research teams in the UK, Germany and the Netherlands to 

develop technology that would allow the substantial equivalence of genetically manipulated crops 

versus traditionally bred crops to be determined.  A major conclusion emerging from the G02 

programme was that metabolomics data provided a comprehensive assessment of the overall 

chemical composition of food raw materials.  The metabolomics technology platform depends on 

a combination of analytical chemistry techniques to produce chemical „fingerprints/profiles‟ of 

food raw material samples which are then investigated using powerful data modelling techniques. 

The G02 programme produced metabolomics data for potato, wheat, barley, Arabidopsis and 

tomato at a time when no widely applied standards for experimental procedure had been 

developed in the emerging research field of metabolomics. These data were not necessarily 

comparable as no prior arrangements were defined to ensure or enhance comparability of data 

from different projects.   

 

Genesis of G03012 project 

In an initial call for proposals the FSA advertised for tenders for two research requirements, 

G03R0003 and G03R0002.  In principle G03R0003 was to collate metabolomics data from the 

G02 projects and attempt to unify data structures in a suitable database, whilst G03R0002 was to 

analyse the data and develop standardised procedures for data modelling to allow compositional 

comparisons to be made between food raw materials.  After receiving all tenders the FSA invited 

a team based in Aberystwyth (headed by Prof. John Draper) with collaborators in SCRI to 

develop a merged proposal covering both project objectives,  with less emphasis on database 

development and subsequent omission of CSL as a collaborating partner. With specific guidance 
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from the FSA at a meeting in Birmingham on 9th November 2005 the G03012 project was 

developed that focused on potato tubers.  The merged proposal was accepted by the FSA in the 

last week of November 2005 with a start date of 1
st
 December 2005.  This exceedingly tight 

timeframe for project initiation was only possible because several key researchers from the G02 

projects where available immediately in Aberystwyth and SCRI.   

These new organisational arrangements requested by the FSA had two knock on effects 

acknowledged from the outset by all parties.  Firstly, it had to be accepted that certain objectives 

would be delayed and re-scheduled as there was a need to hire further specialised staff at both 

sites.  Secondly, as the data collation and data analysis elements of the merged project were 

essentially to run in parallel the project milestones relating to data set integration and analysis 

could only be planned effectively when the G02 data sets had been obtained and their overall 

structure adequately assessed.  The amended objectives and milestones/deliverables were 

finalised at a FSA review meeting on 28
th

 June 2007 and for the purpose of future reporting the 

G03012 project was re-organised into 9 major elements (as indicated below) that are used also in 

the full Technical Report.  

 

G03012 Revised Objectives 

1. Compiling and assessment  of data from G02 programme 

 

2. Compiling and assessment of external information on composition of potato tubers  

 

3. Standardise procedures for manual labeling of metabolite peaks in GC-MS profiles  

 

4. Assessment of software for automated alignment and annotation of GC-MS and LC-MS 

data 

 

5. Development of methodology for standardized generation and pre-processing of ESI-MS 

metabolite fingerprint data 

 

6. Develop a pilot database for annotation of nominal mass ESI-MS data 

 

7. Dealing with missing values in metabolomics data and analysis of ranges of metabolite 

values and development of statistical models of metabolite distributions in conventional 

crops 

 

8. Refinement of standardised multivariate statistical methods for both describing and 

comparing metabolite composition of  food raw materials 

 

9. Understanding the output of standardised multivariate methods to analyse metabolomics 

data from the G02 programme. 
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G03012 Rationale 

An initial survey of the G02 data sets revealed that potato had provided a common crop plant for 

metabolomics technology development in several research centres (Aberystwyth University, 

Scottish Crops Research Institute, Institute of Food Research) and thus it was agreed from the 

outset that the G03012 projects would be centred on potato tubers. The overall aim of the G03012 

project was to first evaluate the structure of these disparate G02 data sets, developed on different 

instruments using a range of procedures, and then to determine whether unified data models and 

standardised data analysis procedures could be developed in order that metabolomics technology 

could be used to generate meaningful and durable descriptions of food raw material composition 

for any future safety or quality assessments.  

One major output would be a validated data generation and pre-processing strategy for 

production of a standardised check list of „expected‟ metabolites bespoke for any  crop (in our 

case potato tubers).  As part of this process a survey of external literature and database 

information describing the chemical composition of potato tubers was undertaken as a 

comparator. A pilot database was to be developed (ARMeC: Aberystwyth Repository of 

Metabolite Characteristics) which could hold such information in a unified and searchable 

format.  A robust statistical methodology to generate meaningful metrics for describing 

metabolite baselines in food raw materials was also to be validated within the G03012 project.   

 

Outcomes and Key Results 

A major output was the development of standardised methods for chemical fingerprinting based 

on Mass Spectrometry (MS) which was published as part of a series of invited articles in the 

Nature Protocols Journal. Additionally, contributions from G03012 staff to international 

collaborations helped to deliver standardised guidelines for generation and processing of Nuclear 

Magnetic Resonance (NMR) fingerprinting data.  Data tables representing metabolite profiles of 

potato tubers developed in 3 independent laboratories were successfully aligned and standardised 

procedures for metabolite peak identification and quantification were refined. A major output of 

G03012 was a „checklist‟ of metabolite peaks that could be detected in potato tubers using mass 

spectrometric profiling together with the development of the ARMeC database to hold 

information on each chemical. 

 

A substantial assessment of external literature and food-related databases revealed that 

information on the chemical composition of potato tubers was extremely disparate; importantly 

biological materials and analytical techniques often were not described adequately, the list of 

metabolites measured differed dramatically and a bewildering range of concentration metrics 

were used. We concluded that data unification was essentially impossible and under such 

circumstances there was little value in implementing a new database to accommodate such data. 

 

The data modelling routines used effectively in the G02006 project had been written in several 

software languages and could only be operated by experienced data miners.  A major output of 

G03012 was the conversion of all data analysis software into a common package and the 

development of tutorials and example workflows that allowed biologists, with little training in 

statistical routines, to become proficient in data mining.  These software and tutorials now are 

available on the web and their use described in a commissioned Nature Protocol article.  In a 
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demonstration project utilising using both metabolome fingerprint and metabolite profiling data it 

was demonstrated that the standardised data mining procedures could be used to compare the 

total chemical composition of potato genotypes.  

 

Risk assessment in relation to novel foods, including new genetically manipulated crop varieties, 

demands a strategy which at a minimum is: 

 

 Comprehensive in its analytical „reach‟ in order to survey as much chemistry as possible 

 Clear about the normal range and expected variability of chemical composition in current 

crop varieties 

 Explicit about how compositional data from novel food raw materials are compared to 

existing foods 

 Reproducible in other laboratories 

 

The ultimate output of the G03012 project was effectively validated procedures for standardised 

generation and interrogation of metabolomics data which can be used to provide an overview of 

chemical composition of any food raw material.   The analytical SOPs and software resources 

generated by the G03012 are freely available as web resources and supported by 

comprehensive  tutorials and example analyses which can be used „off the shelf‟ to support the 

safety assessment of  novel foods in the future. 
A major output of the G03012 project was the combining of validated analytical chemistry 

techniques with appropriate validated data analysis techniques specifically to address the issue of 

comparing either novel GM foods to their progenitors, or, to make a comprehensive 

compositional analysis de novo of a food crop species new to the UK. Thus the GO3012 project 

demonstrated that „first pass‟ screening by metabolite fingerprinting (ESI-MS or NMR) is a 

cost-effective and reproducible method to rapidly compare novel foods to their progenitors, as 

long as signal intensity/resolution thresholds are similar in any instrument used to make 

measurements. A particular benefit of fingerprinting methods is that they are generally high 

throughput and, importantly, data pre-processing and alignment are trivial and can be automated.   

If any unexpected differences are found then these can be followed up by more targeted analysis 

using metabolite profiling methods such as  GC-MS/LC-MS with the caveat that data alignment 

procedures need to be agreed beforehand when different instruments (e.g. in different 

laboratories) are used.  The G03012 project demonstrated that, even after exhaustive analysis, 

annotation in metabolite GC-MS profiles was only successful for around  40% of peaks (i.e. 

approximately 60% remained unknowns), however a sub-set of  expected peaks could be 

identified using any instruments which should  be used as the basis of future rational 

comparisons.  

A further major conclusion from the GO3012 project is that food raw materials can indeed be 

compared in a standardised way (in terms of both analytical chemistry technology and statistical 

analysis) as long as there has been a previous comprehensive analysis of the food crop species in 

question. For example a major finding from the analysis of potato, Arabidopsis and grass 

varieties/ecotypes was the surprisingly large extent of compositional diversity within the 

germplasm representative of a particular plant species.  This was likely only to increase when 

the same genotypes were grown in different geographical regions.  A key message here was that a 

metabolite „range‟ analysis is certainly a good starting point for any comparison and so genotype 

diversity in composition needs to be assessed beforehand. The G03012 projected offered SOPs 
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for making this assessment based on metabolite fingerprinting and discrimination/clustering 

analyses. Following on from this a second major conclusion concerned answering the question 

“what should any novel food be compared to?”  We came to the conclusion that the best 

universal comparator would essentially be a „mastermix‟ population of extracts representative 

of crop species overall chemical diversity.  It is expected this approach can be scaled up in the 

future to develop a resource for querying the extent of any compositional difference 

between any novel food crop genotypes and existing foods currently encountered by 

consumers in the UK. 

A final key contribution of the G03012 project to food safety assessment procedures was the 

validation of a strategy to determine specific thresholds of „similarity‟ between samples, below 

which the food raw material should be considered effectively identical when examined by the 

specific analytical technique in use. The G03012 project demonstrated that only by promoting 

the use of specific validated quantitative measures of similarity (such as model margins, AUC  

or Eigen values) can the relative scale of any compositional differences between two types of 

food raw material can be assessed rationally. In addition to food safety this technology validated 

in the G03012 project is also expected to have great utility for the development of food 

composition databases in future studies investigating, quality and provenance aspects of food raw 

materials.  

 

When the G03012 project was nearing completion the PI was informed by the FSA that we had 

been nominated for a formal research quality assessment by UKAS.  This review (carried out on 

12th February 2008) concluded that the project had been carried out to a high standard and the 

full report is presented as an Appendix to the final report. 

 

 

Report Organisation 

 

The full technical report is comprised of independent contributions from 5 different research 

teams, each of which combined efforts to achieve the project‟s overall objectives.  The individual 

report sections are different in style and content depending on whether they needed to provide 

extensive literature overviews, or SOPs of experimental procedures or whether they were 

required to display database designs or data analysis results.   

 

The full reports and Appendices are provided as a web archive.  The present technical report 

summary re-iterates the main Requirements of the FSA G03012 project and then summarises the 

main Achievements, providing links to relevant sections in the full technical report.  All Outputs 

for each Requirement are indicated and links to PDFs of publication or URLs for web sites are 

provided. 

 

As most of the sections are interactive with others it was deemed appropriate to present the main 

Conclusions and Recommendations of the G03012 project in this Technical Summary.   

 

 

 

file:///D:\Appendix_Sections_1&2\Aberystwyth_UKAS_visit_report.pdf
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Requirement (1)   “Compile metabolomics data relating to potato tubers from G02 

programme participating laboratories” 

 

Achievements (1) 

 G02 data archive developed and both analytical chemistry and meta-data field information 

clarified in conjunction with collaborating laboratories.  (DATA FROM THE G02 

PROGRAMME) 

 Specific problems particularly with meta-data ontology were identified. 

 All the identified issues contributed to international efforts aiming to standardize ontology 

in metabolomic database strategies which resulted in an invited contribution to the journal 

Metabolomics. (Assunta Sansone et al. (2007)) 

 

Conclusions/recommendations (1)  

 In the future it would be beneficial to give laboratories generating „omics‟ data some idea 

of the minimal information required to allow others to understand the experiment and 

data. 

 This need not be too prescriptive and it is suggested that the FSA encourage researchers it 

funds to be aware of (and perhaps contribute to) international standardization efforts for 

metabolomics for at least the next 3-5 years, until minimal reporting requirements are 

consolidated. (see http://msi-workgroups.sourceforge.net/ for information on the 

Metabolomics Standards Initiative). 

 

Outputs (1)   

 Assunta Sansone et al. (2007). 

 

 

 

Requirement (2)  “Assess structure of G02 data and identify data sets suitable to study for 

experiments aiming to develop unified data models for metabolomics” 

 

Achievements (2)  

 Three large GC-MS datasets and two large ESI-MS datasets describing potato tuber 

metabolite content were identified for deeper comparison.  

 In contrast, only a single NMR data set and single small LC-MS data set were identified, 

providing no scope for assessment of data integration.  

 G03012 staff developed interactions with international efforts concerning NMR data 

modelling and spearheaded development of international standards for NMR data. 

 NMR data standardization strategy research resulted in an invited contribution to the 

journal Metabolomics. (Rubtsov et al. (2007)) 

 

Conclusions/recommendations (2) 

 The Aberystwyth conclusions relating to standardisation of GC-MS and NMR 

experimental and meta-data data was broadly in line with developing international 

recommendations. 

file:///D:\Publications\Sansone_etal_2007_Metabolomics_Ontology.pdf
http://msi-workgroups.sourceforge.net/
file:///D:\Publications\Sansone_etal_2007_Metabolomics_Ontology.pdf
file:///D:\Publications\Rubtsov_etal_2007_Metabolomics_NMR.pdf
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 Further work will be required to validate approaches for LC-MS data as there were not 

sufficient data sets derived from G02 projects.  With the advent of UHPLC and data 

alignment software LC-MS profiling experiments are becoming more and more common 

and it is very important that realistic standards are developed in the future.  

 

Outputs (2)  

 Rubtsov et al. (2007). 

 

 

 

Requirement (3)   “Review the structure of external literature and database information 

describing metabolite content of potato tubers and assess scope for future 

data integration” 

 

Achievements (3) 

 An extensive literature and external database review was conducted and major problems 

in data heterogeneity, data sparcity and lack of experimental detail regarding data 

generation were identified. (Section 2.3.5) 

 One major output was a list of metabolites that had been measured (together with 

reviewed literature) in potato tubers. (potato tuber metabolites)  

 Further detailed analysis of data in literature allowed the development of a semi-

quantitative scale to describe metabolite content in potato tubers.  

 

Conclusions/recommendations (3) 

 It was concluded in conjunction with ArMet database designers (see Requirement 4) that, 

although there was scope for data integration between the metabolomics analytical & 

experiment meta-data and external literature/database information relating to food 

composition, the effort involved in the current limited project would not be warranted in 

terms of the quality of information generated.  

 In future it would be worthwhile to review the type and quality of compositional 

information for a much wider range of food raw materials and develop further the concept 

of a unified approach to represent this disparate information.  

 It is recommended that issues of compositional differences between different cultivars and 

environmental effects (e.g. geographical source of crop, post harvest storage, age of crop) 

are recognized more fully and more information provided on the sources of food raw 

materials and extraction and measurement techniques used to describe a typical food 

class.  

 There would need to be at least a national or EU consensus from institutions planning to 

use food composition information on the structure and user requirements of any future 

archive.  

 

Outputs (3)   

 Metabolite „check list‟, associated literature and semi-quantitative metabolite 

concentration data contributed to new implementation of the Aberystwyth Repository of 

file:///D:\Publications\Rubtsov_etal_2007_Metabolomics_NMR.pdf
file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix2.10_external_metabolite_data.xls
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Metabolite Characteristics (ARMeC) database which is publicly available and focuses 

specifically on potato tubers. (Section 2.5) 

 Scope for future publication identified by SCRI for Trends in Plant Science highlighting 

the problems of representation of raw food material composition in the literature. 

 Overy et al., 2008 

 

 

 

Requirement (4)   “Assess the scope for the further modification of ArMet database to hold 

data relating to both metabolomics fingerprinting/profiling experiments 

from G02 programme and information from external 

literature/databases” 

 

Achievements (4)   

 Architecture for a new implementation of ArMet was designed to accommodate new data 

models and modified experimental meta-data fields (Section 2.4) 

 Decision made with agreement of the FSA not to attempt to populate with information 

from G02 projects or external literature on metabolite content (see Requirement 3).   

 

Conclusions/recommendations (4)  

 See Conclusions: see Requirement (3).   

 

Outputs (4)   

 Concepts provided background for Hardy and Jenkins, (2007) and Hardy and Taylor 

(2007). 

 

 

 

 

Requirement (5)  “Standardise procedures for manual annotation of metabolite peaks in 

GC-MS profiles” 

 

Achievements (5)   

 A detailed analysis of the structure of the GC-MS data produced on three different 

instruments (each in a different institution) demonstrated that there was clear scope for the 

development of unified GC-MS data models. (Appendix 3A)  

 Importantly, many structurally uncharacterized compounds could be aligned using a data 

model based on retention time window and characteristic masses, rather than fully 

deconvolved spectra. (Section 3.5; Appendix 3B) 

 

Conclusions/recommendations (5)    

 The number of measured peaks in a peak table from any GC-MS instrument will always 

depend on its sensitivity and resolution but in general terms the use of common types of 

http://www.armec.org/MetaboliteLibrary/index.html
file:///D:\Publications\Overy_etal_2008_NatProt.pdf
http://www.armet.org/
file:///D:\Publications\Hardy_Jenkins_ReportingStandards.pdf
file:///D:\Publications\Hardy_Taylor_2007_Metabolomics_DataExchange.pdf
file:///D:\Publications\Hardy_Taylor_2007_Metabolomics_DataExchange.pdf
file:///D:\Publications\Hardy_Taylor_2007_Metabolomics_DataExchange.pdf
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columns, ionisation systems and protocols provides an excellent possibility that, with 

care, data can be reproduced between laboratories.  

 There is certainly a core set of „expected‟ peaks (both structurally characterized and 

unknown) than can be recorded and aligned in any GC-MS profile data which will 

provide scope for future data integration.  

 It is recommended that this set of core peaks could be extracted from data generated in 

any competent laboratory and provide a common feature set for any future comparison of 

food raw material composition.   

 This list of peaks generally covers (and in most cases is greater in number than) the list of 

targeted metabolites recorded in the better quality external databases representing food 

composition. Any key nutritionally-relevant metabolites not easily monitored by a 

standardized GC-MS profile could be measured by an appropriate targeted analysis 

method.  

 

Outputs (5) 

 No specific outputs solely from G03 project but concepts helped provided background for 

Jenkins et al., (2007). 

 A check list of measured metabolites in potato tubers was developed and the information 

used to create a table in the ARMeC database (see Requirement (3)). 

 

 

 

Requirement (6)  “Assessment of software for automated alignment of GC-MS and LC-MS 

data” 

 

Achievements (6)   

 A range of software was accessed and a research assistant was trained in their operation. 

 The characteristics of more than 20 software packages were examined in detail (Section 

4.2) 

 Two „open platform‟ packages (Metalign and XC-MS) were eventually chosen to assess 

functionality in detail using small LC-MS and GC-MS data sets.   

 The output of the automated analysis was compared to the bespoke instrument vendor 

software for peak detection and spectral deconvolution.    

 The analysis revealed that both packages required substantial amounts of computing time 

to detect many of the strong well-resolved peaks found using instrument software and 

additionally highlighted many hundreds of mass signals with characteristics of metabolite 

peaks which would normally be considered machine ‟noise‟. (Section 4.3) 

 

Conclusions/recommendations (6)  

 It was concluded that manual intervention by expert users was still required to sensibly 

parameterize all software for adequate peak finding and data alignment in both LC-MS 

and GC-MS raw data.   

 Total automation was not possible, especially for larger data sets (> 30 chromatograms) in 

which peak alignment becomes a problem.  

file:///D:\Publications\Jenkins_etal_2007_GCMS-ArMet.pdf
http://www.armec.org/MetaboliteLibrary/index.html
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 Out of all the packages the XC-MS software performed the most robustly but it had less 

„push button‟ operations and did require researchers to learn some basic R (language for 

computational statistics) command line programming.  

 As XC-MS works directly with data in the R environment. Ultimately this will lead more 

likely into fully automated methods for data processing and subsequent modeling. Such 

solutions should be encouraged. 

 Note that recent external publications have seen increasing use of XC-MS as a preferred 

solution.  

  

Outputs (6)  

 The result of data processing assessments was presented by Prof. Draper as part of a 

workshop on data mining at the NUGO Metabolomics Workshop in December 2007. 

 

 

 

 

Requirement (7)    “Develop standardized procedures for the generation of metabolite 

fingerprints using LC-MS”  

 

 

Achievements (7)   

 An extensive literature review was undertaken to determine the range of  methodologies 

used to generate LC-MS global fingerprints (Section 5.3). 

 Standardized ESI-MS protocols were developed which can be used on both ion trap and 

ToF instruments (LTQ, LCT).  (Section 5.4) 

 A detailed SOP was developed and is accompanied by a comprehensive illustration of 

anticipated results (Section 5.5) 

 QA procedures were developed based on monitoring „mastermix„ samples interspersed 

with experimental samples.  (Section 5.3.5) 

 Standardized approaches for data pre-processing (e.g. base line corrections, outlier 

detection and normalization) were developed.  (Section 5.5.2) 

 The ESI-MS fingerprinting strategy formed the basis of an invited contribution to Nature 

Protocols  (Beckmann et al., 2008) 

 

Conclusions/recommendations (7) 

 It was concluded that by far the majority of LC-MS fingerprinting experiments used 

electrospray ionization (ESI) in both ionisation modes.   

 Sample introduction by direct injection produced more variability than either flow 

infusion or use of a nano-spray device (e.g. Advion Nanomate).  It is recommended that 

the controlled, stable infusion with a Nanomate-type spray device be the method of choice 

wherever possible. 

http://www.nugo.org/nip/32683
file:///D:\FSA-G03-SCRI\G03-Report-NEW\Publications\Beckmann_etal_2008_NatProt.pdf
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 Instruments (both quads and ion traps) used ranged from those with simple quadrupoles 

(Q) detectors, through to instruments with more accurate Time of Flight (TOF) dectors, 

hybrid detectors (Q-ToF) or ultra high accuracy FT-ICR-MS detectors.  As predicted we 

found there was always a tradeoff between sensitivity and mass resolution and thus in 

most cases an optimal actual mass accuracy for fingerprinting was well below the 

maximum theoretically possible for every instrument.   

 It is recommended that nominal mass fingerprinting on the very stable linear ion traps is 

used for first pass, high throughput studies to identify mass „bins‟ containing important 

discriminatory signals. Unlike instruments with high mass accuracy there is no 

requirement to align signals and so there is great scope for data integration in the future.   

 Instruments with ToF or FT-ICR-MS detectors can subsequently be used to analyze 

pooled samples representing the biological classes under study to identify and annotate 

explanatory signals if deeper analysis is required, for example to define the chemical 

differences.  

 Flow infusion ESI-MS methodology can be used to quickly determine whether substantial 

compositional differences exist between different batches of food raw materials.  It is 

noted that no methodology is fully comprehensive in terms of metabolite coverage and so 

it is recommended that further non-targeted profiling techniques (such as GC-MS) and 

targeted analyses for any expected nutritionally relevant metabolites should be carried out 

on any new raw food material matrix.  

 

 

Outputs (7)  

 Beckmann et al., 2008 

 

 

 

Requirement (8)    “Develop a pilot database for annotation of nominal mass ESI-MS data” 

 

Achievements (8)   

 A comprehensive review was made of the problems associated with annotation of ESI-

MS data. (Section 6.3) 

 Collaboration between researchers at all 3 sites allowed the design of a database housing 

information on potato tuber metabolite characteristics: Aberystwyth Repository of 

Metabolite Characteristics (ARMeC). 

 In addition to standard physical information derived from other comprehensive databases 

such as KEGG, the pilot database had links to associated literature generated in 

Requirement 3 and used actual GC-MS metabolomics data from Requirement 5. 

 Actual measured ESI-MS spectra were  developed for a range of metabolites when pure 

standard chemicals were  available 

 Query and output tools were developed to interpret ESI-MS fingerprinting data.  

 It was demonstrated that with suitable sample replication (minimum of 12-16 samples) a 

correlation analysis of „explanatory‟ nominal mass m/z could link signal clusters to 

individual metabolites and metabolic pathways already known to be present in potato.  

file:///D:\Publications\Beckmann_etal_2008_NatProt.pdf
http://www.armec.org/MetaboliteLibrary/index.html
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Further GC-MS analysis showed that many of these annotations were in fact correct 

(Section 6.5).   

 Lower intensity „orphan‟ signals often dominated in many fingerprints and generally 

showed poor correlation which meant it was difficult to narrow down annotation 

possibilities.  

 ARMeC is the first database of its kind designed: 

- to store mass spectrometry spectra of chemical standards ionized in a matrix 

containing salt levels similar to that of the sample to be extracted 

- to provide MS/MS fragmentation data for future identification confidence 

- to take into account the fact that many ESI-MS ionization products are salt adducts 

or neural loss fragments and allow direct searching for both species 

- to use an „intelligent spreadsheet‟ to link together potentially related ionization 

products on the basis of atomic mass 

- to allow automated m/z signal annotation in the R-computing environment, 

providing scope for future automation of data mining 

- A detailed SOP explaining how to use the database was developed which is 

accompanied by a comprehensive illustration of anticipated results (Section 6.5) 

- The ARMeC signal annotation strategy formed the basis of an invited contribution 

to Nature Protocols (Overy et al., 2008). 

 

Conclusions/recommendations (8) 

 ARMeC was constructed manually by individually accessing data fields from other 

databases such as KEGG for physical information and re-drawing structure in a common 

format.  Users reported a small but significant frequency of human-derived errors 

(particularly in molecular formulae and occasionally structure). It is recommended that in 

the future alternative automated methods be used to generate information from Mol. Files 

archived in the large databases. 

 Experience gained from both construction and testing of the ARMeC database provided a 

clear steer that m/z signal annotation databases in the future must take into account the 

diversity of ionization products generated in LC-MS experiments. 

 A significant number of ESI-MS signals in certain mass bins remained unequivocally 

non-annotated either because many metabolites share the same nominal mass, or because 

there remain a large number of metabolites still to be identified in potato tubers that do 

not have entries in ARMeC.  

 There is an urgent need to make species-specific databases more comprehensive. 

 Annotation optimisation will be possible on a much wider range of m/z with alternative 

analytical approaches using accurate mass information (e.g. FT-ICR-MS or more recently 

Orbitrap mass analysers).  

 

 

Outputs (8)  

 Overy et al., 2008 

 

 

file:///D:\FSA-G03-SCRI\G03-Report-NEW\Publications\Overy_etal_2008_NatProt.pdf
file:///D:\Publications\Overy_etal_2008_NatProt.pdf
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Requirement (9)   “Develop standardized univariate and non-supervised multivariate 

methods for describing & comparing metabolite composition in G02 GC-

MS data”  

 

 

Achievements (9)   

 A review was made of literature discussing the problems of describing the overall 

metabolite content of raw food materials based on metabolite data (e.g. units used, 

missing values, replication). (Section 7.3) 

 An assessment was made of freely available software packages that could be used for 

univariate analysis of the GC-MS profile data derived from the G02 programme.   All 

worked with few problems. 

 Missing data distributions were evaluated and the effect of various data infilling strategies 

on peak intensity distributions was examined.  It was shown that simple imputation 

methods provided easy methods to replace zeros values and the improvement in 

modelling characteristics was generally significant (Section 7.5) 

 A range of approaches were tested to describe signal behaviour in GC-MS data and to 

determine the best-fit distribution pattern.  This analysis demonstrated clearly that most 

metabolites had a near-normal distribution (Section 7.4.4) 

 An analysis was made of the effects of data transformation on univariate behaviour and 

log standardisation in most cases improved the normality of signal distributions. (Section 

7.4.1) 

 Peak table feature content, intensity distributions and effects of experimental factors on 

non-supervised multivariate behaviour were examined.  (Section 7.4.3) 

 

 

Conclusions/recommendations (9) 

 There are many excellent standard packages for univariate analysis of metabolite data and 

there is no requirement to develop further software.   

 Many of the univariate approaches to describe metabolite composition of potatoes 

described previously in the report from the G02006 project are still valid, including 

ANOVA and various types of metabolite concentration range analyses. 

 The intrinsic dependencies in all three data sets hinder their deciphering and conceal real 

sources of variation. In fact since the G02 programme reported the standard of data 

produced either at SCRI, Golm or Aberystwyth University has been incrementally 

improved by the production of standard operating procedures, such as those presented in 

the series of Nature Protocol articles produced during the G03012 project. Thus, 

experimental factors should no longer be major sources of unwanted variation. 

 The finding of a statistical distribution that fits individual metabolite distribution in all 

three data sets is a useful tool since it can detect whether a new sample is within the 

expected range in a new sample or not. This was the suggestion reached previously in the 

G02006 project.  
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 PCA (PCO) plots are a useful tool to analyse all compounds simultaneously and visualise 

overall sample differences/similarities. New individual samples can be added to the plot 

to see where, in relation to overall variability, they will be placed.  

 PCA (PCO) plots can also be used to understand partitioning of overall variation by 

colouring sample points according to levels of each known experimental factor (meta-

data). These conclusions confirmed observations reported previously in the G02006 

project.   

 

 

Outputs (9)  

 Almost all of the observations made here using univariate and non-supervised 

multivariate data analysis methods validated the approaches previously suggested to 

compare the composition of food raw material in the output from the G02006 project and 

the G02 programme.  Thus there was no further opportunity to publish further papers. 

 With the validation of these methods using several data sets from different laboratories 

several of the routines (log transformation, missing value imputation, ANOVA, and PCA) 

have been incorporated into the standardized data pre-processing and analysis software 

package  (FIEMSpro) developed in the G03012 project (see Requirement (10))  

 

 

 

Requirement (10)  “Develop standardized multivariate methods for comparing metabolite 

composition of food raw materials”  

 

 

Achievements (10)   

 The literature on multivariate data analysis and particularly the tools that have been used 

since the G02006 project reported were reviewed. Special emphasis was placed on 

seeking recent literature concerned with comparing the overall metabolite content of raw 

food materials based on metabolomics fingerprint and profile data. (Section 8.3) 

 The literature review compared various visions of a data processing and analysis 

„pipeline‟ and a series of common steps were identified which are used to treat the 

majority of metabolomics data sets.  These routines encompassed both tools used for raw 

data pre-processing (e.g. data integrity detection [batch problems, false positives/binning 

issues, base line correction], data  normalisation, outlier detection) and data mining tools 

for sample classification and feature selection.   

 The software routines reported on previously in the G02006 project were supported by a 

combination of commercial statistical packages, web-accessible freeware and in-house 

algorithms written in several different computer languages (e.g. C++, Fortran, „R‟). A key 

achievement of the G03012 project has been to re-write all the software code for a single 

platform ( „R‟) which is designed specifically to support statistical tools.  (Section 8.4) 

 The data mining tools were implemented sucessfully as a single web-accessible workflow 

(FIEMSpro) which, after parameterisation to deal with the structure of the data table, was 

able to process and analyse automatically  the G02 GC-MS and ESI-MS  potato tuber 

http://users.aber.ac.uk/jhd/


Page 27 of 370 

 

data. FIEMSpro is the first free validated software package in the R environment 

dedicated for automated analysis of metabolomics data mining. 

 After its first implementation FIEMSpro was validated by biologists and analytical 

chemists who had little experience in data mining.  Tutorials were written to describe how 

to use the software which are accessible at the following URL 

(http://users.aber.ac.uk/jhd). 

 

Conclusions/recommendations (10) 

  All of the selected data mining tools approved for analysing potato tuber data at the end 

of the G02006 project proved to be robust as part of automated workflows when tested by 

a range of operators with different data sets. 

 A free automated workflow for data analysis in a single software package provides a 

major advance in the standardisation of data treatment and data analysis in experiments 

using metabolomics approaches. 

 The R environment is increasingly the platform of choice for statistical computation.  

Although the use of FIEMSpro does demand that the operator lean how to use command 

line programming, the code that needs to be modified is fairly simple.  The experience 

with novice data miners (i.e. biologists and analytical chemists) was very positive and 

most individuals were competent within a couple of days. 

 It was concluded that data sets with  any unusual confounding experimental factors are 

rapidily detected  using the standard automated FIEMSpro workflow.   If unusual outlier 

distrubutions or unexpected partitions in the data are visualised at the stage of PCA then 

the investigator can seek advice from a professional statistician or machine learning 

expert.  

 

Outputs (10)  

 The strategy for automated metabolomics data analysis (using ESI-MS data as an 

example) was  published as an invited Nature Protocol (Enot et al., 2008) 

 The FIEMSpro software and tutorials are now freely-available on an Aberystwyth 

University web site (http://users.aber.ac.uk/jhd) and are updated regularly as any reported 

bugs are resolved or new routines developed.   

 Enot et al., 2008 

 

 

 

Requirement (11)  “Validate statistical tests and supervised data modelling output metrics 

used to describe differences in chemical composition of biological 

materials”  

Achievements (11) 

 All of the data sets selected for analysis from the G02 programme compared extracts of 

stored potato tubers which represent a physiologically „quiet‟ sample type with a simple 

organ structure and little effect from environmental variability.  Thus all data pre-

processing and data analysis routines were also tested for robustness using a range of 

other data sets including Arabidopsis leaf material which display photoperiodicity and 

shading effects and pathogen (rice blast) challenged Brachypodium distachyon (a model 

http://users.aber.ac.uk/jhd/
http://users.aber.ac.uk/jhd/
http://users.aber.ac.uk/jhd
file:///D:\FSA-G03-SCRI\G03012-Report_John_Draper_Aberystwyth\Publications\Enot_etal_2008_NatProt.pdf
http://users.aber.ac.uk/jhd/
http://users.aber.ac.uk/jhd
file:///D:\Publications\Enot_etal_2008_NatProt.pdf
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grass species) which displays dynamic temporal changes in metabolome as disease 

progresses.   These data, particularly the latter, proved much more challenging and so 

material from a rice blast infected B. distachyon leaf tissue experiment was chosen as an 

example data set to test automated data mining software.  

 As one desired outcome was to pilot methods for comparison of large numbers of  similar 

genotypes, experiments were also carried out using the existing flow infusion electrospray 

(FIE-MS) fingerprint data representing the chemical composition of 5 non-transgenic 

potato varieties from the G02 programme and new GC-MS profile data representing the 

same cultivars generated during G03012.  These potato data provided the opportunity to 

validate the conclusions of the FIE-MS fingerprint modelling by examining the behaviour 

of validated metabolite peaks in the GC-MS data. Further „in house‟ data generated on the 

FSA G02 project describing the chemical composition of a range of Arabidopsis 

genotypes provided a larger genotype collection with which to evaluate the 

reproducibility of the methodology. 

 Multivariate approaches to compare metabolite composition of potatoes is described in 

the previous G02006 report and a preferred selection of data analysis methods and 

proposed modeling output „similarity‟ measures had already been made.   In the present 

G03012 project these output measures were validated using a much wider range of data 

representing typical experiments (described above).   

 For sample classification/discrimination it was shown that several supervised multivariate 

methods for data analysis, including Linear Discriminant Analysis (LDA), Random Forest 

Decision Trees (RF), and Support Vector Machine (SVM), performed efficiently with a 

wide range of data sets.  (Enot and Draper 2007) 

 A baseline for a „significant difference‟ was established by establishing the maximum 

average values when a least two near isogenic cultivars/varieties grown under similar 

environmental conditions are compared (Section 9.3.2)   

 Model validation by boostrapping, feature class label permutation or cross-validation 

revealed that classification accuracy alone was generally not a sufficient measure of food 

raw material compositional similarity, unless a very high number of sample replicates 

(e.g. > 36) were available.  (Section 9.4) 

 Several classification model „similarity‟ measures (e.g. „margins‟) and „distance‟ 

measures (e.g. „Eigen values‟) proved robust in a range of circumstances. (Section 9.2)  

 Specifically these similarity measures could be used to calibrate the minimum number of 

sample replicates required  to develop an optimal model (Section 9.4) 

 Considerable emphasis also was placed on evaluating supervised data mining procdures 

for their ability to select data features that are explanatory of differences between food 

raw materials classes.   We specifially chose to analyse Arabidopsis mutants in which the 

biochemical differences between mutants and wild type lines was well established. Data 

features were ranked for their significance in the discrimination of mutant lines from  wild 

type material.The ranked lists were then examined to determine when metabolite signals 

unrelated to the biochemical lesion began to populate the lists, thus esablishing a potential 

threshold for significance (Enot et al., 2006). 

 The assessment of AUC values from LDA, RF and SVM tests were all useful and a score 

of > 0.9 usually was a reasonable level for significance cut off. However, it was 

demonstrated that Random Forest ranking by feature Importance Score was by far the 

http://www.food.gov.uk/science/research/researchinfo/foodcomponentsresearch/novelfoodsresearch/g02programme/g02projectlist/g02006/
file:///D:\FSA-G03-SCRI\G03-Report-NEW\Publications\Enot_Draper_2007_Metabolomics.pdf
file:///D:\FSA-G03-SCRI\G03-Report-NEW\Publications\Enot_etal_2006_PNAS.pdf
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most stringent test for significance and a threshold score of 0.03  was suitable in most 

analyses (Section 9.5). 

 The evaluation of model metrics for comparison of the composition of food raw materials 

were the subject of 2 invited papers for a special edition of the journal Metabolomics. 

(Enot et al., 2007)(Enot and Draper 2007) 

 With regards to LC-MS fingerpinting data (see Requirement  (8))  we were able to 

develop methods to interpret the ranked list of m/z signals to provide a rapid assessment 

of which types of metbolite species were potentially responsible for the compositional 

differences between food raw materials.  These potential annotations were confirmed by 

targeted GC-MS analysis of the same sample extracts (Overy et al., 2008) 

 Methods were piloted that in the future might allow the large scale comparison of the 

chemical composition of potato cultivars based on ranking of explanatory ESI-MS 

features derived from multivariate classification. These methods were based on the 

assumption that a „mastermix‟ population of randomly combined extracts representative 

of the species genetic diversity could provide a common comparator that was equally 

similar to all varieties (Beckmann et al., 2007) (Section 9.5). 

 Examples of the use of the chosen data mining tools in different steps in the evaluation of 

compositional similarity between plant materials have been generated and illustrated with 

example results ( see Outputs (11)). 

 

Conclusions/recommendations (11) 

 A range of data analysis methods have been used in the literature to assess the 

compositional similarity of food raw materials and the majority do have value if used 

correctly for the intended purpose. It is easy to be influenced by the output of 

discrimination tests when examining visual outputs such as grouping in scores plots from 

LDA or PLS-DA where classes can appear well separated even if differences between 

them are effectively non-existent.  Such visualizations need to be accompanied by robust, 

cross-validated mathematical measures of similarity.   

 Compositional difference measures based on simple classification accuracies should be 

treated with caution unless models are thoroughly validated using previously unseen data. 

It was concluded that food raw materials should only be considered compositionally 

similar following metabolome analysis if similarity measures fell below specific 

thresholds of significance in at least 3 statistical tests. 

 Defining how similar food raw materials are relative to each other is dependent on how 

much natural variability exists for any particular crop. In many tests margin values < 0.2; 

Eigen values in first DF <2 and AUC values < 0.8 generally represent an adequate 

threshold for significant differences. 

 Feature selection is a major problem and it is recommended that data mining methods that 

retain all variables in final models and which transparently rank each variable individually 

are chosen.  Random Forest modelling was demonstrated to be the most robust in nearly 

all experiments and would be a method of first choice. 

 Feature selection using data mining methods which incorporate significant dimensionality 

reduction routines, such as PCA or PLS, can present problems if variable intensities do 

not show a normal distribution in the full data set (e.g. it is not uncommon that some 

classes contain large numbers of missing values for certain less intense peaks/m/z signals).  

Thus some features can be selected by an apparent high rank in PC1 loading plots or PLS-

file:///D:\FSA-G03-SCRI\G03-Report-NEW\Publications\Enot_etal_2007_Metabolomics.pdf
file:///D:\FSA-G03-SCRI\G03-Report-NEW\Publications\Enot_Draper_2007_Metabolomics.pdf
file:///D:\FSA-G03-SCRI\G03-Report-NEW\Publications\Overy_etal_2008_NatProt.pdf
file:///D:\FSA-G03-SCRI\G03-Report-NEW\Publications\Beckmann_etal_2007_JAgricFoodChem.pdf
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DA contribution scores which are clearly not significant to the biological problem but 

which have skewed intensity distributions.  

 A general rule is that features should only be designated as significant if they are 

highlighted by at least 3 independent algorithms.    

 It is recommended that the output of supervised data mining methods such as AUC values 

or RF Importance Scores should also be confirmed using significance measures from 

univariate tests such as ANOVA F-values and Welch T-test p-values.   

 P-values should always be corrected for false discovery rate when multiple biological 

classes are compared in larger experiments. 

 

Outputs (11)  

 These experiments validated the FIEMS-pro software and provide examples of 

anticipated results: 

o Enot et al., 2006  

o Enot et al., 2007  

o Beckmann et al., 2007  

o Enot and Draper 2007   

file:///D:\Publications\Enot_etal_2006_PNAS.pdf
file:///D:\Publications\Enot_etal_2007_Metabolomics.pdf
file:///D:\Publications\Beckmann_etal_2007_JAgricFoodChem.pdf
file:///D:\Publications\Enot_Draper_2007_Metabolomics.pdf
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Publications Generated in Association with the G03012 Project (G03012 PI, Co-PIs and research 

staff underlined) 

 

Enot, D.P., Beckmann, M., Overy, D. & Draper, J. (2006) Predicting interpretability of 

metabolome models based on behaviour, putative identity, and biological relevance of 

explanatory signals. Proc Natl Acad Sci USA 103, 14865-14870.
1, 2

 

 

Beckmann, M., Parker, D., Enot, D.P., Duval, E. & Draper, J. (2008) High throughput, non-

targeted metabolite fingerprinting using nominal mass Flow Injection Electrospray Mass 

Spectrometry.  Nature Protocols, 3, 486-504. 

 

Enot, D.P. & Draper, J. (2007) Statistical measures for testing substantial equivalence of GM 

plant genotypes in a multivariate context.   Metabolomics 3, 349-355.
 1, 2

 

 

Beckmann, M., Enot, D.P., Overy, D.P. & Draper, J. (2007) Representation, comparison and 

interpretation of metabolome fingerprint data for total composition analysis and quality trait 

investigation in potato cultivars. Journal of Agricultural and Food Chemistry   55, 3444-3451.
2
 

 

Enot, D.P., Beckmann, M. & Draper, J. (2007) Detecting a difference - assessing generalisability 

when modelling metabolome fingerprint data in longer term studies of genetically modified 

plants. Metabolomics 3, 335-347.
1,2

 

 

Enot, D., Lin, W., Beckmann, M., Parker, D. Overy, D., &  Draper, J.  (2008) Pre-processing, 

classification modelling and feature selection using Flow Injection Electrospray Mass 

Spectrometry (FIE-MS) metabolite fingerprint data. Nature Protocols, 3, 446-470. 

 

Overy, D.P., Enot, D.P., Tailliart, K., Jenkins, H., Parker, D., Beckmann, M. & Draper, J. (2008) 

Explanatory signal interpretation and metabolite identification strategies for nominal mass FIE-

MS metabolite fingerprints. Nature Protocols, 3, 471-485. 

 

Helen Jenkins, Manfred Beckmann, John Draper and Nigel Hardy (2007) GC-MS Peak labelling 

under ArMet. In: Concepts in Plant Metabolomics, Nikolau, Basil J.; Wurtele, Eve Syrkin (Eds.), 

Springer, ISBN: 978-1-4020-5607-9.
2
 

 

Rubtsov, D.V., Jenkins, H., Ludwig, C., Easton, J., Viant, M.R., Günther, U., Griffin, J.L. & 

Hardy, N. (2007) Proposed reporting requirements for the description of NMR-based 

metabolomics experiments. Metabolomics, 3, 223-229. 

 

Susanna Assunta Sansone, Daniel Schober, Helen J Atherton, Oliver Fiehn, Helen Jenkins, 

Philippe Rocca-Serra, Denis V Rubtsov, Irena Spasic, Larisa Soldatova, Chris Taylor, Andy 

Tseng and Mark R Viant. (2007) Metabolomics Standards Initiative – Ontology Working Group 

– Work in Progress. Metabolomics, 3, 249-256. 
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Nigel W Hardy and Chris F Taylor (2007
1
) A roadmap for the establishment of standard data 

exchange structures for metabolomics. Metabolomics, 3, 243-248. 
3
 

 

Nigel Hardy and Helen Jenkins (2007) Reporting Standards in Metabolomics, Jens Nielsen and 

Michael C Jewett (Eds), In: Topics in Current Genetics (Series: Volume 18), Springer, pp 53-73. 
3
 

 

David Parker, Manfred Beckmann, David P Enot, David P Overy, Zaira Caracuel Rios, Martin 

Gilbert, Nicholas Talbot and John Draper (2008) Rice blast infection of Brachypodium 

distachyon as a model system to study dynamic host/pathogen interactions.  Nature Protocols 3, 

435-445
4
 

 

                                                 
1
 Joint output with Met-RO programme 

2
Generated under G02006 and published since 

3 
Joint output with EU METAPHOR programme 

4  
Joint output with BBSRC project with G03012 staff providing data analysis 

 



Page 33 of 370 

 

G03012 Final Report - Section 1 
Helen Jenkins/Nigel Hardy 

 

 

Compilation and assessment of metabolomic data   

(Objective 01) 

 

 

1.1 BACKGROUND TO EXPERIMENTAL SECTION  

 

An important initial activity within the project was to collate and evaluate metabolomic analytical 

data from selected G02 programme contractors. During discussions with the FSA to merge two 

earlier proposals drafted in response to the original tenders it was agreed that the data sets were to 

concern only potato (and tomato for comparison where needed) and were to provide support for 

the wider aims of the new project in developing enhanced data models and standardized data 

processing. 

 

1.2 OVERALL OBJECTIVES 

 

The main objective was to identify appropriate data sets which was helped by provision of final 

reports for all of the FSA G02 contractors.  The objectives for this section of the project can be 

summarized as follows: 

 Read G02 reports and identify projects with metabolomics data relating to potato (and 

tomato) 

 Contact contractors and visit to discuss and record data structure. 

 Collate appropriate data in a simple web archive for analysis in the remainder of the 

project 
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1.3 DATA FROM THE G02 PROGRAMME (Task 01.01) 

 

Following receipt of the final reports the projects G02001 (potato), G02005 (tomato) and G02006 

(potato) were identified as the possible sources. Further investigation and visits to SCRI, RHUL 

and IFR identified the following potential data sets. 

G02001 GC-MS (Aqueous extraction and derivitisation) 

GC-MS (Non-polar extraction and derivitisation) 

LC-MS (SCRI set 1) 

LC-MS  (SCRI set2) 

LC-MS (IFR) 

NMR 

G02005 GC/MS 

G02006 GC/TOF-MS 

GC/Qudrupole-MS 

FIE-MS 

 

This final list was shorter than anticipated when the project was proposed but to be adequate to 

support the aims of the project. 

 

To establish in more detail the structure of these data sets a questionnaire was prepared. 

Cooperating sites were offered the opportunity to fill in the form or to deliver equivalent 

information in another format. The questionnaire is provided in Appendix 1.1. The important 

aspects to be captured were broadly two. Firstly the extent of procedural meta-data available is 

important for comparability of data. The enquiry was based around the developing ARMeC 

structure (see Section 6 of the G03012 report) and emerging metabolomics standards. Questions 

were expected to elicit general free text responses. Secondly the detailed computer format was 

sought so that potential conversion problems could be established. The developing consolidated 

responses are shown in Appendix 1.2. These show that in general there would be no major 

technical difficulties in transforming data (though it would be a manual task requiring a good 

understanding of the technologies) and that the metadata could be made to conform well to the 

emerging standards. This is discussed further in Section 2.4. 

 

Phase 2 of compilation was characterised in the original proposal as “data collection”. An simple 

and adequate infostructure was developed, as planned, using the Forrest web publishing 

file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix1.1.pdf
file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix1.2.pdf
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framework (http://forrest.apache.org/) as part of the project web site developed under project 

Objective 5. This proved adequate and appropriate for the data collected. It is on-line at 

http://g03r0002.dcs.aber.ac.uk/ with suitable restricted access.  

 

As the project developed, the wider collection of data was not seen as contributing to the main 

objectives. In particular, the NMR and LC-MS data sets from IFR were dropped because there 

were no sets with which to compare them (18 month report to FSA). Data integration (as 

identified in the project proposal) was also abandoned at the 18 month review since the 

development of a new ArMeT implementation for a compositional database was seen as 

unproductive (Section 2.4 below) and new ArMeT implementation to hold only a rather small 

amount of G02 data would not be useful. 

 

http://forrest.apache.org/
http://g03r0002.dcs.aber.ac.uk/
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G03012 Final Report - Section 2 
Matthieu Vignes/Nigel Hardy/David Overy 

 

Report on a search of published literature and accessible 

databases describing compositional analysis of crop plants 

(Task  01.02) 

 

“Science and engineering, building, agriculture and even cookery depend on 

accurate weighing and measuring…” -  from a sign at Albert and Victoria 

Museum in London. This sentence contains a first justification for our wish to 

have an accurate view of the content of crops for further research whatever the 

final goals are.  

 

 

2.1 BACKGROUND TO EXPERIMENTAL SECTION  

 
 

Compositional analysis of food is of outstanding importance and there is huge interest in many 

quarters regarding the quality of food eaten daily. Consumers want to be given information on the 

composition of the products they are buying. Information provided on packaging can be in 

various forms; it can be energy content, proteins/sugar/fat contents or even more detailed 

information on some vitamins or certain amino acids for example. Raw food material 

compositional analysis is also a crucial activity for plant breeders and nutritionists in order to 

give detailed qualitative and quantitative information on raw materials destined for human or 

animal nutrition. Our interest lies in such detailed description of the raw elements that are found 

in food materials.  

 

The level of compositional information that we are interested in is the individual metabolite. The 

term metabolites usually depicts small molecules involved in the metabolism of living organism, 

either as an intermediate or a product of a reaction. In other terms they are the participants of the 

complete set of chemical reactions that occurs in living cells. They are involved in processes 

which form the basis of life, allowing cells to grow and reproduce, maintain their structures, and 

respond to their environment. Catabolic reactions yield energy, an example being the breakdown 



Page 37 of 370 

 

of food in cellular respiration. Anabolic reactions, on the other hand, use this energy to construct 

components of cells such as proteins and nucleic acids. The metabolome is thus the network of 

reactions involving metabolites. Products (outputs) from one enzymatic chemical reaction are 

often reactants (inputs) of another. The analysis of such activity of metabolites is called 

metabolomics. Namely, it is the study of metabolite profiles in a system (cell, tissue, or organism) 

under a given set of conditions.  

 

We will distinguish primary and secondary metabolism. The former one encompasses all the 

chemical reactions and interactions of a biological system involving those compounds which are 

formed as a part of the normal anabolic and catabolic processes which result in assimilation, 

respiration, transport, and differentiation. These processes take place in most -if not all- cells of 

the organism. Common examples of primary compounds are sugars, amino acids, nucleotides etc. 

A compound is classified as a secondary metabolite if it does not seem to directly function in the 

processes of growth and development. Although secondary compounds are a normal –in the 

sense that they appear in the vast majority if not every living organisms- part of the metabolism 

of an organism, they are often produced in specialized cells, and tend to be more complex than 

primary compounds. Examples of secondary compounds include antibiotics or plant chemical 

defenses such as alkaloids and steroids; many such compounds provide plant-derived food 

products with specific aroma and taste characteristics.  

 

In the G03 project we are mainly interested in the composition of the potato plant (Solanum 

tuberosum) and more particularly in tuber compositional analysis. Potato is the 4
th

 crop 

worldwide behind wheat, rice and maize. It is used in food, feed and biotechnological 

applications. The potato plant is relatively easy to modify genetically and its large tuberous 

storage organs constitute an interesting host for recombinant protein production. We may also 

consider some information derived from other Solanaceae like tomato plants (Solanum 

lycopersicum which has a simpler genome).   

 

Whilst writing the G03012 proposal a cursory search for literature and databases revealed the 

presence of a large body of information on the composition of raw food materials.  Thus in the 

present section, in order to provide a comparator for metabolomics data we undertook a formal 
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search for data on potato tuber chemical composition with the aim of examining data format and 

determining the possibility of data integration in the future. Our secondary focus was to report 

values found either in the literature or in devoted databases for metabolites in potatoes and while 

doing so to develop a list of metabolites that can be measured in potato. Information arising from 

other species will only be considered if they have some added value as far as potato is concerned. 

However, we need to keep in mind that just like for any plant (or more generally living 

organisms), the chemical composition of potatoes varies with variety, soil type, area where 

grown, cultural practices, maturity, method of harvesting, storage environment and other factors. 

Clearly it is impossible to make any meaningful comparisons on the composition of potato tubers 

unless most of the factors listed above are under control.   

 

2. 2 OVERALL OBJECTIVES  

 

The major aim of this section is to evaluate external data structure and assess the possibility of 

developing methods for converting this information into a common format.  One important 

activity was to assess how much information actually relates to direct measurements of 

metabolites in the data available to us at present. A key question was to know how scientists who 

work within the context of food research describe the raw material in terms of its overall 

composition.   When this is understood we can evaluate the scope for integration of 

compositional information and, if appropriate, develop a new implementation of the ArMeT 

database developed in the G02006 project. Ultimately, when this data has been retrieved and 

converted (if worthwhile) in a unified format, there may be opportunities to enhance/improve the 

quality of the data.   

 

We will examine as many as possible of such external databases because we would like to 

retrieve a broad list of quantitative information on metabolites and because we would like this 

information to be accurate. This would kill two birds with one stone: in the first place, it will 

allow us to have an idea of the list of metabolites covered by existing databases and lastly we 

would like to be able to compare the relative concentration in common databases with GC- and 

LC-MS profiles the G03 project is analysing. Ultimately we intend to determine whether it is 

possible to propose a database structure to provide homogeneous access to data on potato 
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composition by assessing the scope for unification of all external data on quantitative 

measurements on individual metabolites and integration with metabolomics data sets.  

 

The objectives can be summarised as follows:  

 

  Develop a summary of accessible current databases and literature with data relating to 

potato tuber composition. 

  

 Assess the presentation and quality of the data on compositional analysis of raw potato 

tubers. It is important to concentrate on raw material but if the information is only 

available on cooked or processed tubers this should commented upon.  

 

 Report if data is linked to the original experiments producing them and if there are 

publications related to them. Develop a bibliography 

 

 Evaluate the kinds of standard methods used to identify metabolites as well as the 

format of given values. Is there any indication of statistical accuracy given? 

 

 Gather common information in a unique repository containing representative qualitative 

information and quantitative aspects on metabolites in potato (and tomato when relevant 

for example). The structure of the data included will depend on the framework initially 

proposed by retrieved sources of information.  

 

 Develop with analytical chemists a list of potato tuber metabolites that should be 

potentially detected by metabolomics technology.  

2.3 INTRODUCTION 

 

Some sources of information for compositional analysis of crops were previously (sometimes 

partially) known. The strategy to make the list of them complete and to explore this list to the 

greatest possible extent started with simple query inspecting available literature and first known 
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databases. Queries were carried out either in general search engines or in more specialized 

databases mentioning keywords of interest („metabol*‟, „potato‟ -or „tomato‟-, „compositional 

(analysis)‟, „peak‟, „measurement‟. Names of metabolites of interest were added (e.g. 

„(beta/phenyl)alanine‟, „fructose‟, „valine‟, „(iso)leucine‟, „citrate‟, „(oxo)proline‟, phosphate) 

when there was a need to constrain retrieved results. Mining the list of retrieved sites gave 

various leads. We tried to extract useful information therein and we will comment upon this in 

the present report. 

Generally speaking, it was found that  that individual information sources on metabolites were 

much sparser and poorer than expected. However, the assembly of information provided by the 

numerous databases and documents found did provide a useful repository overall. 

 

In the present section of the GO3012 project we will present the information we were able to 

extract and explain how this information will deciphered and assembled into the components of 

the targeted external compositional database (ARMeC; see Section 2.5 and Section  6 of the 

G03012 report). 

 

 

2.3.1 Exploration of “Food Composition Databases”: 
 

According to the website (http://www.nutrition.org.uk/) of the British Nutrition 

Foundation there are over 150 food composition tables and electronic databases already in 

existence worldwide. Since the same food might be listed in a great number of these databases, in 

some circumstances, different nutrient values will be given for the „same‟ raw material. This can 

be for a variety of reasons: genuine differences between the nutrient composition of the foods 

selected for sampling (e.g. selenium content of cereal strongly depends upon selenium content of 

the soil), different sampling techniques might have been used or different technologies (recent vs. 

modern) or different methods may have been used to analyze the data. This has been a hindrance 

to unification of such data. However, we try here to report the consistency of the quality and 

quantity of the data in food composition tables for potato (and possibly tomato or other crops). 

One would then be able to have an accurate and reliable background for a genuine study on 

metabolite concentrations in potato tubers for example. It could be a good starting point for other 

projects as well.  

http://www.nutrition.org.uk/
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The first site that proposes a quality database is the United States Department of Agriculture 

(under the Agricultural Research Service). The current actual release is the 19
th

 and it seems to 

provide an annual update. The web address is 

http://www.ars.usda.gov/main/site_main.htm?modecode=12-35-45-00. A search on “raw 

potato” gives the choice between unspecified, red, white or russet potato “flesh and skin” 

(Solanum tuberosum) and with sweet potato either only leaves or unprepared (Ipomoea batatas). 

There is a choice of scale of analysis thereafter: 100g, cup, large, medium or small potato for 

example. We reported any number given here in percentages. We assume that these are mean 

values given since number of points (measures certainly) and standard error are reported.  In this 

database major constituents with numerical summaries are given (water, ashes, sugar, energy,…) 

as well as less information (e.g. presence, absence) on minerals, vitamins, lipids, amino acids (18 

of them) and „others‟. Values for the above cited different categories of potato can be quite 

different. As an example, the values for some amino acids between the basic potato and the red 

cultivar can double and the beta-carotene level is four times higher in red potato. Data are also 

associated with varying numbers of replicates (2 to 11). Sometimes the number of data points is 

0. We assume that it corresponds to a value inferred from another source than the genuine one 

considered by the USDA. An example of retrievable information is given in Appendix 2.1. A 

simplified comparison between some databases is provided in Table 2.1 and as a comparison to 

the USDA web site an extract of the Finnish web site (FINELI) when searched for potato tuber 

composition is presented in Appendix 2.2.   

 

We had in mind then to find similar database in different similar National Institutions. The 

French AFSSA (French Food Safety Agency, warning in French!) was quite disappointing with 

only some pages related to constituents of different food products (cf. Ciqual). But there was no 

real database. It was similar on the Ministère de l‟Agriculture et de la Pêche (only in French as 

well). The only available information is advice on healthy diets! 

 

Agriculture and Agri-Food (Canada) did not provide better results than the USDA database. A 

Canadian Nutrient File (http://www.hc-sc.gc.ca/fn-an/nutrition/fiche-nutri-

data/index_e.html) on Health Canada exists and gives compositional information on food 

http://www.usda.gov/
http://www.ars.usda.gov/
http://www.ars.usda.gov/main/site_main.htm?modecode=12-35-45-00
file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix1.2.pdf
http://www.afssa.fr/
http://www.agriculture.gouv.fr/
http://www.hc-sc.gc.ca/fn-an/nutrition/fiche-nutri-data/index_e.html
http://www.hc-sc.gc.ca/fn-an/nutrition/fiche-nutri-data/index_e.html
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eaten in Canada. It just seems to be equally informative as the American database and 

measurements are often identical to those in the USDA database. It suggests a direct copy.  This 

observation raises the more general issue that the sources of the data need to be made clearer if it 

is a possibility that some measures are inferred from others‟. 

 

New Zealand organisations (AgResearch, Crop & Food Research,…) are mainly contract based 

research and development companies. However some of them are state-owned so it was worth 

having a look. Crop & Food Research produce a New Zealand Food Composition Database 

(http://www.crop.cri.nz/home/products-

services/nutrition/foodcompdata/index.jsp). It is less comprehensive than the USDA 

database as far as the sample we were able to see is concerned. AgResearch was only able to give 

a short presentation on their website. Anyway it doesn‟t seem to be relevant because the nearest 

theme we were able to determine was enhancement of meat food for livestock. 

 

Food Standards Australia/New Zealand in under its Food Composition Programme 

(http://www.foodstandards.gov.au/monitoringandsurveillance/foodcompositionprog

ram/) provides information either on nutrients or foods. A version NUTTAB2006 

(http://www.foodstandards.gov.au/monitoringandsurveillance/nuttab2006/) has been 

released recently and merges, replaces and update several older published items. The sight of it is 

very encouraging in our scope. They distinguish between cultivars (Coliban, Desiree, Sebago…) 

that might be common in Australia and/or New-Zealand. A choice of processed or indigenous 

food is proposed as well. References and experimental procedure are readily commented upon. 

The only drawback is that values do not seem to be always very accurate (e.g. organic acids for 

potato) and no measurement of error is provided.  

 

The Danish Institute for Food and Veterinary Research offers a good Food Composition Database 

at http://www.foodcomp.dk/fcdb_default.asp. English is available. Their links section is 

quite comprehensive towards other National organisations. The database is complementary to the 

USDA database.  A search on potato can return different compositional analysis for new, autumn 

and old potato. Means values, number (of experiments?) and sometimes a range for nutrients are 

given. Some other information are reported (ripe or not, imported or from Denmark). However, 

http://www.agresearch.co.nz/
http://www.crop.cri.nz/
http://www.crop.cri.nz/home/products-services/nutrition/foodcompdata/index.jsp
http://www.crop.cri.nz/home/products-services/nutrition/foodcompdata/index.jsp
http://www.foodstandards.gov.au/monitoringandsurveillance/foodcompositionprogram/
http://www.foodstandards.gov.au/monitoringandsurveillance/foodcompositionprogram/
http://www.foodstandards.gov.au/monitoringandsurveillance/foodcompositionprogram/
http://www.foodstandards.gov.au/monitoringandsurveillance/nuttab2006/
http://www.foodcomp.dk/fcdb_default.asp
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the format adopted for presentation makes it sometimes not very precise (or unclear to us at 

least).  

 

In fact there are many such local database supported by national governments. But to agree with 

our scope, they are not very detailed. At best they give relative contents of a list of thirty to forty 

metabolites in different food products. Most of them are gathered under the aegis of the FAO (see 

http://faostat.fao.org/site/291/default.aspx for example). The International Network 

on Food Data Systems (http://www.fao.org/infoods/index_en.stm) can give a list of tables 

and databases developed regionally. Moreover it aims at centralizing as much as possible the 

activity upon food analysis on a worldwide scale. Historically, the first reported composition 

table is dated 1818. We have 2 main works on Food Composition Tables for international use (1
st
 

edition 1949, 2
nd

 1953) published by the FAO. But their focus is often too broad. It will be at best 

good background information for a list of common metabolites. It will require some treatment to 

organize these data to provide a good framework for reasonable ranges of compositional values 

for metabolites for potato. Many points were impossible to be clarified in term sof the the 

information presented: assessment of reliability of the databases, ways of identifying cultivars, 

list of metabolites to be considered for example. 

http://faostat.fao.org/site/291/default.aspx
http://www.fao.org/infoods/index_en.stm
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Name Internet address Comments Information given Kind of numerical 

values 

USDA‟s National 

Nutrient Database 

for Standard 

Reference 

http://www.ars.usda.gov/M

ain/site_main.htm?modecod

e=12-35-45-00 

Foundation of most food and nutrition databases 

in the US, used in food policy, research and 

nutrition monitoring, relatively comprehensive 

for a general food database with raw and 

prepared food. 

Choice between cv. („Russet‟) 

or type („White‟). Raw or 

processed food. 

Sources are given but not 

always obvious. 

Choice for scale. 

Gives mean values, 

number of points and 

SE (when available). 

Canadian nutrient 

file 

http://www.hc-

sc.gc.ca/fn-

an/nutrition/fiche-nutri-

data/index_e.html 

Access to analysis of various food from raw to 

included in recipe. Seems to be a copy of the 

USDA database. 

Cf USDA but sources are cited 

more explicitely 

Cf USDA 

FSANZ‟s 

NUTTAB2006 

(Australia and 

New-Zealand) 

http://www.foodstandards.

gov.au/monitoringandsurve

illance/nuttab2006/ 

Paper, online or electronic format proposed. It is 

an updated version of a database that reflects 

food available in Australia. 

Sources are cited and 

experimental processes are 

explained. 

Choice over a few varieties of 

potatoes. 

Only means (guess) 

and no sign of a 

number of 

independent 

experiments or SE 

values. 

Danish Food 

Composition 

Databank 

http://www.foodcomp.dk/fc

db_default.asp 

Analysis of food coumpounds, relatively precise 

and accurate. Sources are quoted. 

Choice between season of 

potato production for raw 

material. 

Sources are explicitely given 

with links. 

Mainly mean values 

are given, neither 

number of replicates 

nor SE. 

NCC Food and 

Nutrient Database 
http://www.ncc.umn.edu/pr

oducts/database.html 

Database maintained by a Minesota University 

department, sample available upon request. 

Many interesting nutrients. 

Only able to look at boiled 

potato with or without skin. 

The accuracy seems 

acceptable and the list of 

analyzed nutrients is given.  

Compositional value 

for main metabolites 

(~40-50) and other 

food oriented values 

(energy…) 

Fineli 
http://www.fineli.fi/inde

x.php?lang=en 

Information about Finnish food composition 

maintained by the National Public Health 

Institute of Finland with average nutrient 

concentration 

Processed and raw food (only 

1 for potato). 

Sources could be given but 

none provided for „potato 

unpeeled‟. 

Guess  mean values 

are given but no 

further indication 

than „content‟. 

Tabela de 

Brasileira de 

Composição de 

Alimentos 

http://www.fcf.usp.br/tab

ela/ 

Well, very similar to other national databases. 

Not many nutrients. But sorry only in 

Portuguese…So I only looked at “batata” 

(potato). 

Not many fields apart from 

basic information (energy, 

total of proteins, lipids, 

sugar…). 

A reference is given for each 

Certainly mean 

values; that‟s all! 

http://www.ars.usda.gov/Main/site_main.htm?modecode=12-35-45-00
http://www.ars.usda.gov/Main/site_main.htm?modecode=12-35-45-00
http://www.ars.usda.gov/Main/site_main.htm?modecode=12-35-45-00
http://www.hc-sc.gc.ca/fn-an/nutrition/fiche-nutri-data/index_e.html
http://www.hc-sc.gc.ca/fn-an/nutrition/fiche-nutri-data/index_e.html
http://www.hc-sc.gc.ca/fn-an/nutrition/fiche-nutri-data/index_e.html
http://www.hc-sc.gc.ca/fn-an/nutrition/fiche-nutri-data/index_e.html
http://www.foodstandards.gov.au/monitoringandsurveillance/nuttab2006/
http://www.foodstandards.gov.au/monitoringandsurveillance/nuttab2006/
http://www.foodstandards.gov.au/monitoringandsurveillance/nuttab2006/
http://www.foodcomp.dk/fcdb_default.asp
http://www.foodcomp.dk/fcdb_default.asp
http://www.ncc.umn.edu/products/database.html
http://www.ncc.umn.edu/products/database.html
http://www.fineli.fi/index.php?lang=en
http://www.fineli.fi/index.php?lang=en
http://www.fcf.usp.br/tabela/
http://www.fcf.usp.br/tabela/


Page 45 of 370 

 

nutrient. 

New Zealand 

Food Composition 

Database 

http://www.crop.cri.nz/ho

me/products-

services/nutrition/foodco

mpdata/ 

A database devoted to food prepared and eaten 

in New Zealand. It is not free and really food-

consumption oriented  

We were only able to look at 

the sample page. It seems to 

be too general public oriented. 

Certainly mean 

values (perhaps only 

one measure) for the 

proposed sample size. 

NutriBase 
http://nutribase.com/home

page.shtml 

Commercial software for “nutrition and fitness” 

mainly proving USDA and Canadian databases 

Not able to test it. It computes 

compositional information for 

entered recipes with regards 

USDA and Canadian food 

databases. 

N.A. 

Nutrigenie‟s 

Nutrition 2005 
http://nutrigenie.biz/ 

Commercial software including analysis of food 

products. 

Similar to the previous one, 

suited to analyse a diet rather 

than providing compositional 

analysis of raw food. 

N.A. 

INFOODS tables 
http://www.fao.org/infood

s/directory_en.stm 

Report that gathers most of the above (and 

others) databases (national-regional, reference-

user,…) providing details (format, gross 

content,…) for each. 

Links towards many regional 

databases referenced by the 

UN‟s FAO under INFOODS. 

Really depends on 

the selected 

databases. Can be 

very sparse (cf. 

Brazilian database 

above) or more 

complete. 

 

Table 2.1: Some databases providing values for metabolite content for a great variety of food. 

http://www.crop.cri.nz/home/products-services/nutrition/foodcompdata/
http://www.crop.cri.nz/home/products-services/nutrition/foodcompdata/
http://www.crop.cri.nz/home/products-services/nutrition/foodcompdata/
http://www.crop.cri.nz/home/products-services/nutrition/foodcompdata/
http://nutribase.com/homepage.shtml
http://nutribase.com/homepage.shtml
http://nutrigenie.biz/
http://www.fao.org/infoods/directory_en.stm
http://www.fao.org/infoods/directory_en.stm
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To sum up, major issues to overcome until now are: the accurate labelling of individual 

metabolites (see perhaps http://msi-workgroups.sourceforge.net/ or Greenfield‟s Food 

composition data: production, management and use), the missing information on many 

metabolites under study and the lack of references on methods used to derive the data or even 

on the sample used. From the sources above, it was possible to find information on amino 

acids. However, the INFOODS proposed Standards do not include the full list of around 100 

expected common metabolites decribed in potato tuber (see Section 3 of the G03012 report) 

given by our data (e.g. malate). Nevertheless, it is more complete than any results we were 

able to retrieve (e.g. it had values on inositol!) 

 

There are several relevant journals which often contain articles on the subject of food 

composition.  We can quote: Nutrition Journal (published by BioMed Central), Journal of 

Food Composition and Analysis (official publication of INFOODS) and Trends in Food 

Science and Technology (publication of the European Federation of Food Science and 

Technology –EFFoST- and the International Union of Food Science and Technology -

IUFoST), Plant Science (edited by Elsevier), Phytochemistry (official journal of the 

Phytochemical Society of Europe and the Phytochemical Society of North America). From 

such journals we produced an extensive list of retrieved articles which are presented in the 

bibliographic file which is to be found after the list of general references for Sections 1 and 2.  

 

In addition to journal articles there were conferences reports, often in book formats: US 

National Nutrient Databank Conference or International Food Data Conference for example. 

A useful book collecting many methods on proper food data handling is Food composition 

data: production, management and use, H. Greenfield and D.A.T. Southgate, 2
nd

 edition, 

FAO Rome 2003. More generally, literature proposed on the INFOODS webpages seems 

relevant. But we will tackle this kind of information later in the report. 

 

2.3.2 Databases devoted to Potato 

 

Although it was a straightforward idea to look directly for databases giving metabolite 

contents of potato, it is only briefly presented here. The reason is quite simple: there aren‟t 

many of them and they do not provide what we expect in terms of quantitative data.  They are 

summarized in the following table: 

 

http://msi-workgroups.sourceforge.net/
http://www.nutritionj.com/
http://www.elsevier.com/wps/find/journaldescription.cws_home/622878
http://www.elsevier.com/wps/find/journaldescription.cws_home/622878
http://www.elsevier.com/wps/find/journaldescription.cws_home/622878
http://www.elsevier.com/wps/find/journaldescription.cws_home/601278
http://www.elsevier.com/wps/find/journaldescription.cws_home/601278
http://www.elsevier.com/wps/find/journaldescription.cws_home/506030
http://www.elsevier.com/wps/find/journaldescription.cws_home/273
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Name Internet address Comments 

European Cultivated 

Potato Database 
http://www.europotato.org/ 

Announced as a resource for potato breeders, 

scientists and farmers. It lists a list of 

cultivars and their physical features (aspect, 

size, environment grown…). The advanced 

search procedure allow to search for (rare) 

pieces of information on metabolites (e.g. 

tuber glycoalkaloids but available only for 2 

varieties among ~3000?!). Note that many 

indicators are not numerical values. 

British Potato Council http://www.potato.org.uk/ 

The aim of this site is to promote the Potato 

industry in Britain. It provides information on 

weather condition, market prices, economical 

trends, diseases… 

World Potato Congress 
http://www.potatocongress.o

rg/ 

Gathers diverse kinds of information for 

people interest in potato: events, forums, 

links… 

Centro Internacional de 

la Papa 
http://www.cipotato.org/ 

Scientific research and related activities on 

potato, sweet potato and other root and tuber 

crops aimed at reducing poverty and achieve 

food security in developing countries and to 

improve management of natural resources. 

Ikisan portal, potato 

part 
http://www.ikisan.com/cache

/ap_Potato.shtml 

Many different information on the history, 

the morphology or the farming aspects of 

growing potatoes. 

GMO Safety / potato 
http://www.gmo-

safety.eu/en/potato/ 

Information on GM potatoes and the 

impact/safety of modifications on potato 

analysis made in Germany. It has 3 sections: 

new compounds, starch content and 

resistance to diseases. 

 

Table 2.2: Some potato devoted websites 
 

 

It is appropriate to mention here that some “old” books devoted to potato give a relatively 

accurate estimation of tuber composition. The advantage is obvious: experiments and material 

are quite well explained. The major difficulty is to know how to retrieve information from 

these old texts (no electronic form exists). There is a question to know if the reported 

experiments are precise enough according to our aims. We can quote: The Potato Crop, 2
nd

 

edition (1992) edited by Paul Harris, Grazyna Lisinska and Waclaw Leszczynski‟s Potato 

Science and Technology (1989) and Potatoes: Production, storing and Processing, 2
nd

 edition 

(1979) by Ora Smith as useful reference books for example. One exception is the Ikisan 

website that provides a good background on potato (and more generally on several crops or 

farming issues). Ikisan is an agricultural portal providing public information on the basis of 

exchanging knowledge. This data might be worth including in our external database for 

compositional data. Its drawback is it lacks scientific background with many values cited 

without references. 

http://www.europotato.org/
http://www.potato.org.uk/
http://www.potatocongress.org/
http://www.potatocongress.org/
http://www.cipotato.org/
http://www.ikisan.com/cache/ap_Potato.shtml
http://www.ikisan.com/cache/ap_Potato.shtml
http://www.gmo-safety.eu/en/potato/
http://www.gmo-safety.eu/en/potato/
http://www.ikisan.com/
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To finish the present document, we report below the last clues we have been following up 

before giving an overview of the work that has been done and achievable targets we could set 

ourselves according to the available external data on compositional analysis on potato. 

 

2.3.3 Further sources of information relating to potato tuber composition 

 

A simple concept is to look for information specific to a targeted metabolite. For example 

Ellin Doyle gives a report of free Asparagine level in foods (available online at 

http://www.wisc.edu/fri/briefs/asparagine1102.pdf). It has a full section on Potato among 

other foods, mainly devoted to raw material. It gives references to sources and some 

comments on the conditions that lead to numerical values. The content of such a report is very 

rich. The major drawback is the time it would consume to check that the original sources still 

exist, to retrieve them and to incorporate them into any integrated database. 

 

Another direction would be to explore databases on so called metabolomics data. As an 

example, the Golm Metabolome Database gathers information on profiles or Mass Spectra 

libraries (e.g. Retention Index). It has a public access policy. Information therein may be very 

relevant. References to (metabolite profiling) experiments are made very clear. However, the 

relevance of such semi-quantitative data and its linkage and interpretation related to our study 

on quantitative measures on food chemical components are not obvious yet. Data are 

available on several species: Arabidopsis thaliana, Arabidopsis halleri, Cucurbita maxima, 

Cucurbita pepo, Kigelia Africana, Lotus japonicus, Markhamia acuminata, Medicago 

truncatula, Newbouldia laevis, Nicotiana tabacum, Ovis aries, Spathodea campanulata, and 

include potato (Solanum tuberosum). Sometimes, there is a difference made upon the sampled 

organ (leaf, petiole, root, seedling…). The problem here would be to relate measurements 

(e.g. relative ratios)  to quantitative compositional values.  In essence the main value of such 

web sites is the fact that they provide libraries of profiles and retention times specific to 

compounds or samples; this kind of „check list‟ data is  very similar to the GO2 data we will 

be analysing in the G03012 project. Other organizations provide different forms of data. Table 

2.3 lists some examples of repository for metabolomics data: 

 

 

http://www.wisc.edu/fri/briefs/asparagine1102.pdf
http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html
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Name Internet address Comments 
Max Plank 

Institute‟s 

Metabolite Mass 

Spectra Library 

http://www-en.mpimp-

golm.mpg.de/02-

instUeberInstitut/04-

instRessources/webbasedRsrc/metabo

liteMSL/index.html 

Library of available metabolites for 

sample analysis. 

The Golm 

Metabolome 

Database 

http://csbdb.mpimp-

golm.mpg.de/csbdb/gmd/gmd.html 

Public access to custom mass spectra 

libraries and metabolite profiling 

experiments. 

Spectral Database 

for Organic 

Compounds 

(SDBS) 

http://www.aist.go.jp/RIODB/SDBS/c

gi-bin/cre_index.cgi?lang=eng 

Spectral database system for organic 

compounds, which includes EI-MS, FT-

IR, 
1
H NMR, 

13
C NMR, a laser Raman, 

and ESR spectrum. 

Fiehn lab 

metabolite listing 
http://fiehnlab.ucdavis.edu/compou

nds 

List of identified metabolites with 

chemical/physical background, 

synonyms list and links towards KEGG 

KNApSAck 
http://prime.psc.riken.jp/?action=

metabolites_index 

Tool for combined analysis of (natural) 

metabolites and organisms. The entry 

can also be made according to molecular 

weight or chemical formula. It focuses 

on plants. References are provided for 

the metabolite-organism association. 

ToMet http://tomet.bti.cornell.edu/ 

List of metabolites for tomato with links 

towards KEGG and references to 

experiments leading to their 

identification within the Tomato Nutrient 

Project. 

Life Sciences 

Institute‟s Crop 

Composition 

Database 

http://www.cropcomposition.org/ 

Compilation of crop analyses from a 

number of companies engaged in 

agricultural life sciences and 

standardized through ISLI. Only on corn, 

cotton and soybeans 

Human 

Metabolome 

Database 

http://www.hmdb.ca/ 

Freely available database containing 

information on metabolites found in the 

human body. At the moment, there are 

approximately 2500 metabolites. 

 

Table 2.3: Short list of metabolite-oriented databases. 
 

 

The compound database of the Fiehn laboratory gives a list of identified metabolites that can 

be used for further experimental identification. No compositional analysis is given, only links 

towards KEGG database and synonyms list in addition to physical/chemical properties. It is 

not really a database, rather a list. The laboratory also proposes a mass spectrometric database 

(BinBase) on its webpage. 

KNApSAck gives lots of indications on either metabolites or specific organisms. It provides 

links between these 2 features as well. It doesn‟t give other numerical values on metabolites 

than molecular weight however. References are provided on the context of the metabolite. 

 

http://www-en.mpimp-golm.mpg.de/02-instUeberInstitut/04-instRessources/webbasedRsrc/metaboliteMSL/index.html
http://www-en.mpimp-golm.mpg.de/02-instUeberInstitut/04-instRessources/webbasedRsrc/metaboliteMSL/index.html
http://www-en.mpimp-golm.mpg.de/02-instUeberInstitut/04-instRessources/webbasedRsrc/metaboliteMSL/index.html
http://www-en.mpimp-golm.mpg.de/02-instUeberInstitut/04-instRessources/webbasedRsrc/metaboliteMSL/index.html
http://www-en.mpimp-golm.mpg.de/02-instUeberInstitut/04-instRessources/webbasedRsrc/metaboliteMSL/index.html
http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html
http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html
http://www.aist.go.jp/RIODB/SDBS/cgi-bin/cre_index.cgi?lang=eng
http://www.aist.go.jp/RIODB/SDBS/cgi-bin/cre_index.cgi?lang=eng
http://fiehnlab.ucdavis.edu/compounds
http://fiehnlab.ucdavis.edu/compounds
http://prime.psc.riken.jp/?action=metabolites_index
http://prime.psc.riken.jp/?action=metabolites_index
http://tomet.bti.cornell.edu/
http://www.cropcomposition.org/
http://www.hmdb.ca/
http://fiehnlab.ucdavis.edu/
http://prime.psc.riken.jp/?action=metabolites_index
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The Human Metabolome Database provides much of what we are looking for as an external 

database but is only linked to human measurements. A description of each metabolite is 

provided with a list of known synonyms. Many links towards relevant databases (ByoCyc –

dataset metaCyc-, GeneAtlas, KEGG, Pfam, PubChem, PubMed, SwissProt, UniProt…) are 

proposed to find information on corresponding spectra (experimental or predicted, 
1
H, 

13
C 

NMR) relevant sequences, structures (cf. proteins) and even corresponding enzymes. Normal 

ranges of values within several tissues are provided. Last but not last, it gives a list of some 

references relative to all the information for a metabolite. 

 

In the same way, an interesting alternative database is the one developed at Cornell University 

as part of the Tomato Nutrient Project by Zhangjun Fei: ToMet. The goal is to correlate 

metabolite changes with expression data for a specific sort of experiments (backcross 

recombinant inbred lines). A list of metabolites is given (nearly 60) and stored in different 

categories. Obviously this database gives information for tomato. Few of the metabolites are 

shared by SCRI‟s initial data on potato. The reason is very simple: genuine and interesting 

tomato metabolites are rarely the same as potato ones. The „Tools‟ section allows searching 

for values of a metabolite according to a paper (whose values are present in the database). An 

interesting distinction is that no value is given, the data is missing and if a “0” is reported, it 

means that the value is below the detection level. See Appendix 2.4 for an example. Other 

features are available such as multiple search of metabolites and correlated search with 

expression data values. The structure of the database is worth having a look at.  

 

We may also quote the Life Sciences Institute‟s Crop Composition Database, but it contains 

only data on corn, cotton or soybeans.  

 

Another possibility is to do some literature mining in the metabolomics research fields. 

Relevant articles were sought within Google and its Scholar and Books versions, Pubmed and 

ISI Web of Knowledge portal with links to the three tools used: Web of Science, BIOSIS and 

CAB Abstract (authentification is required for the these latter browsers). From these 

complementary search engines, we followed some interesting authors to check their lab web 

pages. The literature references are reported in the Bibliography at the end of Section 2, whilst 

Appendix 2.10 contains a spreadsheet of the retrieved data.  

 

http://www.hmdb.ca/
http://tomet.bti.cornell.edu/
http://www.cropcomposition.org/
http://www.google.com/
http://scholar.google.com/
http://books.google.com/
http://www.ncbi.nlm.nih.gov/entrez/
http://portal.isiknowledge.com/
http://scientific.thomson.com/products/wos/
http://www.biosis.org/
http://www.cabi.org/datapage.asp?iDocID=165
file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix2.10_external_metabolite_data.xls


Page 51 of 370 

 

As an example of an article reporting the normal range of values for important nutritional (and 

anti-nutritional) factors in tubers we could suggest. “Compositional analysis of tubers from 

insect and virus resistant potato plants”, Rogan et al. (J. Agric. Food Chem. 2000); this paper 

also provides further links to different values from other sources. It gives its own measured 

values as well. An example of such information is given at Appendix 2.3. 

 

An idea of values to expect for important metabolites can be found in OECD‟s “Consensus 

document on compositional considerations for new varieties of Potatoes: key food and feed 

nutrients, anti-nutrients and antioxidants” 

(http://www.olis.oecd.org/olis/2002doc.nsf/LinkTo/env-jm-mono(2002)5). 

Just remind here we quoted general books on potato that have compositional analysis in their 

pages at the end of the “devoted to potato” section of the present report. One of the first 

articles on the use of GC-MS for simultaneous metabolite analysis, Roessner et al.‟s 

“Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass 

spectrometry” (The Plant Journal 2000) derives quantitative determination of metabolite 

concentrations in developing potato tubers. 

 

A standard example of papers reporting genetic engineering is Diretto et al.‟s “Metabolic 

engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon 

cyclase” (BMC Plant Biology 2006). They are useful in that they contain normal range of wild 

type plants metabolites for which they want to “enhance” the content of the plant. Many  

comparable articles have been published recently. Such documents are highly valuable 

because they give the full protocol to achieve their measurements. Some online databases 

(many of them not quoted in the present report) don‟t…We also noticed that the unit to report 

compositional analysis (e.g. nmol/g or μmol/g) can vary. It might depend on the analytical 

method chosen. 

 

 

 

 

 

We may also have in mind to look at metabolic networks available. We can quote the 

following examples: 

 

http://www.olis.oecd.org/olis/2002doc.nsf/LinkTo/env-jm-mono(2002)5)
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Name Internet address Comments 

KEGG http://www.genome.jp/kegg/pathway.html 

Pathway maps representing our knowledge 

on the molecular interaction and reaction 

networks for metabolism, genetic interaction, 

diseases… 

MetaCyc http://metacyc.org/ 

Database for experimentally elucidated 

pathways with links to genes, proteins and 

metabolites. 

Drastic http://www.drastic.org.uk/ 

A resource for the analysis of signal 

transduction in plants. The chart on metabolic 

pathways of the diseased potato is very 

informative. 

 

Table 2.4: Online resources for information on metabolites in biological networks 

 

Basically, these databases give the network of reactions involving metabolites as compounds 

(reagents or products). Sometimes the information is not explicitly made available for potato 

(KEGG, MetaCyc). They are useful because they prove that if a reaction has been observed in 

an organism, the involved compounds have been at last temporarily present in it. The main 

issues here are to know whether a compound has really been observed in the organism (in 

which organ then) and whether it is a stable compound (and not just an intermediary 

compounds in the network that is produced and then immediately consumed by another 

reaction).  

 

2.3.4 Scope for developing a common format for potato content 

 

We have now reviewed many different sources of data for external metabolite content of 

potato. An original goal of the G03012 project ideally was to produce common standard 

concentration ranges for metabolites in potato tubers derived from the external data; the 

question is how to make the best use of these different sources of information?   Given the 

structure of the data we propose two different measures for each metabolite. The first one will 

be an incidence measure and the second one will provide an intensity measurement for those 

metabolites that show a significant incidence. Let us clarify this piece of information. The 

incidence was defined as the frequency of related occurrence of the metabolite under study in 

our references pool as compared to the number of times it was searched for. So two values 

will be necessary to estimate this frequency: “B”, the number of references that admit they 

would like to detect the metabolite and “A”, the number of references reporting that they 

eventually detected it. The incidence will simply be defined as I=A/B. The higher the 

incidence, the most probable the metabolite is present within potato. However the correct 

estimation of “I” will face two major issues: the difficulty to accurately evaluate “A” and of 

http://www.genome.jp/kegg/pathway.html
http://metacyc.org/
http://www.drastic.org.uk/
http://www.genome.jp/kegg/pathway.html
http://metacyc.org/
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course the honesty of the reference to admit it was unsuccessful at detecting the metabolite 

(especially if they think it should be present). The problem to correctly assess “A” and “B” 

will rely on the ability of the person to detect this information within a database 

documentation (when available), an article, a book…and to judge if a reference can be fairly 

evaluated as reliable. In general we expect these measures to be underestimated. In the case 

where the incidence test has proven the presence of the metabolite in potato, we would like a 

numerical estimation of it. This is the subject of the next paragraph. 

 

Ideally we would like to retrieve a distribution of metabolite content within potato tubers. 

However it soon became apparent that this was simply not achievable, the first reason being 

that this distribution strongly depends on the cultivar. For example, the dry matter can vary 

from 13.1 to 36.8% (Lisinska 1989)! Even if this factor is set with certitude, com position 

measurements can depend on many other factors. As an example, the size of the tuber has a 

major impact on sugar (glucose, fructose and sucrose) content. Table 2.5 from Linsinska 1989 

reports that means values for the three above-cited sugars are 0.164, 0.027 and 0.341% of 

Fresh Weight for a large tuber and 0.412, 0.129 and 0.171% of FW for small ones?! There is 

also the issue of homogenization of adopted unit. Some references give values on Dry 

Weight, whereas other do on Fresh Weight. Some report the metabolite abundance in mol/g 

while others chose to report it as mg/g…Hence prior careful data handling is necessary.   

 

Given the complexity of the compositional information we decided to try initially to retrieve 

values for as many cultivars as possible and record factors that hinder data integration. From 

this information we attempted to derive also a simplified measure of numerical value and at 

the same time comment on these values where appropriate. Essentially, were possible we 

would have liked to generate metabolite concentration values that represented a quintile 

distribution (possibly just the median, minimum and maximum) over the biggest set of values 

that seem reasonably comparable. This is what we called an intensity measurement for a given 

metabolite in potato. A simpler solution would be to point at references that we identified as 

having valuable quantitative information for the queried metabolite(s) and to propose to a user 

a small well chosen set of representative values for potato tubers content as regards these 

metabolites. 

 

 



Page 54 of 370 

 

2.3.5 Concluding remarks on external data  

 

We have reported and briefly described here all the sources of information for compositional 

analysis of metabolites within potatoes that we were able to find and we think are relevant to 

the FSA G03012 project. Merging values retrieved from the literature or available online 

could give birth to a database comparable to the HMDB in its content and form but devoted to 

potato. However after a detailed examination of all the information on potato metabolites 

gleaned from external sources it became clear that developing a simple method for 

transforming concentration measures into a unified format was more or less impossible 

without consulting in detail the original papers and in many cases corresponding with original 

authors.   Thus populating an extended implementation of ArMet with this data was not seen 

as a productive exercise (see section 2.4).  As an alter native we established a simple scoring 

system to provide the best relative estimates of metabolite incidences and intensity measures 

as follows: 

0 not present 

1 not detectable 

2 identified,(very) small amount 

3 present in stressed conditions 

4 present in GM plants 

5 traces 

6 variable amount (depending on storage, bio availability,...) but important component 

7 important component 

 

All the data collected from external sources is summarised the spreadsheets attached as 

Appendix 2.10. Instead of trying to get this information into ArMet our attempt to collate 

external information and relate also to metabolomics data culminated in the development of a 

pilot database to contain information on individual metabolites (ARMeC) for the G03012 

project described in Section 6 of the present report. Specifically the software engineering for 

ARMeC based on the analyses of external compositional information from this section is 

presented in Section 2.5. Further considerations related to evaluating the scope for extension 

of the ArMet database to contain whole experiments derived from external literature 

describing potato tuber composition are presented in the next section. 

 

 

 

file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix2.10_external_metabolite_data.xls
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2.4 DEVELOPMENT OF AN ArMet IMPLEMENTATION TO 
EXPERIMENTAL DATA ON POTATO TUBER COMPOSITION FROM 
EXTERNAL DATA  

 

The ArMet framework for metabolomics data was developed under project G02006. It was 

the starting point for collection of G02 data from other projects and for the representation of 

external compositional data. Between the end of G02006 and the start of G03R012 and 

continuing under the latter project, the ArMet design was modified in the light of  feedback 

from publication
1
, standards initiatives 

2,3
, additional publications

4
 and input from other 

fields
5
. Development also took place under the BBSRC MeT-RO project. Input from 

emerging G03 requirements was important here.  

 

These developments resulted in a version 2 of ArMet which is described in detail in Appendix 

2.6. The major conceptual design improvement is to ensure a cleaner division between 

materials and protocols applied to the material. Earlier designs had moved in this direction but 

a number of anomalies still existed. This change is broadly in line with the FuGE design
5
 

where, in that high level and “generic” materials and protocols to describe actions are the only 

concepts for the main backbone of the data structure. ArMet retains specializations for 

particular types of material and protocol to ensure completeness and coherence of the 

metadata for the metabolomics pipeline. A major example of this is chemical analysis where 

this can be modeled as a protocol applied to transfer biological samples into data. This 

significantly simplifies the data structure but clearly it is a special type of protocol (a 

Chemical Analysis protocol) which must be applied and that cannot be applied elsewhere. 

 

Alongside the greater emphasis on protocols comes enhancement of protocol representation. 

In particular standard protocols and data on the application of a protocol (at a time and place 

by an experimentalist) must be distinguished and implemented. Protocol representation is 

more sophisticated in ArMet 2 (Appendix 2.7, Section 2.2 and diagram). 

 

A major emerging requirement was to represent a „set‟ of material. In early versions of ArMet 

and in particular in G02006, lack of such structures was noted. Ways of identifying all 

samples from a planting or all samples put through a machine were of great practical value. In 

ArMet 2 any type of material can be grouped into a set. These sets are called “studies”.  Care 

was taken to ensure that a mapping from ArMet 1 to ArMet 2 was possible (Appendix 2.6, 

file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix2.6.pdf
file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix2.6.pdf
file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix2.6.pdf
file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix2.7.pdf
file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix2.6.pdf
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Section 5). This was to ensure both compatibility of data sets and as a demonstration that all 

concepts representable in version 1 could be represented in version 2. 

 

Appendix 2.7 provides a complete draft design for a G03 database based on ArMet version 2. 

This is informed by the data collection exercises (Sections 1 and 2.3). Full implementation 

and population of this design was not seen as profitable for the project (18 month report to 

FSA) and was abandoned.  

 

Prospects for a G03 implementation from a technical perspective were good. The data 

harvested from external sources (Section 2.3) were structurally suitable for representation. 

The major problem was one of completeness. External sources would not always provide full 

“metabolomcs reporting” details. This would require two types of modification in an 

implementation.  First, ArMet is prescriptive. Almost all “fields” are mandatory. This is an 

easy restriction to remove and a database with the potential to store complete metadata but the 

permission to accept incomplete sets would be possible. The second change would be to allow 

dummy entries in structurally necessary fields where data are absent. The metabolomics 

pipline is detailed in sample growth and preparation. Food reports often lack such detail and 

dummy placeholders would be necessary. These two changes would alter interpretation of 

queries from the database. Searching for value “x” does not return record with values other 

than “x” but in addition it does not return those which might have been “x”. Missing values 

clearly require careful treatment in analyses.  

 

Turning from data structures to data values two areas of difficulty should be highlighted. 

First, measurement of metabolite content in food is reported as absolute or relative, in a wide 

range of units and to varying accuracies. Harvesting from publications and databases for 

comparison would require that these be reduced to common units. That is not an entirely 

automatable process. ArMet permits declaration of units as well as values but, particularly for 

literature references clear understanding of what is being reported is required to ensure true 

comparability. This would require time consuming curation by suitable experts and the project 

did not have that resource or see significant benefit from the exercise. 

 

The second issue in data values is chemical species description. Food composition tables 

often report at a rather abstract level (“sugars, total”; “starch, total” – see Section 2.3 above). 

They also often report using common or ambiguous names for chemicals. Both of these issues 

file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix2.7.pdf
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can be tackled using an ArMet type structure. Section 6 of the G03012 report discusses issues 

of chemical identity, synonyms and of chemical ontologies. Thus, as has been investigated 

within ARMeC, unambiguous identification can be achieved. The cost however would again 

be careful and expert curation. Chemical ontologies, for example, MESH in PubChem 

(http://pubchem.ncbi.nlm.nih.gov/), ChEBI (http://www.ebi.ac.uk/chebi/) or the MetaCyc 

(http://metacyc.org/) provide the ability to characterize chemicals at levels higher than distinct 

species. They provide hierarchies and in some cases multiple hierarchies to show groupings of 

similar structures. Thus, again with careful and expensive curation, reports could be 

“translated” to values where, for example, α-D-glucose could automatically be related to 

“sugars”.  

 

These possibilities are attractive from a bioinformatics perspective. From the perspective of 

G03R012 however the result would have been both expensive to curate (see above) and 

extremely sparse. Direct comparisons would be very few. Issues of chemical species 

identification, preparation and analysis methods and missing values would mean that very few 

close and instructive comparisons could be made. For this reason ArMet re-implementation 

and population was abandoned after discussion with the FSA. 

http://pubchem.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/chebi/
http://metacyc.org/
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2.5 DEVELOPMENT OF DATABASE ARCHITECTURE FOR ARMeC – 
ABERYSTWYTH RESPOSITORY FOR METABOLITE CHARACTERISTICS 

 

With an examination of both G02 data (Section 1) and external information on metabolite 

content (Section 2.3) completed it was agreed with the FSA (18 month report) that there was 

little value in attempting to populate a new implementation of ArMet with these data as 

outlined in Section 2.4.  However, during the course of these  studies it became apparent that 

(with the partial exception of the Human Metabolome Database) that no databases had 

sufficient utility to integrate archive information from external literature AND also 

accommodate information  from ongoing metabolomics studies that could help to both 

annotate metabolite signals  (see Section 3 of the G03012 report) and biologically interpret 

data.  In a collaboration between computer scientists, analytical chemists and biologists we 

therefore set out to develop a pilot database which was to contain data pertaining to the 

features of individual metabolites – the Aberystwyth Repository of Metabolite Characteristics 

(ARMeC) fields of information.  The development of ARMeC from an analytical chemistry 

perspective is outlined in Section 6 of the G03012 report and was published as a Nature 

Protocol by Overy et al (2008) 
6
.  In the present section we outline the design development 

and software engineering which resulted in ARMeC. 

 

Development proceeded in two stages. Version 1 was developed during the middle phase of 

the project, based on the initial spreadsheet based system, and provided support for analytical 

work in the later part of the project. At the end of the project, a Version 2 was developed 

which a) retains the functionality of Version 1; b) improves on the data design and web 

interface in the light of experience from Version 1 and c) adds structures for incorporating 

food composition data. 

 

2.5.1 ARMeC Version 1 

 

Systems analysis for this tool began with existing data and procedures which had been 

developed under a BBSRC ISIS project by Dr David Overy. It resulted in the data design 

provided in Appendix 2.8.  The design centres around the list of metabolites with simple 

chemical data.  A list of adducts are also represented.  An adduct is associated with a 

metabolite in one or two ways: it may be a predicted adduct from the metabolite and/or a 

file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix2.8_ARMeC_logical_Design.pdf
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measured adduct from the metabolite.  Either type of association may be on nominal or on 

accurate mass.  Collection of these data is described under Section 6.4.3 and this relatively 

simple structure reflects the possible information. 

 

When adducts are measured experimentally using MS
n
, a fragment tree can be collected.  This 

provides additional identification evidence and ARMeC provides for storing this as a 

recursive structure.  The relational model, reflected in relational database systems is known to 

be poor at representing arbitrary tree-like data. ARMeC uses a standard design for 

accommodating trees which is contrived and inefficient but adequate for requirements here.  

 

Metabolites are attested by external references.  This is done in two ways: general and source 

specific.  General references include literature reporting discovery of a metabolite and 

external databases such as KEGG and PubChem which record its existence and give access to 

additional information.  Source-specific references record identification of the metabolite in a 

particular type of biological sample. This should specify taxonomy - species would be the 

typical classification.  The identification might have been in samples of one or more organs or 

types of tissue.  These aspects are represented as “BiologicalSource” in the design.  It is the 

basis of allowing ARMeC to hold data on more than one species but to permit species-

specific querying.  The initial data set included associations to identify some metabolites as 

distinctive of major organism groups (plants, mammals, fungi, bacteria).  This was catered for 

in preliminary plans but is not now seen as a useful concept. 

 

External references of either type can be to literature, web resources or to a person (equivalent 

to a pers. comm.).  Web references are typically to databases and pers. comm. is clearly of 

lesser value but necessary at least for interim data.  

 

Synonyms are a pervasive problem in metabolomics data analysis.  Common metabolites will 

typically have many synonyms and some names can refer to more than one chemical species.  

They have no value in identification.  Their value is to humans in recognising a metabolite 

when results are produced and in searching for metabolites. Manual curation of a list of 

synonyms for each metabolite is supported.  

 

In evaluating metabolomic data sets, recognising that candidate metabolites are, or are not, in 

the same metabolic pathway can be of value.  Initial data used KEGG pathways and the model 
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supports a list of pathways containing metabolites and permits metabolites to be in any 

number of pathways.  

 

The logical design (Appendix 2.9) was implemented under the Oracle® 9i database 

management system (DBMS).  The design permits implementation under any standards 

compliant DBMS - Oracle was chosen on grounds of availability and staff experience.  

Access to the database is via a Web interface.  This was build using Java and J2EE facilities.  

Specifically servlets and Java Server Pages (JSP) were used. These are served using Tomcat 

through an Apache 2 server at http://www.armec.org. 

 

For the implementation, a System Specification and Transaction analysis was undertaken
7
.  

This evaluated loads and search requirements to establish that that the platform was adequate.  

A number of optimisations were suggested.  Transaction analysis suggested pages necessary 

in the Web interface and access rights were considered.  All querying and browsing is made 

public. 

 

A physical design was then produced (Appendix 2.8). This is a design targeted at a particular 

DBMS (Oracle) and taking into account optimisations.  Figure 2.1 shows the table structure 

and constraints for the implementation. A number of points should be made.  The authority 

subtypes (literature, online, contact) are implemented as a single table since this supports 

faster searching.  Optimisations have been made and indexes set on a number of fields which 

the transaction analysis identified as common search keys.  The most substantial design issue 

concerns the implementation of BiologicalSource. Each biological source must characterise a 

taxon, the anatomical description of the sample and (to support the higher level taxononomic 

groups) a so called class.  These values must be controlled.  They are controlled by externals 

terms. The taxon and class must be NCBI taxonomy identifiers.  This permits flexibility, since 

any taxonomic level could be used.  The values of class are limited to the 4 groups (plants, 

mammals, fungi, bacteria) by design.  Taxon is not directly limited to species.  In practice it is 

limited to two species: Solanum tuberosum and Arabidopsis thaliana.  The sample is 

controlled by the Plant Ontology (http://www.plantontology.org/)
8
.  This includes terms for 

organs and tissues and is currently the best vocabulary for describing material. The tables 

Taxon_T, Class_T and Sample_T are local caches of these external authorities to provide 

constraint and support for menu-driven choices in the Web interface. 

 

file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix2.9_ARMeC_physical_Design.pdf
http://www.armec.org/
file:///D:\Appendix_Sections_1&2\G03012_Final_Report_Appendix2.8_ARMeC_logical_Design.pdf
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Figure 2.1: The implemented tables for ARMeC Version 1 
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2.5.2 ARMeC Version 2: Restructuring and Extension 

 

ARMeC Version 2 concentrates soley on potato tuber data and was designed specifically for 

the G03012 project..  Data curation efforts centre here and all new database design work has 

worked on the assumption of fixing the BiologicalSource values to Solanum tubnerosum and 

“tuber”.  This is most apparent in the user interface where those values are the only choices 

available.  The underlying structure remains capable of supporting multiple species and the 

database could be extended in that way. 

 

The fundamental change from Version 1 is to base the metabolite list on chemical structure.  

Databases based on names have no chemical meaning.  They suffer from the problem of 

synonyms and they do not handle novel structures well.  It may be argued that IUPAC names 

are both unique and can be generated for novel compounds. They are, however, not widely 

used and cannot be easily used to generate other data.  A chemical structure is the 

fundamental concept of a metabolite.  The new design therefore is a collection of structures.  

These are represented in the MOL format.  Other formats could have been chosen, but MOL 

is an open format widely used and interpretable by a wide range of software.  All chemical 

data about a metabolite in ARMeC is generated from MOL.  In Version 1, curation involved 

entry of the canonical formula and molecular weight and of an image.  This was time 

consuming but, more importantly, error prone.  The IUPAC INChi code provides a unique 

and computer intelligible representation of structure.  In ARMeC it is calculated (alone with 

SMILES and, potentially, other structural representations) and used for database purposes.  

Most notably it is used to prevent duplicate entries (i.e. it is a primary key).  While much data 

is calculated from the MOL file, this is not done “on the fly” as the database is queried.  On 

addition of a new metabolite, all derived values are calculated once.  We believe that this 

approach to metabolite reporting is an important way forward for metabolomics and it will be 

taken forward elsewhere, particularly in the development of the ArMet system. 

 

Addition of a new metabolite only therefore requires a MOL file (a name can also be provided 

but this is only for display).  Novel metabolites can thus be entered. Any metabolite useful to 

ARMeC (for adduct searching) must have a known structure; many packages will generate 

MOL files and ARMeC provides a Web file upload facility. Most  typically metabolites will 

be known in external databases which typically provide MOL files that can be harvested. 
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Currently, ARMeC permits automatic harvesting from KEGG.  Other sources could be 

incorporated, but manual download can be used for them. 

 

The harvesting interface is web-based.  In a split screen, ARMeC is seen on the left while 

other web pages can be browsed on the right.  A web page which can be harvested causes 

additional facilities to appear which mean that the curator can select items to be transferred to 

ARMeC.  This includes MOL data.  A clip from a screen dump is shown in Figure 2.2 to 

illustrate this.  

 

 

 

 

Figure 2.2   A partial screen dump to illustrate data harvesting. 

 

 

The table structure and constraints for Version 2 are shown in Figure 2.3 (changed tables are 

distinguished by the colour of the header. Links to external references have been simplified 

and in particular one class of link has been removed.  Links to external databases were via the 

referencing system.  Now they are considered attributes of the metabolite.  Fields for 

important sources (URLs) have been added to the metabolite table. These are not required 
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data and they are under curator control.  Curators can decide on these links perhaps even if the 

structure represented externally is not quite the same as the ARMeC one, but the association 

is believed to be correct.  Links can be harvested. Figure 2.3 shows opportunity for 3 to be 

harvested from KEGG, including its own which would be sensible if the MOL is imported.  

They can also be manually entered.  These can be used to provide outward browsing links 

from ARMeC. Harvesting extends to synonyms.  The synonym structure has been simplified 

and this permits periodic automatic harvesting from all known external sites to make the 

ARMeC list a superset of them all.  The links to external authorities has been simplified.  This 

is not a very sophisticated part of the system and could be significantly improved to permit 

seamless access to on-line bibliographic information. 

 

Pathway information in Version 1 was related to metabolites. It was manually curated, largely 

from KEGG.   In Version 2 it is related to species and sample.  This permits linkage to species 

specific databases.  In particular, SolCyc (http:solcyc.sgn.cornell.edu) provides the PotatoCyc 

data set in the style of BioCyc (http://biocyc.org/). The SPPATHWAY_T table (Figure 2.3) 

holds data to identify and externally access pathways while SPMETPATH_I associates a 

metabolite in a particular type of sample to a pathway.  Pathway data can be harvested from 

websites. A curator, perhaps when adding new metabolite, can decide which sites to attempt 

to harvest. 

 

A major new aspect to Version 2 is the incorporation of compositional data from external 

sources (See Section 2.3).  Simple, textual extracts from cited sources for the estimation of 

metabolite content in a species can be added.  For a given species and sample type, when a 

reference is added to ARMeC, a small section text can be added which can then be displayed 

with the metabolite record.  A measure of overall occurrence is reported in Section 2.  This is 

associated not with a citation, but with the curator‟s overall assessment of occurrence in the 

sample type.  That value can therefore be stored in N_BIOSOURCE_T (Figure 2.3).

http://biocyc.org/
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Figure 2.3: The implementation tables for ARMeC Version 2 
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Appendix 2.1 USDA extract describing raw potato tuber (flesh and skin) 

Refuse: 0% 
Scientific Name:  Solanum tuberosum 
NDB No: 11352 (Nutrient values and weights are for edible portion) 

Nutrient  Units  
Value per 

100 grams 

Number 

of Data 

Points 

Std. 

Error  

Proximates      

Water  G 79.34 11 0.368 

Energy  kcal 77 0   

Energy  kj 321 0   

Protein  g 2.02 11 0.034 

Total lipid (fat)  g 0.09 11 0.009 

Ash  g 1.08 11 0.097 

Carbohydrate, by difference  g 17.47 0   

Fiber, total dietary  g 2.2 5   

Sugars, total  g 0.78 0   

Sucrose  g 0.17 11 0.021 

Glucose (dextrose)  g 0.33 11 0.047 

Fructose  g 0.27 11 0.029 

Lactose  g 0.00 11 0 

Maltose  g 0.00 11 0 

Galactose  g 0.00 5   

Starch  g 15.44 11 1.448 

Minerals      

Calcium, Ca  mg 12 11 1.368 

Iron, Fe  mg 0.78 11 0.04 

Magnesium, Mg  mg 23 11 0.452 

Phosphorus, P  mg 57 11 0.88 

Potassium, K  mg 421 11 11.942 

Sodium, Na  mg 6 73 0.76 

Zinc, Zn  mg 0.29 11 0.003 

Copper, Cu  mg 0.108 11 0.016 

Manganese, Mn  mg 0.153 11 0.026 

Selenium, Se  mcg 0.3 299 0.031 

Vitamins      

Vitamin C, total ascorbic acid  mg 19.7 141 0.769 

Thiamin  mg 0.080 11 0.006 
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Riboflavin  mg 0.032 11 0.013 

Niacin  mg 1.054 10 0.04 

Pantothenic acid  mg 0.296 11 0.036 

Vitamin B-6  mg 0.295 11 0.148 

Folate, total  mcg 16 11 3.324 

Folic acid  mcg 0 0   

Folate, food  mcg 16 11 3.324 

Folate, DFE  mcg_DFE 16 0   

Vitamin B-12  mcg 0.00 0   

Vitamin B-12, added  mcg 0.00 0   

Vitamin A, IU  IU 2 0   

Vitamin A, RAE  mcg_RAE 0 0   

Retinol  mcg 0 0   

Vitamin E (alpha-tocopherol)  mg 0.01 2   

Vitamin E, added  mg 0.00 0   

Tocopherol, beta  mg 0.00 2   

Tocopherol, gamma  mg 0.00 2   

Tocopherol, delta  mg 0.00 2   

Vitamin K (phylloquinone)  mcg 1.9 11 0.66 

Lipids      

Fatty acids, total saturated  g 0.026 0   

4:0  g 0.000 0   

6:0  g 0.000 0   

8:0  g 0.000 0   

10:0  g 0.001 6   

12:0  g 0.003 6   

14:0  g 0.001 18   

16:0  g 0.016 59   

18:0  g 0.004 59   

Fatty acids, total monounsaturated  g 0.002 0   

16:1 undifferentiated  g 0.001 37   

18:1 undifferentiated  g 0.001 59   

20:1  g 0.000 0   

22:1 undifferentiated  g 0.000 0   

Fatty acids, total polyunsaturated  g 0.043 0   

18:2 undifferentiated  g 0.032 59   

18:3 undifferentiated  g 0.010 59   
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18:4  g 0.000 0   

20:4 undifferentiated  g 0.000 0   

20:5 n-3  g 0.000 0   

22:5 n-3  g 0.000 0   

22:6 n-3  g 0.000 0   

Cholesterol  mg 0 0   

Phytosterols  mg 5 0   

Amino acids      

Tryptophan  g 0.032 6   

Threonine  g 0.075 7   

Isoleucine  g 0.084 7   

Leucine  g 0.124 7   

Lysine  g 0.126 7   

Methionine  g 0.033 7   

Cystine  g 0.026 6   

Phenylalanine  g 0.092 7   

Tyrosine  g 0.077 6   

Valine  g 0.117 7   

Arginine  g 0.095 9   

Histidine  g 0.045 9   

Alanine  g 0.064 6   

Aspartic acid  g 0.506 6   

Glutamic acid  g 0.347 8   

Glycine  g 0.062 6   

Proline  g 0.074 8   

Serine  g 0.090 6   

Other      

Alcohol, ethyl  g 0.0 0   

Caffeine  mg 0 0   

Theobromine  mg 0 0   

Carotene, beta  mcg 1 11 0.57 

Carotene, alpha  mcg 0 11 0 

Cryptoxanthin, beta  mcg 0 11 0 

Lycopene  mcg 0 11 0 

Lutein + zeaxanthin  mcg 8 10 2.357 

USDA National Nutrient Database for Standard Reference, Release 19 (2006) 
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Appendix 2.2 Extract of FINELI Database 

 

 
 

Potato, unpeeled, average, raw 
 Food number: 28913  

 Scientific name: 

Solanum tuberosum  

 Food type: Food  

 Processing method: 

No treatment  

 Ingredient class: 

Potato  

 Food use class: 

Cooked potatoes  

 Edible proportion: 

85%  

 Special diets  

Total energy content is 

divided into 
fat, total    2% 

protein, total    10% 

carbohydrate, 

available    86% 

alcohol     0% 

organic acids, total    2% 

sugar alcohols     0% 
 

 

Nutrient values / 100 g. 
Nutrient factor Content Unit Method Acquisition Reference 

Macro-components 

energy, 

calculated 
264 (63) kJ (kcal) 

calculated 

as recipe 

value 

created 

within host-

system 

  

carbohydrate, 

available 
13.2 g 

calculated 

as recipe 

value 

created 

within host-

system 

  

fat, total 0.2 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

protein, total 1.6 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

alcohol 0 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

Carbohydrate Components 

organic acids, 

total 
0.5 g 

calculated 

as recipe 

value 

created 
  

http://www.fineli.fi/foodclass.php?classif=igclass&class=potato&lang=en
http://www.fineli.fi/foodclass.php?classif=fuclass&class=potacook&lang=en
http://www.fineli.fi/specdiet.php?foodid=28913&lang=en
http://www.fineli.fi/component.php?compid=2052&lang=en
http://www.fineli.fi/component.php?compid=2052&lang=en
http://www.fineli.fi/component.php?compid=2034&lang=en
http://www.fineli.fi/component.php?compid=2034&lang=en
http://www.fineli.fi/component.php?compid=2157&lang=en
http://www.fineli.fi/component.php?compid=2230&lang=en
http://www.fineli.fi/component.php?compid=2005&lang=en
http://www.fineli.fi/component.php?compid=2222&lang=en
http://www.fineli.fi/component.php?compid=2222&lang=en
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within host-

system 

starch, total 12.7 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

sugars, total 0.5 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

sucrose 0 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

lactose 0 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

fructose 0.3 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

sugar alcohols 0 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

fibre, total 0.9 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

fibre, water-

insoluble 
0.9 g 

calculated 

as recipe 

value 

created 

within host-

system 

  

polysaccharides, 

non-cellulosic, 

water-soluble 

0.3 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

glucose 0.3 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

maltose 0 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

http://www.fineli.fi/component.php?compid=2252&lang=en
http://www.fineli.fi/component.php?compid=2259&lang=en
http://www.fineli.fi/component.php?compid=2257&lang=en
http://www.fineli.fi/component.php?compid=2196&lang=en
http://www.fineli.fi/component.php?compid=2172&lang=en
http://www.fineli.fi/component.php?compid=2260&lang=en
http://www.fineli.fi/component.php?compid=2168&lang=en
http://www.fineli.fi/component.php?compid=2266&lang=en
http://www.fineli.fi/component.php?compid=2266&lang=en
http://www.fineli.fi/component.php?compid=2279&lang=en
http://www.fineli.fi/component.php?compid=2279&lang=en
http://www.fineli.fi/component.php?compid=2279&lang=en
http://www.fineli.fi/component.php?compid=2178&lang=en
http://www.fineli.fi/component.php?compid=2206&lang=en


Page 73 of 370 

 

Fat 

fatty acids, total, 

calculated as 

TAG equivalents 

< 0.1 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

fatty acids, total < 0.1 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

fatty acids, total 

saturated 
< 0.1 g 

calculated 

as recipe 

value 

created 

within host-

system 

  

fatty acids, total 

monounsaturated 

cis 

< 0.1 g 
calculated 

as recipe 

value 

created 

within host-

system 

  

fatty acids, total 

polyunsaturated 
< 0.1 g 

calculated 

as recipe 

value 

created 

within host-

system 

  

fatty acids, total 

trans 
0 g 

calculated 

as recipe 

value 

created 

within host-

system 

  

fatty acid 18:2 

cis,cis n-6 

(linoleic acid) 

29 mg 
calculated 

as recipe 

value 

created 

within host-

system 

  

fatty acid 18:3 n-

3 (alpha-

linolenic acid) 

25 mg 
calculated 

as recipe 

value 

created 

within host-

system 

  

fatty acid 20:5 n-

3 (EPA) 
0 mg 

calculated 

as recipe 

value 

created 

within host-

system 

  

fatty acid 22:6 n-

3 (DHA) 
0 mg 

calculated 

as recipe 

value 

created 

within host-

system 

  

cholesterol (GC) 0.3 mg 
calculated 

as recipe 

value 

created 

within host-

system 

  

http://www.fineli.fi/component.php?compid=2159&lang=en
http://www.fineli.fi/component.php?compid=2159&lang=en
http://www.fineli.fi/component.php?compid=2159&lang=en
http://www.fineli.fi/component.php?compid=2143&lang=en
http://www.fineli.fi/component.php?compid=2156&lang=en
http://www.fineli.fi/component.php?compid=2156&lang=en
http://www.fineli.fi/component.php?compid=2150&lang=en
http://www.fineli.fi/component.php?compid=2150&lang=en
http://www.fineli.fi/component.php?compid=2150&lang=en
http://www.fineli.fi/component.php?compid=2151&lang=en
http://www.fineli.fi/component.php?compid=2151&lang=en
http://www.fineli.fi/component.php?compid=2158&lang=en
http://www.fineli.fi/component.php?compid=2158&lang=en
http://www.fineli.fi/component.php?compid=2095&lang=en
http://www.fineli.fi/component.php?compid=2095&lang=en
http://www.fineli.fi/component.php?compid=2095&lang=en
http://www.fineli.fi/component.php?compid=2097&lang=en
http://www.fineli.fi/component.php?compid=2097&lang=en
http://www.fineli.fi/component.php?compid=2097&lang=en
http://www.fineli.fi/component.php?compid=2116&lang=en
http://www.fineli.fi/component.php?compid=2116&lang=en
http://www.fineli.fi/component.php?compid=2131&lang=en
http://www.fineli.fi/component.php?compid=2131&lang=en
http://www.fineli.fi/component.php?compid=2038&lang=en
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sterols, total 4.4 mg 
calculated 

as recipe 

value 

created 

within host-

system 

  

Minerals 

sodium 0.9 mg 
calculated 

as recipe 

value 

created 

within host-

system 

  

salt 2.2 mg 
calculated 

as recipe 

value 

created 

within host-

system 

  

potassium 425.0 mg 
calculated 

as recipe 

value 

created 

within host-

system 

  

magnesium 20.4 mg 
calculated 

as recipe 

value 

created 

within host-

system 

  

calcium 4.8 mg 
calculated 

as recipe 

value 

created 

within host-

system 

  

phosphorus 38.3 mg 
calculated 

as recipe 

value 

created 

within host-

system 

  

iron, total 0.6 mg 
calculated 

as recipe 

value 

created 

within host-

system 

  

zinc 0.3 mg 
calculated 

as recipe 

value 

created 

within host-

system 

  

iodide (iodine) 0.9 µg 
calculated 

as recipe 

value 

created 

within host-

system 

  

selenium, total 0.5 µg 
calculated 

as recipe 

value 

created 

within host-

system 

  

http://www.fineli.fi/component.php?compid=2254&lang=en
http://www.fineli.fi/component.php?compid=2216&lang=en
http://www.fineli.fi/component.php?compid=2217&lang=en
http://www.fineli.fi/component.php?compid=2192&lang=en
http://www.fineli.fi/component.php?compid=2212&lang=en
http://www.fineli.fi/component.php?compid=2023&lang=en
http://www.fineli.fi/component.php?compid=2223&lang=en
http://www.fineli.fi/component.php?compid=2160&lang=en
http://www.fineli.fi/component.php?compid=2282&lang=en
http://www.fineli.fi/component.php?compid=2189&lang=en
http://www.fineli.fi/component.php?compid=2244&lang=en
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Vitamins 

vitamin A 

retinol activity 

equivalents 

0.5 µg 
calculated 

as recipe 

value 

created 

within host-

system 

  

vitamin D 0 µg 
calculated 

as recipe 

value 

created 

within host-

system 

  

vitamin E 

alphatocopherol 
<0.1 mg 

calculated 

as recipe 

value 

created 

within host-

system 

  

vitamin K, total 0.88 µg 
calculated 

as recipe 

value 

created 

within host-

system 

  

vitamin C 

(ascorbic acid) 
8.5 mg 

calculated 

as recipe 

value 

created 

within host-

system 

  

folate (HPLC) 19.7 µg 
calculated 

as recipe 

value 

created 

within host-

system 

  

niacin 

equivalents, total 
0.5 mg 

calculated 

as recipe 

value 

created 

within host-

system 

  

riboflavine 0.03 mg 
calculated 

as recipe 

value 

created 

within host-

system 

  

thiamin (vitamin 

B1) 
0.18 mg 

calculated 

as recipe 

value 

created 

within host-

system 

  

vitamin B-12 

(cobalamin) 
0 µg 

calculated 

as recipe 

value 

created 

within host-

system 

  

vitamers 

pyridoxine 

(hydrochloride) 

0.10 mg 
calculated 

as recipe 

value 

created 

within host-

system 

  

http://www.fineli.fi/component.php?compid=2298&lang=en
http://www.fineli.fi/component.php?compid=2298&lang=en
http://www.fineli.fi/component.php?compid=2298&lang=en
http://www.fineli.fi/component.php?compid=2271&lang=en
http://www.fineli.fi/component.php?compid=2299&lang=en
http://www.fineli.fi/component.php?compid=2299&lang=en
http://www.fineli.fi/component.php?compid=2274&lang=en
http://www.fineli.fi/component.php?compid=2270&lang=en
http://www.fineli.fi/component.php?compid=2270&lang=en
http://www.fineli.fi/component.php?compid=2273&lang=en
http://www.fineli.fi/component.php?compid=2275&lang=en
http://www.fineli.fi/component.php?compid=2275&lang=en
http://www.fineli.fi/component.php?compid=2277&lang=en
http://www.fineli.fi/component.php?compid=2278&lang=en
http://www.fineli.fi/component.php?compid=2278&lang=en
http://www.fineli.fi/component.php?compid=2269&lang=en
http://www.fineli.fi/component.php?compid=2269&lang=en
http://www.fineli.fi/component.php?compid=2276&lang=en
http://www.fineli.fi/component.php?compid=2276&lang=en
http://www.fineli.fi/component.php?compid=2276&lang=en
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carotenoids, total 57.7 µg 
calculated 

as recipe 

value 

created 

within host-

system 

  

 

 

 

 

 

http://www.fineli.fi/component.php?compid=2029&lang=en
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Appendix 2.3 Table from “Compositional analysis of tubers from insect 
and virus resistant potato plants”, Rogan et al. (J. Agric. Food Chem. 
2000) 

 

Table 7. Vitamin, Mineral, and Amino Acid Composition of NewLeaf Y 

Shepody and Shepody Potato Tubers
a
 

  NewLeaf Y SE clone 

  SEMT15-02 SEMT15-15 Shepody control 

    range   range   range 

component 

(mg/200 g of 

FW) 

mean max min mean max min mean max min 
literature 

range
b
  

vitamin B6  0.56  0.62  0.49  0.50  0.72  0.32  0.52  0.62  0.40  0.26-0.82  

niacin  4.55  5.05  4.14  4.78  5.86  3.98  4.43  5.15  3.73  0.18-6.2  

copper  0.41  0.61  0.20  0.48  1.10  0.23  0.39  0.53  0.20  0.03-1.4  

magnesium  53.13  67.16  48.17  56.95  90.00  47.85  54.22  65.54  48.95  22.5-110  

potassium  1097.24  1326.78  996.82  1135.14  1634.40  971.46  1162.01  1259.30  1105.92  700-1250  

aspartic acid  919.24  1151.50  614.88  994.27  1404.00  702.24  1001.97  1324.80  670.72  677-1476  

threonine  185.54  220.50  142.13  202.22  278.64  157.47  183.00  225.77  138.75  102-214  

serine  191.19  231.77  147.67  201.53  286.56  149.18  187.80  230.18  141.06  125-255  

glutamic acid  865.48  1073.10  665.28  976.81  1173.60  856.52  966.06  1181.28  773.12  583-1207  

proline  171.46  232.06  127.01  181.36  272.16  130.34  164.45  201.48  118.78  89-366  

glycine  165.64  196.97  133.06  179.23  249.84  147.90  161.84  184.92  133.12  92-195  

alanine  149.36  171.99  117.94  163.20  219.60  133.53  146.35  172.22  119.30  87-238  

cystine  78.86  89.99  71.57  83.82  108.72  75.54  76.36  86.55  66.56  96-185  

valine  219.00  271.68  186.48  249.09  346.32  223.44  225.81  247.84  200.70  196-363  

methionine  75.21  85.28  63.00  83.49  105.84  72.35  72.13  83.90  55.30  57-100  

isoleucine  159.52  207.72  129.53  183.88  259.20  159.60  164.08  187.15  137.22  119-238  

leucine  303.91  363.37  227.30  331.62  460.80  252.17  291.80  359.35  213.50  171-346  

tyrosine  147.49  170.93  128.02  170.91  228.24  151.62  150.98  160.63  137.22  114-236  

phenylalanine  200.41  239.98  161.28  226.08  315.36  193.12  201.51  227.98  165.38  138-272  

histidine  84.53  93.96  72.58  94.17  128.16  81.93  87.05  96.60  76.29  33-117  

lysine  276.80  318.09  231.34  304.06  410.40  265.47  274.90  314.64  225.79  154-342  

arginine  220.30  259.21  173.88  250.47  339.84  200.56  241.84  314.09  171.52  175-362  

tryptophan  43.23  49.30  38.56  46.09  67.18  36.27  42.75  48.96  34.51  29-70 

a
 Samples were collected from Island Falls, ME, and two sites in Canada (Hartland, NB; 

Summerside, PE). Plots were replicated four times at Hartland, NB. Plots were not replicated 

at the other two locations. Values presented represent the mean calculated from all six 

values.
b
 For vitamins and minerals, reported by Storey and Davis (1978) and Lisinska and 

Leszczynski (1989); for amino acids, reported by Talley et al. (1984). Fresh weight 

concentration for literature range was determined by assuming that potatoes are composed of 

~75% water. All values are reported as mg/200 g of FW. 
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Appendix 2.4 Tomato Metabolite database: information on fructose levels 

 

 

 
 

     
 
fructose level in tomato ILs (FL, Fall 2002, Greenhouse, LP-derived ILs) * 
 

Line name fructose level (mg/gfw) Percentage of control 

9-1 15.59 + 1.138 143.7 

12-2 14.92 + 0.471 137.5 

9-2-5 14.9 + 1.538 137.3 

12-3 14.67 + 1.269 135.2 

2-6-5 14.28 + 1.376 131.6 

11-4-1 14.21 + 1.367 131 

7-4 14.07 + 1.248 129.7 

7-1 14.02 + 1.159 129.2 

9-2 13.94 + 1.141 128.5 

8-2-1 13.86 + 0.974 127.7 

5-2 13.85 + 0.81 127.6 

9-3 13.68 + 1.132 126.1 

12-4 13.65 + 1.264 125.8 

11-2 13.53 + 0.642 124.7 

10-2 13.5 + 1.347 124.4 

10-1-1 13.29 + 0.657 122.5 

12-1-1 13.2 + 1.767 121.7 

8-3 13.16 + 1.134 121.3 

2-1 13.07 + 0.51 120.5 

10-2-2 12.99 + 0.847 119.7 

4-3 12.96 + 0.668 119.4 

1-1 12.87 + 1.364 118.6 

12-3-1 12.83 + 0.389 118.2 

5-1 12.53 + 0.92 115.5 

11-1 12.47 + 1.127 114.9 

5-4 12.24 + 0.429 112.8 

1-1-3 12.17 + 1.22 112.2 

9-3-1 12.05 + 0.996 111.1 

7-3 12.05 + 1.052 111.1 

8-1 11.87 + 0.221 109.4 

3-5 11.75 + 1.143 108.3 

4-1 11.68 + 0.73 107.6 

http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=9-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=12-2
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=9-2-5
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=12-3
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=2-6-5
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=11-4-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=7-4
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=7-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=9-2
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=8-2-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=5-2
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=9-3
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=12-4
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=11-2
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=10-2
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=10-1-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=12-1-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=8-3
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=2-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=10-2-2
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=4-3
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=1-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=12-3-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=5-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=11-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=5-4
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=1-1-3
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=9-3-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=7-3
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=8-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=3-5
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=4-1
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7-4-1 11.67 + 0.549 107.6 

10-1 11.65 + 0.773 107.4 

8-3-1 11.63 + 0.63 107.2 

7-5-5 11.57 + 1.282 106.6 

4-2 11.31 + 1.009 104.2 

4-3-2 11.27 + 0.592 103.9 

10-3 11.27 + 0.39 103.9 

1-1-2 11.26 + 0.735 103.8 

6-4 11.26 + 1.398 103.8 

8-1-1 11.25 + 0.507 103.7 

1-4 11.01 + 0.433 101.5 

8-1-5 10.97 + 0.592 101.1 

2-2 10.94 + 0.572 100.8 

5-3 10.91 + 1 100.6 

m82 10.85 + 0.659 100 

1-4-18 10.85 + 0.988 100 

12-4-1 10.72 + 0.82 98.8 

12-1 10.7 + 0.192 98.6 

8-2 10.65 + 0.791 98.2 

11-3 10.55 + 0.769 97.2 

2-1-1 9.89 + 1.186 91.2 

9-3-2 9.83 + 0.786 90.6 

4-1-1 9.7 + 0.709 89.4 

1-3 9.59 + 0.441 88.4 

3-1 9.3 + 1.34 85.7 

6-2 9.2 + 0.799 84.8 

5-5 8.91 + 0.333 82.1 

9-2-6 8.43 + 0.045 77.7 

2-6 8.2 + 1.056 75.6 

7-5 8.15 + 0.734 75.1 

9-1-2 7.9 + 0.832 72.8 

3-4 7.87 + 1.053 72.5 

11-4 7.85 + 0.662 72.4 

6-1 7.66 + 0.577 70.6 

3-2 7.43 + 0.421 68.5 

 

* Note  

 A value of zero means the fructose concentration was below the level of dection  
 No measure of fructose was performed on lines not shown in the table 

 

 

http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=7-4-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=10-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=8-3-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=7-5-5
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=4-2
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=4-3-2
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=10-3
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=1-1-2
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=6-4
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=8-1-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=1-4
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=8-1-5
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=2-2
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=5-3
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=m82
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=1-4-18
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=12-4-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=12-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=8-2
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=11-3
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=2-1-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=9-3-2
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=4-1-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=1-3
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=3-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=6-2
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=5-5
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=9-2-6
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=2-6
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=7-5
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=9-1-2
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=3-4
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=11-4
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=6-1
http://tomet.bti.cornell.edu/cgi-bin/TOMET/line.cgi?line=3-2
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Appendix 2.5 Example of typical information retrievable from the 
literature 

 

 

(a) as text: 

 

Table 6 Carotenoid content of dxs-transformed Desiree tubers compared with controls 

 Carotenoid levels (µg g
–1

 dry weight) 

 

Sample Total Neo
a
 Vio Ant Lut Zea Esters Phyt 

 

Wild-type DT 3.6±0.1 0.4±0.1 0.8±0.1 0.3±0.0 0.5±0.0 0.1±0.0 1.2±0.2 0.4±0.1 

Empty vector 

DT 

4.7±0.4 0.4±0.0 1.2±0.1 0.5±0.1 0.5±0.1 0.1±0.0 1.6±0.3 0.4±0.1 

dxs1 DT 6.5±0.1 0.3±0.0 1.4±0.1 0.1±0.0 0.8±0.0 0 0.9±0.1 3.0±0.6
*
 

dxs2 DT 7.0±0.9 0.2±0.0 1.3±0.3 0.1±0.0 0.9±0.2 0 1.2±0.4 3.2±0.4
*
 

Wild-type MT 4.1±1.2 0.3±0.1 1.2±0.5 0.3±0.1 0.3±0.1 0 1.7±0.6 0.4±0.1 

Empty vector 

MT 

2.1±0.6 0.2±0.0 0.4±0.1 0.1±0.0 0.1±0.0 0 0.9±0.4 0.4±0.1 

dxs1 MT 6.8±0.9 0.4±0.1 1.0±0.1 0.7±0.3 1.2±0.1 0.2±0.1 0.8±0.1 2.5±0.1
*
 

dxs2 MT 3.5±0.5 0.2±0.0 0.8±0.3 0.5±0.2 0.5±0.2 0.1±0.0 0.5±0.1 0.9±0.2 
 

Values are means of the determinations from three tubers ±SEM. Values marked by an 

asterisk are significantly different at P=0.05. 

a
 Neo, neoxanthin; Vio, violaxanthin; Ant, antheraxanthin; Lut, lutein; Zea, zeaxanthin; Phyt, 

phytoene; DT, developing tuber; MT, mature tuber. 

(from: Wayne L. Morris, Laurence J. M. Ducreux, Peter Hedden, Steve Millam, and Mark A. 

Taylor, Overexpression of a bacterial 1-deoxy-D-xylulose 5-phosphate synthase gene in 

potato tubers perturbs the isoprenoid metabolic network: implications for the control of the 

tuber life cycle, J. Exp. Bot., 57(12): 3007-3018, 2006) 
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(b) as graphs: 

 

Figure 6.  Oxylipin profiles of various potato organs. Oxylipins were extracted from various 

potato organs and quantified as described in Experimental procedures. (a) Free fatty acids: 

black, roughanic acid (16:3); gray, linoleic acid (18:2); white, α-linolenic acid (18:3). (b) 

LOX pathway products (dioxygenase activity, fatty acid hydroperoxides): black, 13-HPODE; 

dark gray, 13-HPOTE; light gray, 9-HPODE; white, 9-HPOTE. (c) Reductase pathway 

products: black, 13-HODE; dark gray, 13-HOTE; light gray, 9-HODE; white, 9-HOTE. (d) 

LOX products (peroxidase activity, keto fatty acids): black, 13-KODE; dark gray, 13-KOTE; 

light gray, 9-KODE; white, 9-KOTE. (e) 13-AOS pathway products: black, 12-OPDA; dark 

gray, JA; light gray, α-ketol derived from 13-HPODE; white, α-ketol derived from 13-

HPOTE. (f) 9-AOS pathway products: black, α-ketol derived from 9-HPODE; white, α-ketol 

derived from 9-HPOTE. (g) DES pathway products: black, colneleic acid; white, colnelenic 

acid. OL, old leaves; YL, young leaves; F, flowers; S, stems; R, roots; T, tubers; SE, 

sprouting eyes. The results are representative of two independent experiments. 

 

 
 

(from: Michael Stumpe, Cornelia Göbel, Kirill Demchenko, Manuela Hoffmann, Ralf B. 

Klösgen, Katharina Pawlowski, Ivo Feussner, Identification of an allene oxide synthase 

(CYP74C) that leads to formation of α-ketols from 9-hydroperoxides of linoleic and linolenic 

acid in below-ground organs of potato The Plant Journal 47 (6):883–896, 2006) . 
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G03012 Final Report - Section 3 
Tom Shepherd/Manfred Beckmann/Derek Stewart  

 

Development of standardized procedures for manual 

labeling of metabolite peaks in GC-MS profiles           

(Task 02.01) 

 

3.1 BACKGROUND TO EXPERIMENTAL SECTION 

 

During the G02 programme the Institutes comprising the different consortia developed a 

number of protocols for metabolite profiling of their respective target crop species using a 

number of complementary analytical techniques including gas chromatography-mass 

spectrometry (GC-MS).  Each organization developed and applied their own protocols for all 

steps of the analytical process from sample preparation through to chromatographic separation 

of metabolites using different technology platforms and alignment, deconvolution and 

annotation of data using various peak annotation software (NIST, Wiley, Binbase).  Each 

Institute generated its own lists of metabolites detected in their target crop species with 

various levels of annotation and degrees of identification from known metabolites to total 

unknowns.  Several considerations arose from this, relating to how the different technology 

platforms and methods for peak picking and data extraction influence the final outcome.  In 

order to allow for the comparison to and mining of data models between Institutes, the 

establishment of a standardized set of criteria to describe output generated from metabolomics 

experiments is essential, especially from experiments generated on different technologies.   

 

3.2 OVERALL OBJECTIVES 

 

Work carried out focused upon defining a set of criteria for the standardised description and 

annotation of metabolite peaks resolvable by GC-MS profiling in potato from G02 projects 

from three Institutes (SCRI, UWA, and Golm).   

 

3.2.1 Summary of objectives 

 

o Review on GC-MS metabolite profiling and reiterate main issues arising from 

G02 programme related to possible integration of data sets from different 
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laboratories. Note that methods/SOPs for generation and pre-processing of GC-MS data are already 

available in G02 reports from SCRI ad Aber which can be referred to. 

 

o Compare spreadsheets containing GC-MS data describing composition of 

potato tubers from SCRI, Golm and Aber. 

 

o Develop a standardized method for the description of a GC-MS peak which 

can be generated from all three instruments (LECO, Agilent and Thermo kit).   

 

o Compare suggested methodology retrospectively (not metadata) to 

recommendations in Metabolomics Special Issue on standard reporting of 

analytical chemistry.  

 

o Align data from all three instruments and generate a list of metabolites that 

would be expected to be measurable in a GC-MS profile of potato. Put 

information into ARMeC –  i.e. develop a field indicating that compounds are measurable by 

GC-tof –MS. 

 

 

3.3 METABOLITE PROFILING USING GAS CHROMATOGRAPHY MASS 
SPECTROMETRY (GC-MS) 

 

3.3.1 Introduction to GC-MS  

Gas chromatography-mass spectrometry (GC-MS) is a technique in which chromatographic 

separation of complex mixture of analytes occur in the gas phase by passing them through a 

long narrow-bore tube coated with a thin chemically bonded layer of a reactive polymer 

(stationary phase), in a flow of inert carrier gas (typically Helium).  The analytes interact 

differentially with the stationary phase via ionic or Van der Waals type processes, migrating 

through the column at different rates, becoming spatially separated (resolved) with time.  The 

analytes pass through a heated connection from the GC to the mass spectrometer (MS).  In the 

ion source of the MS the analyte molecules are bombarded with high energy electrons with an 

industry-standard acceleration voltage of 70 eV.  The collision process abstracts an electron 

from the molecule resulting in the formation of a radical cation (molecular ion) along with 

energy transfer to the molecular ion.  Subsequent fragmentation of the molecular ion results in 

formation a series of daughter ions and neutral fragments the composition of which is 

dependent solely on the type and arrangement of atoms and types of bonding present within 

the original molecule.  Further fragmentation of daughter ions may occur generating a cloud 

of ions and fragments.  Only ions carrying a positive charge are then transferred to the mass 

analyser for characterisation.  Four technologies are available for measurement of the mass to 

charge ratio (m/z) of the ions, namely sector instruments, quadropoles, ion traps and time of 
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flight (TOF) instruments.  The great majority of GC-MS based metobolomics studies use 

either the quadrupole or TOF technology platforms and the alternatives will not be considered 

further here.  

 

3.3.2 Use of GC-MS in metabolomics studies 

The basic approach for use of GC-MS for simultaneous analysis of metabolites in 

metabolomics studies of plant materials, as exemplified by potato, was described by Roessner 

et al., in 2000
1 

and was used to phenotype genetically and environmentally modified plants
2
. 

 

The introduction of GC-TOF-MS analysis for analysis of highly complex plant extracts was 

hailed as a significant technological advance since it offered unparalleled ability for 

quantification and detection of several hundred metabolites in a single sample
3,4,5

. 

Subsequently use of the more sensitive TOF instrumentation has become the technology of 

choice in many laboratories
6-13

.   The use of GC-MS in metabolomics studies has been the 

subject of a number of recent reviews
14, 15, 16

. 

 

3.3.3 Sample extraction and isolation and chemical derivatisation 

Once metabolites have been extracted they must be chemically transformed to increase their 

volatility and to reduce their polarity prior to analysis by GC-MS.  Although numerous 

methods have been developed over the years for targeted analysis of specific classes of 

metabolite by GC-MS, specific methodologies have arisen for analysis of the wider spectrum 

of metabolites encountered during metabolomics based studies.  Most current methods are 

variations on a protocol which involves conversion of reducing sugars and other metabolites 

with reactive carbonyl groups into their respective methyl oximes by reaction with 

methoxyamine hydrochloride, prior to trimethylsilylation using N-methyl-N-

trimethylsilyltrifluoroacetamide (MSTFA), in which acidic protons are exchanged for 

trimethylsilyl (TMS) groups
1, 11, 16-18

  The oximation step locks reducing sugars in their open 

chain forms and prevents decarboxylation of -ketoacids, whereas silylation reduces the 

polarity and increases the volatility and thermal stability of the derivatives.  Oximation 

reactions of this type are sensitive to the effects of reaction time and temperature, as reported 

for oximation reactions using hydroxylamine hydrochloride
19

 and methoxyamine 

hydrochloride
11

 Therefore, to ensure the reaction goes to completion, experimental conditions 
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should be thoroughly optimised, as otherwise significant amounts of unoximated sugars will 

also be present.  Although some users of the methodology report that conditions were 

optimised there are relatively few published descriptions of this
11

.  A drawback of the use of 

TMS derivatives is their moisture sensitivity, therefore they must be formed and handled 

under anhydrous conditions.  The use of tert-butyldimethylsilyl (TBDMS) dervitives as an 

alternative to TMS has some advantages, the derivatives being more hydrolytically stable.  In 

addition the increase in mass along with a propensity to have abundant fragment ions 

corresponding to loss of the tert-butyl group (m/z M-57) can help with structural assignment 

of metabolites
20, 21

.  However, the increase in molecular mass associated with TBDMS 

derivatives renders them unsuitable for analysis of metabolites with multiple derivatisation 

sites such as carbohydrates, since they may not pass through the chromatography column or 

may exceed the mass range of the MS (typically 800-1000).  Replacement of methyloxime 

derivatisation with ethyloxime derivatisation gives a more modest increase in mass (14 amu) 

and has proven useful for identification of the uncommon plant disaccharides inulobiose and 

levanbiose in transgenic potato
6, 15

.  

 

A further factor which should be considered with regard to the derivatisation methods is the 

stability of individual metabolites and derivatives under the reaction conditions.  Known 

examples of metabolite breakdown and transformation under derivatisation conditions are 

conversion of arginine to ornithine by reaction with the silylating reagents BSTFA
21a

 and 

MSTFA
16

.  and oxidative degradatation of ascorbate and dehydroascorbate to 2,3-

diketogulonic acid
11

.  

 

3.3.4 Mass spectral characteristics 

For a given analyte mass spectrometers operating under electron impact (EI) conditions with 

an industry-standard acceleration voltage of 70 eV produce mass spectra with generally 

similar ion ratios, irrespective of the specific instrument design or manufacturer.  On this 

basis, each separate component within a complex mixture potentially gives a unique and 

characteristic mass spectrum dependent solely on the type and arrangement of atoms and 

types of bonding present within the molecule giving rise to a statistically averaged series of 

fragmention processes and products.  
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In practice, several different but structurally related analytes, for example the hexose sugars, 

may give rise to essentially identical mass spectra, and these cannot be resolved on the basis 

of mass spectral characteristics alone. 

 

Ideally, positive identification of a metabolite relies on isolation of a pure mass spectrum of 

that component.  However, it is usually necessary to deconvolute signals arising from the 

component from the general chemical background, for example GC column bleed, and more 

significantly, from other analytes from which they are not chromatigraphically resolved.  

Various approaches can be taken for signal deconvolution.  Software programs such as the 

freely available AMDIS examine changes in the abundance of individual ions over the whole 

mass range (typically 30-1000) in the time domain, and aggregate ions showing the same 

profiles for changes in ion abundance with time.  This in theory can eliminate noise and other 

common background signals and provide a list of ions which constitute a library-searchable 

reconstructed mass spectrum for individual analytes, and provide information regarding the 

position of coeluting peak apices.  In practice non sample-related fluctuations in signal levels 

can interfere with measurement of concentration-dependent variations in analyte ion 

abundance, particularly at low analyte concentrations, giving rise to ion mismatching and 

generation of false peak indications.  Consequently the results of signal deconvolution require 

further filtering and verification
15

.   

 

A pure mass spectrum is one in which the ratios of the ion abundances to one another remain 

consistent with changes in analyte concentration over a chromatographic peak.  Any factor 

which skews the measured ion abundance reduces the purity of the peak, and can result in 

misidentification of the analyte when compared with reference samples.  Quadrupole 

instruments take a finite period of time to scan through their full mass range in which time the 

analyte concentration may have changed.  Faster data sampling rates reduce this effect; 

modern quadrupoles achieve scan rates in the order of 10 scans s
-1

, whereas TOF instruments 

can attain displayed rates of up to 500 spectra s
-1

.  The scan process also filters out a large 

proportion of all ions generated during ionisation since only ions of a specific m/z value are 

detected at any point in time.  In comparison, ion separation and detection in TOF instruments 

is almost continuous, therefore each data point acquisition potentially carries much more 

information content.  Consequently TOF instrument not only acquire data much faster than 

scanning instruments, they are also inherently more sensitive.  
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3.3.5 Retention characteristics 

Mass spectral data alone is insufficient for characterisation and identification of analytes in 

complex mixtures by GC-MS.  In addition some form of GC retention data is required as a 

second point of identity, usually presented initially as a retention time (Rt), corresponding to 

the peak apex for the specific metabolite.  In addition, a retention index (RI) can be calculated 

for each component, relative to retention index markers included with each analysis
10, 11

.  The 

RI value latter is very useful for inter-comparability of data since it accommodates local 

variations in analytical conditions provided the same type of GC column stationary phase is 

used and the analysis is done under similar conditions. 

 

3.3.6 Retention indices and retention standards 

 

Values for RI are interpolated from the retention characteristics of suitable RI marker 

compounds.  These may be specific metabolites present in relatively high abundance within 

the sample.  A more rigorous approach first described by Kovats
23

 is to use exogenous 

retention time (Rt) standards, commonly long-chain alky compounds such as alkanes or fatty 

acid methyl esters (FAMES)
24

 .  These are run with analytical samples, either by addition of 

the chosen compounds to each sample, or by running reference samples (e.g blanks) 

containing the Rt standards regularly within sample batches.  Each Rt standard is assigned a 

RI corresponding to its carbon chain length x 100 (e.g. Hexadecane or hexadecanoic methyl 

ester is given the value 1600).  A sufficient number of Rt standards, with differing chain 

lengths (typically separated by C3 to C6 spacing), are selected to cover the duration of the 

chromatographic separation. Values of RI for metabolites within samples are calculated by 

linear interpolation based on retention times between adjacent Rt standards.  Usually 6 to 8 

retention standards are sufficient to characterize the retention characteristics.  Some software 

tools such as the publicly available AMDIS and some commercial products such as 

ChromaTOF
TM

 (LECO, St Joseph, MI, USA) automatically calculate RI values although the 

latter can only use the data file formats produced by the company‟s GC-TOF-MS instruments.  

AMDIS on the other hand handles a wide range of data file formats.   Other MS data analysis 

software packages such as Xcalibur
TM

 (Thermo Fisher, Hemel Heampstead, UK) use specific 

metabolites as retention markers within their data processing methods to correct for retention 

time variations, although they do not calculate and report RI values
11

.  A further advantage of 

the use of retention markers, particularly when included in analytical sample blanks, is that 
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they can help identify the development of problems with the chromatographic separation.  For 

example, minor degradation of chromatographic columns can lead to peak splitting within a 

discrete region of the chromatogram, which can be readily seen in the chromatography of one 

or more of the RI markers.  Such splitting can occur in chromatographic regions where 

several metabolites with similar mass spectra elute, and consequently can lead to difficulties 

in correct peak identification with the possibility of misidentification of split peaks as 

different metabolites. 

 

3.4 COMPARISON OF SPREADSHEETS CONTAINING GC-MS DATA 
DESCRIBING COMPOSITION OF POTATO TUBERS FROM SCRI GOLM 
AND ABERYSTWYTH 

 

Compositional data for metabolites present in potato tubers of potato cultivar Desiree from 

three separate GCMS studies conducted under G02006 at the Scottish Crop Research Institute 

(SCRI; SCRI 2002), University of Wales, Aberystwyth (UWA; Aber 2002) and the Max 

Planck Institute, Golm (MPI; Golm 2003) were compared.   

 

Although these data were chromatographed, aligned and deconvoluted using different 

technology platforms and annotated using various peak annotation software (NIST, Wiley, 

Binbase), a metabolite list of both conserved primary and secondary metabolites were 

correspondingly identified by all three institutes (Appendix 3A).   

 

The datasets were representative of similar methodologies developed and optimized at each 

centre, though they were all based on the method described by Roessner et al.
1
  Furthermore, 

the data was representative of the differing analytical capabilities of instrumental platforms 

based on use of time of flight (TOF) and quadrupole (Quad) mass analyser technolgies within 

the GC-MS instrumentation used at the three sites (Table 3.1). The initial intention was to 

compare output from one Quad (UWA) and two TOF (SCRI, Golm) instruments, all products 

of different manufacturers.  However the acquisition by SCRI of a quadrupole MS coupled to 

the same type of GC used on their TOF instrument provided a further opportunity for a 

comparison between TOF and Quad technologies.  Furthermore the SCRI instruments used a 

Programmable Temperature Vapourising Injector (PTV) for sample introduction on their 

Thermo GCs whereas UWA and Golm used a hot injection technique on the Agilent GCs 

coupled to their respective MS.  The main difference between the two approaches is that PTV 
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injections are carried out at lower temperatures (ca 130
o
C) than the more conventional hot 

injections (250 to 280
o
C).  The perceived benefit of lower injection temperatures is that the 

analystes are subject to less thermal shock, and are consequently less likely to undergo 

thermal degradation in the injector.   

 

Table 3.1.  Details of GC-MS instrumentation used at SCRI, UWA and Golm 

 

Site MS Technology Gas Chromatograph 

Manufacturer 

Mass Analyser 

Manufacturer 
    

SCRI Time Of Flight Thermo Fisher Thermo Fisher 

 Quadrupole Thermo Fisher Thermo Fisher 

    

UWA Quadrupole Agilent Technologies Agilent Technologies 

    

GOLM Time Of Flight Agilent Technologies  LECO Instruments 
    

 

 

In Appendix 3A, the metabolite lists generated for potato by SCRI, UWA and Golm are 

presented in order of elution.  When the lists were compared it was possible to determine the 

numbers of detected metabolites (Table 3.2, including those with known identities, those with 

putative identities and those classified as unknowns which were common to two or more of 

the lists (Table 3.2)  identified for each instrument (Appendix 3B). In general more 

metabolites were measured using TOF instruments than quadrupoles, which is consistent with 

the greater sensitivity and faster data acquisition capabilities of the former over the latter.  

However less than 75% of the metabolites listed for each TOF were common to both, and the 

commonality between Quads was less than 71%.  When the Quads were compared with TOF 

instruments, the greatest overlap in metabolite lists occurred between instruments using the 

same GC (SCRI vs SCRI; UWA vs Golm).  This suggests that factors other than just 

sensitivity and data acquisition rates influence the specificity of metabolite detection, but that 

other factors relating to the GC component of the systems have a significant impact.  All three 

sites used GC columns with similar but non-identical non-polar stationary phases.  Under 

similar sample loading conditions this should not give rise to changes in metabolite 

specificity, bur rather may cause minor differences in the order of metabolite elution, as is 

indeed the case.  It is more likely that such discrimination is related to the difference in 

injection technique mentioned previously.  The „core‟ metabolites common to peak lists in 

Table 3.1 are listed in Appendix 3Band are typical of those previously published for potato 

tubers.
1, 2, 10-13, 22

   Among the metabolites more readily detected using TOF instrumentsation 

are phosphorylated sugars, several sugar acids and alcohols, numerous unidentified 
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polysaccharides, isomers of chlorogenic acid, pantothenic acid, and the purine degradation 

product allantoin. 

 

Table 3.2  Comparison of numbers of metabolites common to metabolite lists generated 

using quadrupole instruments at SCRI and UWA and TOF at SCR and Golm 
 

 Metabolites (total) SCRI (Quad) SCRI (TOF) GOLM (TOF) UWA (Quad) 
      

Metabolites (total)   80 114 109 72 

SCRI (Quad) 80 - 80 71 51 

SCRI (TOF) 114 80 - 75 53 

GOLM (TOF) 109 71 75 - 57 

UWA (Quad) 72 51 53 57 - 

 
     

Common to all 46     

 

 

3.5 STANDARDISED METHOD FOR DESCRIPTION OF A GC-MS PEAK 
GENERATED FROM THE DIFFERENT MANUFACTURERS GC-MS 
INSTRUMENTATION (LECO, AGILENT, THERMO)  

 

Specific information can be defined which serves to identify and characterize a given 

metabolite (Figure 3.1).  For each component, information falls into two categories, based on 

chromatographic retention characteristics and mass spectrometric (MS) characterisation.  For 

each metabolite it is possible, in principle, to extract from the raw data a characteristic mass 

spectrum.  Ions with a specific mass (m/z), or in some cases, several such ions, are used in 

conjunction with retention information for identification and quantification of the metabolite 

during initial data analysis using the appropriate data processing method.  The primary and 

ancillary descriptors are shown diagrammatically in Figure 3.1.  Additional descriptors may 

also be used, e.g., molecular formulae and molecular weight (M). 

 

3.5.1 Method for describing GC-MS peaks 

The following criteria were established as forming the basis for a standardised method for 

description of a GC-MS peak irrespective of technology platform used for data acquisition. 

 

Having conducted any necessary peak picking and signal cleanup/deconvolution: 

1. Identify the Rt of the peak apex (in seconds). 
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2. Calculate a retention index (RI) based either on addition of exogenous Rt standards 

(alkanes, FAMES) or using selected marker metabolites within the analytical sample.  

The RI compounds used should be specified. 

 

3. Identify ions which can serve to characterise the component, and report their absolute 

and relative abundances.  These should include up to 20 qualifier ions preferably to 

cover the observed mass range of the component but which should include the most 

abundant ions.  It may be advantageous to include molecular ions and/or those 

corresponding to low mass losses (e.g.  m/z M-15 etc) if they are considered to have 

diagnostic value.  Identify ion(s) to be used for quantification purposes. 

 

4. Characterise a level of identification.   

 

 Confirmed identification:  by comparison with the chromatographic and mass spectral 

properties of reference standards 

 Putative identification: compounds for which no standards are available, but for which 

there is strong physicochemical evidence and/or match with entries mass spectral 

libraries and databases 

 Unknown identification but which exhibit mass spectral properties suggesting that 

they belong to a specific class or group of metabolites. 

 Unknowns identification. 

 

Although it may not be possible to identify unknown metabolites it should be possible to 

characterise them on the basis of Rt/RI and mass spectra including the m/z and abundance of 

the 20 qualifier ions. 

 

Appropriate nomenclature should be used ranging from common names, IUPAC names and 

laboratory specific identifier for unknowns.  In the latter case this could perhaps be based on 

RRI values. 
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3.5.2 Comparison of criteria for peak description with the 

recommendations of the Chemical Analysis Working Group (CAWG) of 

the Metabolomics Standards Initiative 

 

The Chemical Analysis Working Group (CAWG) of the Metabolomics Standards Initiative 

has made a number of recommendations regarding minimum reporting standards for chemical 

analysis
30

.  Although there is still an on-going debate as to what constitutes valid metabolite 

identification, on the basis of current practice in the metabolomics literature four levels of 

identification were defined. 

 

1. Identified compounds. 

2.  Compounds with putative annotation based on physicochemical properties and/or 

similarity of mass spectra with mass spectral libraries, but without matching data for 

chemical reference standards. 

3. Putative characterisation as belonging to a specific class of compound on the basis of 

mass spectral and physicochemical properties. 

4. Unidentified compounds which can be differentiated and quantified on the basis of 

their mass spectral data but which remain uncharacterised. 

 

For positive identification of a compound the standard requirement of provision of a 

minimum of two independent and orthogonal points of identity as required for publication in 

the chemical literature has been adopted.  In the context of GC-MS based studies these 

include Rt or RI values with a mass spectrum, and accurate mass in combination with tandem 

MS and/or isotopic composition.  Such requirement suffice for non-novel compounds, 

however for novel metabolites a higher degree of rigour is required with at least an additional 

orthogonal point of identity.  Ideally, the traditional approach of isolation, purification and 

physicochemical characterisation (elemental analysis, NMR absorption spectra etc.) should be 

followed. 

 

The CAWG also made a number of recommendations regarding naming of metabolites, and 

for known metabolites their recommendation was to report one chemical name (common or 

IUPAC) along with one structural code for which the recommendation is to use the IUPAC 

International Chemical Identifer ( InChI:  http://inchi.info/).  For first naming of novel 

metabolites the IUPAC nomenclature rules should be followed, preferably with issue of 

http://inchi.info/
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structural codes and submission of novel structures to the PubChem compound identifier 

(CIC; http://pubchem.ncbi.nlm.nih.gov/).  For unknown compounds the recommendation is to 

report a combination of Rt, RI and/or prominent ions in the mass spectrum along with MS-

MS where available.  A similar approach which also includes associated metadata for the 

methodology use to generate the unknown has been proposed by Bino et al.
31

 

 

These recommendations are very similar to the methodology for peak description we have 

proposed above.  
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Figure 3.1  Descriptors used for characterisation of metabolites following GC-MS analysis 
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3.6 ALIGNMENT OF DATA FROM THE DIFFERENT INSTRUMENTS AND 
DEFINE A LIST OF METABOLITES THAT WOULD BE EXPECTED TO BE 
MEASURABLE IN THE GC-MS PROFILE OF POTATO 

 

In Appendix 3A, the metabolite lists generated for potato by SCRI, UWA and Golm are 

presented in order of elution, and have been aligned as closely as possible.  The approach 

taken to co-alignment was as follows. 

 

1. Align major and minor metabolites of known or putative identity.  This is 

straightforward. 

2. Align major metabolites of unknown identity.  This is also relatively easy; some 

unknowns in potato are present in relatively high abundance and are easy to 

distinguish. 

3. Attempt to align minor metabolites of unknown identity.  This is difficult but use 

of 20 ion lists to identify unique qualifier ions can help. 

 

There is a high level of co-alignment for the majority of the metabolites with known 

identities.  A number of metabolites show variation in elution order between the three lists, 

which is not unexpected and reflects differences between the non polar stationary phase 

chemistries of the GC columns used at each of the three sites.  It is well known that subtle 

differences in the composition of essentially similar GC column stationary phases can lead to 

changes in the elution order of analytes.   

 

Two lists of core metabolites which would be expected to be measurable in a GC-MS 

profiling experiment using potato tubers are shown in Appendix 3B.  The column on the left 

lists 65 metabolites which should be detected using TOF instrumentation, whereas that on the 

right lists 41 metabolites which should be detectable using a quadrupole instrument.  Both 

lists include multiple derivatives of some metabolites either having different numbers of TMS 

substituents (asparagine, glutamine and allantoin) or different positional isomers (methyl 

oximes of some reducing sugars).  With expected improvements in instrumental sensitivity as 

new products become available from the instrument manufacturers, and wider use is made of 

techniques such as GCxGC-MS, it is likely that the range of expected core metabolites will 

widen in both cases.   
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In addition to use of mass spectral libraries (user and commercial) for compound 

characterisation we found that generation of a hard copy database of screen captured images 

of mass spectra of analytes and reference standards was very useful for helping with 

metabolite recognition and alignment.  Examples of some screen captures of extracted MS 

information are shown in Figures 3.2-3.4.  Figure  3.2 shows a library match for a metabolite 

positively identified as the amino acid L-Valine, which has been confirmed by analysis of a 

standard.  Figure 3.3 shows MS of two previously unidentified components, which have now 

been tentatively identified as derivatives of allantoin, a degradation product of purines, 

following screening with the Palisade 600K library.  Figures 3.4 & 3.5 shows how the MS of 

a minor component forming part of a co-eluting mixture has been extracted following 

subtraction of the MS of a nearby compound which has a similar MS to the other component 

in the mixture. 

 

Extracted MS from analytical samples and standards such as those illustrated above can also 

be incorporated into local user-generated MS libraries 

 

 

3.7 CONCLUSIONS 

 

At the end of the G02006 project GC-MS analysis had been performed on similar extracts 

representing a number of common potato cultivars.  Although the analyses were performed on 

different instruments in 3 different laboratories we have shown that by and large a core set of 

metabolites can be aligned between these data sets with good reproducibility.  This 

information will be useful in the future in order to develop a „gold  standard‟ list of expected 

metabolites to be measured in any new potato varieties in any screens for unusual 

concentration distributions. 
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Figure 3.2  Screen capture of MS of L-Valine following library search against the 

Wiley 7 library 
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Figure 3.3   Screen capture of MS of two unknowns following library search against 

the Palisade 600K  library.  Preliminary identification as tetra and penta TMS 

derivatives of Allantoin. 
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Figure 3.4 
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Figure 3.5 
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Appendix 3A  Metabolite peak list 

SCRI annotations     TOF Quad  Aber annotations      Golm 2003 Binbase selections   

 Charac.  Apex Apex   Charac. Apex   Charac. 873080 

Metabolite m/z RRI Rt (s) Rt (s)  Metabolite m/z Rt (s)  Metabolite m/z RI 

L-alanine (TMS)2 116 1095 1.49 1.12   Alanine 116 4.31  alanine 116 244920 

      Hydroxylamine 133 4.43  hydroxylamine 133 255690 

like 2-Aminobutyric acid (TMS)2 130 1169 2.14 1.72   U-080 130 4.78  isobutyric acid 2-amino 130 286860 

U1174 241 1174 2.19 1.75   U-081  241 4.79     

Urea(TMS)3 261 1177 2.21          

      U-082  86 4.85  y2645 86 295330 

L-valine (TMS)2 144 1216 2.55 2.18   Valine 144 5.05  valine 144 313700 

      U-110 278 5.17  y467 278 325317 

Unknown like Ethanolamine (TMS3 174 1233 2.69 2.31         

urea (TMS)2 189 1244 2.78 2.42       urea 117, 189 327700 

Ethanoamine (TMS)3 174 1266 2.99 2.62   Ethanolamine 174 5.36     

Phosphate (TMS)3 299 1270 3.02 2.67  Phosphate 299 5.35  glycerol 147, 205 343570 

leucine (TMS)2 158 1272 3.03 2.68  Glycerol 205 5.36  phosphoric acid 299 344710 

glycerol (TMS)3 205 1275 3.06 2.71  Leucine 158 5.37  leucine 158 345890 

L-isoleucine-(TMS)2 158 1291 3.2 2.85   Isoleucine 158 5.49  isoleucine 158 358940 

L-proline (TMS)2 142 1293 3.23 2.87   Proline 142 5.54  proline 142 364640 

glycine (TMS)3 174 1300 3.29 2.94   Glycine 174 5.57  glycine 174 368140 

succinic acid (TMS)2 247 1315 3.37 3.02         

2,3-dihydroxypropanoic-acid (TMS)3 189 1333 3.48 3.13       glyceric acid 147, 189 376660 

fumaric acid (TMS)2 245 1359 3.63 3.30   Fumaric_acid 245 5.78  fumaric acid 147, 245 390730 

L-serine (TMS)3 204 1366 3.69 3.35   Serine_main 204 5.82  serine 204 394140 

2-Piperidinecarboxylic acid (TMS)2 156 1369 3.70 3.35         

          cycloleucine 156 402890 

U1376 141 1376 3.75 3.45   U-083 141 5.89  y487 141 403640 
dihydroxydihydrofuranone (TMS)2 
(lactone of threonic acid) 247 1380 3.76 3.41         

L-threonine (TMS)3 218 1393 3.85 3.52   Threonine 218 5.95  threonine 218 408140 

b-alanine (TMS)3 174 1438 4.12 3.78   beta-Alanine 174 6.17  beta-alanine 174 434000 

Homoserine (TMS)3 218 1463 4.26 3.93       homoserine 117, 218 442550 

Malic-acid (TMS)3 233 1500 4.48 4.15   Malic_acid 147 6.42  malic acid 147, 233 461870 

U1509 243 1509 4.55 4.21   U-084 243 6.54     

L-methionine (TMS)2 176 1525 4.64 4.30   Aspartic_acid 232 6.56  aspartic acid 100, 232 478980 

oxo-proline (TMS)2 156 1526 4.65 4.30   Methionine 176 6.60  methionine 128, 176 482230 

L-aspartic-acid (TMS)3 232 1527 4.66 4.32          

      Oxoproline 156 6.62  oxoproline 156 485080 
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Appendix 3A (continued) 

 

SCRI annotations         Aber annotations      Golm 2003 Binbase selections   

 Charac.  Apex    Charac. Apex   Charac.  

Metabolite m/z   Rt (s)   Metabolite m/z Rt (s)  Metabolite m/z RI 

g-aminobutyric acid (TMS)3 174 1535 4.71 4.36   GABA 174 6.64  gamma-aminobutyric acid 174 487820 

Threonic acid (TMS)4 292 1562 4.87 4.53       threonic acid 147, 292 495820 

U1567 218 1567 4.90 4.56   U-106 218 6.85  y amine 100, 218 500820 

U1586 227 1586 5.01 4.66   U-116 227 6.90  y515 154, 227 516950 

      U-085 159 6.93  y516 147, 159 522140 

Glutamic acid (TMS)3 246 1618 5.18 4.83   Glutamic_acid 246 6.98  glutamic acid 246 527940 

      Asparagine_minor 188 7.01     

L-phenyalanine (TMS)2 192 1623 5.20 4.84   Phenylalanine 218 7.06  phenylalanine 218 536530 

Asparagine (TMS)4 188 1625 5.21 4.85          
Trihydroxypentanoic acids (2,3,5; 2,4,5) 
(TMS)4 good fit 245 1649 5.31 4.97         

Gluconic acid O-methyloxime (TMS)5 204 1656 5.35 5.00         

Gluconic acid O-methyloxime (TMS)5 204 1663 5.38 5.03         

Asparagine (TMS)3 116 1670 5.41 5.07   Asparagine_main 116 7.19  asparagine 116 552960 

Glutamine (TMS)4 227 1736 5.70 5.35   U-121 227 7.42  y532 147, 227 578045 

putrescine (TMS)4 174 1742 5.73 5.36       putrescine 174 586510 

          glycerolphosphate alpha 101, 299 590510 

      U-104  217 7.54  
glucose-1-phosphate 
degr.prod. 217 594020 

Ribonic acid (TMS)5  292 1768 5.84 5.49       isoribonic acid 103, 292 598820 

a-glycerophosphate (TMS)4 299 1769 5.85 5.50          

L-glutamine (TMS)3 156 1781 5.90 5.54   Glutamine 156 7.59  glutamine 156 599840 

U1809 likeunoximated fructose (TMS)5  217/437 1809 6.02 5.67   U-060 217 7.68  y896 217 608980 

unoximated fructose (TMS)5 204/217/437 1820 6.07 5.70   U-059 217 7.70  y cho 217 612620 

citric acid (TMS)4 273 1824 6.09 5.74   Citric_acid 273 7.74  citric acid 147, 273 617200 

          citrulline 157 621470 

          dehydroascorbic acid 173 633010 

Quinic acid (TMS)5 345 1860 6.25 5.89   Quinic_acid 345 7.89  quinic acid 147, 345 633360 

Fructose O-methyloxime (TMS)5 307 1873 6.31 5.95   Fructose_1 307 7.92  fructose meox1 103, 307 637820 

Fructose-O-methyloxime (TMS)5 307 1882 6.35 5.99   Fructose_2 307 7.95  fructose meox2 103, 307 641730 

Allantoin (TMS)4 331 1885 6.36 6.00       mannose 157, 319 644720 

Mannose-O-methyloxime (TMS)5 319 1887 6.37 6.01   U-014 (galactose??) 319 7.97  galactose 147, 319 646750 

Galactose-O-methyloxime (TMS)5 319 1891 6.39 6.02       allantoin 100, 331 647660 

Glucose-O-methyloxime (TMS)5 319 1896 6.41 6.05   Glucose_1 319 8.02  glucose meox1 147, 319 649210 

Allantoin (TMS)5 188/428/518 1906 6.45 6.09          
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Appendix 3A (continued) 

 

SCRI annotations         Aber annotations      Golm 2003 Binbase selections   

 Charac.  Apex    Charac. Apex   Charac.  

Metabolite m/z   Rt (s)   Metabolite m/z Rt (s)  Metabolite m/z RI 

Glucose-O-methyloxime (TMS)5 319 1914 6.49 6.12   Glucose_2 319 8.10  glucose meox2 147, 319 658190 

Histidine (TMS)3 254 1919 6.51 6.15   Lysine 174 8.13  lysine 156, 174 662510 

L-lysine (TMS)4 174 1923 6.53 6.16   Histidine 254 8.13     

Mannitol (TMS)6  319 1927 6.55 6.18       mannitol 147, 319 663260 

          histidine 154, 254 663718 

Sorbitol (TMS)6 319 1933 6.57 6.21       sorbitol 147, 319 665730 

L-tyrosine (TMS)3 218 1939 6.60 6.23   Tyrosine 218 8.20  tyrosine 218 670636 

U1948 232/203/449 1948 6.64 6.28       y amine 147, 232 672906 

U1953 217/361 1953 6.66 6.30   U-056 217 8.23  
isopropyl b-D-
thiogalactopyranoside 217 674420 

Glucose (TMS)5 191, 204 1973 6.75 6.39   U-042  204 8.25  y cho 204, 191 678920 

Galactonic acid (TMS)6 292, 333 1984 6.8         galactonic acid 147, 292 690200 

Pantothenic acid (TMS)3 103 1985 6.81         pantothenic acid 103 690660 

Gluconic acid (TMS)6 292, 333 1989 6.82            

          saccharic acid 147, 292, 333 697790 

U2020 (carbohydrate) 204 2020 6.94 6.58   U-122 204 8.44     

          mucic acid 147, 333, 292 709370 

U2023 185 2023 6.95         y902 185 709570 

      Gluconic_acid_main 333 8.53     
Glucaric (saccharic) or Galactaric (mucic) 
acid (TMS)6 292/333 2036 7.00 6.62          

      Hexadecanoic_acid 313 8.56  palmitic acid 117, 313 713960 

Inositol (TMS)6 217 2086 7.18 6.80   Inositol 305 8.69  inositol myo- 147, 217, 305 729110 

U2105 (carbohydrate) 205/319/245 2105 7.25 6.88   U-088 245 8.71     

Caffeic acid (TMS)3 396 2138 7.37 7.00       caffeic acid 219, 396 748272 

U2190 218/130 2190 7.56 7.17   U-094 218 9.07     

      U-093  167 9.11  y2449 167 775730 

7.648 Tryptophan (TMS)3 202 2212 7.64 7.25   Tryptophan 202 9.12  tryptophan 202 780120 

Octadecanoic acid (TMS) 117/341 2250 7.78         stearic acid 117 787400 

spermidine(TMS)5 144 2251 7.78 7.40       spermidine 144 791480 

      Octadecanoic_acid 341 9.18     

Fructose-6-phosphate oxime-(TMS)6 315 2300 7.96 7.59       fructose-6-phosphate 315 803740 
glucose (or galactose)-glycerol conjugate 
(TMS)6 204/337 2309 7.99 7.61   U-016 204 9.31  y cho 204 804030 

Gluocse-6-phosphate oxime-(TMS)6 387 2313 8.00 7.62       glucose-6-phosphate 147, 387 808270 
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Appendix 3A (continued) 
 

SCRI annotations         Aber annotations      Golm 2003 Binbase selections   

 Charac.  Apex    Charac. Apex   Charac.  

Metabolite m/z   Rt (s)   Metabolite m/z Rt (s)  Metabolite m/z RI 

Gluose-6-phosphate oxime-(TMS)6 387 2330 8.07          

U2545 (polysaccharide) 204,217, 437 2545 8.75   U-099 217 9.47  y cho 204, 217 863310 

U2559 (polysaccharide) 103/204/217 2559 8.80     U-123 204 9.79  y cho 103, 217, 361 873180 

U2567 (polysaccharide) 204/217 2567 8.82   U-124 217 9.98  y cho 204, 217, 361 879340 

U2589 (polysaccharide) 186, 361, 437 2589 8.88         y678 186 897690 

U2615 103, 204, 217 2615 8.96   U-092 283 10.17  y amine 116, 283 904050 

sucrose (TMS)8 361 2637 9.03 8.65   Sucrose 361 10.22  sucrose 147, 361, 217 912730 

U2660 204 2660 9.100   U-125 217 10.32  inulobiose1 217, 361 924490 

U2677 204 2677 9.150   U-126 217 10.36  inulobiose2 217, 361 929980 

U2684 (mixture?) 188, 204, 361, 491 2684 9.170   U-127 217 10.41  levanbiose 204, 217, 361 937020 

U2710 204 2710 9.250       y cho 217, 361 946937 

U2721 204 2721 9.285       y cho 204, 217 948965 

Maltose-O-methyloxime (TMS) 204, 361 2736 9.32         maltose meox2 147, 217 954620 

Maltose Meox2   2766 9.415            

unknown polysaccharide 204, 217, 361 2781 9.460   U-130 217 10.54  y cho 217 956730 

glycerol-1-(Inositol-1-phosphate) (TMS)8 103, 299, 318, 461 2795 9.504       y cho 204, 217 962960 

unknown polysaccharide 204, 217, 361 2851 9.675          

U2864 - (polysaccharide, quite strong) 
204, 217, 319, 361, 
437 2864 9.704         y cho 204, 217, 361 970390 

unknown polysaccharide 204, 217, 361 2885 9.771       y cho 204, 217,  972590 

unknown polysaccharide 204, 296, 331, 361 2895 9.804       y cho 204, 217,  988430 

Unknown polysaccharide 
191, 204, 217, 418, 
433 2932 9.91         y cho 147, 204, 217 991020 

          y cho 204, 217 998110 

          y cho 129, 217, 204 999910 

          y cho 204, 217,  1001051 

          y cho 204, 217 1003816 

U2974 (polysaccharide) 204 2973 10.04 9.65   U-019 204 11.22  y cho 204, 217 1015400 

U2993 (polysaccharide) 204 2933 10.09 9.72         
trans-5-O-caffeoyl-D-quinic acid (TMS)6  
Chlorogenic acid (TMS)6 345 3107 10.40 10.02          

U3118 (polysaccharide) 204, 217, 361, 597 3118 10.42     U-055 204 11.59  y cho 204, 217, 361 1046200 
trans-4-O-caffeoyl-D-quinic acid (TMS)6 
chlorogenic acid isomer  307, 255   10.56         caffeoyl quinate 147, 345 1049400 

          isocaffeoyl quinate 307 1065393 
trans-3-O-caffeoyl-D-quinic acid (TMS)6 
chlorogenic acid isomer  345 3197 10.63          
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Appendix 3A (continued) 

 

SCRI annotations         Aber annotations      Golm 2003 Binbase selections   

 Charac.  Apex    Charac. Apex   Charac.  

Metabolite m/z   Rt (s)   Metabolite m/z Rt (s)  Metabolite m/z RI 

          y trisaccharide 103, 361, 217 1069200 

          y fatty acid 117 1086200 

U3353 polysaccharide 204, 217, 361 3353 11.03     U-128 361 12.15  y trisaccharide 217, 361 1107000 

Raffinose 217, 361 3375 11.1     Raffinose/1-Kestose 361 12.83  raffinose 129, 361, 217 1118000 

U3378 (polysaccharide Kestose?) 217, 361 3378        1-kestose 217, 361 1119800 

          inulotriose meox1 217, 361 1122000 

          inulotriose meox2 217 1130000 

          melissic acid (iso-C27) 117,  1136800 

U3445 (polysaccharide) 204, 217, 361 3445 11.33       y trisaccharide 204, 217, 361 1140600 

U3470 (polysaccharide) 204, 217, 361 3470 11.42          

polysaccharide 204, 217, 361, 597 3821 12.81          

polysaccharide 204, 217, 361, 597 4022 13.6          
 
 

    "core" metabolite identified by all three institutes 

   
metabolite identified by 2 or 3 insititutes, but differing in 
elution order 

   
metabolite identified by 2 or 3 insititutes, but differing in 
elution order 

   metabolite identified by 2 of 3 institutes 

    
unknown metabolite suspected to be present in 2 or 3 
institute peak list 
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Appendix 3B  “Core” metabolites identified from GO2 datasets independently by SCRI, UWA and Golm.   

Identified metabolite derivatives are listed by compound class and described by a characteristic mass or group of masses. 
 

Metabolite Charac m/z TOF Quad  Metabolite Charac m/z TOF Quad 

Amino acids     Carboxylic acids (continued)    

Alanine (TMS)2 116 X X   Quinic acid (TMS)5 345 X X 

Aminobutyric acid (TMS)2 130 X X   Caffeic acid (TMS)3 396 X  

Valine (TMS)2 144 X X   trans-5-O-Caffeoyl-D-quinic acid (TMS)6  Chlorogenic acid (TMS)6 345 X  

Leucine (TMS)2 158 X X   trans-4-O-Caffeoyl-D-quinic acid (TMS)6 Chlorogenic acid isomer  307, 255 X  

Isoleucine-(TMS)2 158 X X      

Proline (TMS)2 142 X X  Carbohydrates    

Glycine (TMS)3 174 X X  Fructose (TMS)5 204/217/437 X X 

Serine (TMS)3 204 X X   Fructose O-methyloxime (TMS)5 anomer 1 307 X X 

Threonine (TMS)3 218 X X   Fructose-O-methyloxime (TMS)5 anomer 2 307 X X 

-Alanine (TMS)3 174 X X   Mannose-O-methyloxime (TMS)5 anomer 1 319 X  

Homoserine (TMS)3 218 X    Galactose-O-methyloxime (TMS)5 anomer 1 319 X  

Methionine (TMS)2 176 X X   Glucose-O-methyloxime (TMS)5 anomer 1 319 X X 

Oxo-proline (TMS)2 156 X X   Glucose-O-methyloxime (TMS)5 anomer 2 319 X X 

Aspartic-acid (TMS)3 232 X X   Glucose (TMS)5 191, 204 X X 

-Aminobutyric acid (TMS)3 174 X X   Sucrose (TMS)8 361 X X 

Glutamic acid (TMS)3 246 X X   Maltose-O-methyloxime (TMS) anomer 1 204, 361 X  

Phenyalanine (TMS)2 192 X X   Maltose -O-methyloxime (TMS) anomer  2 204, 361  X  

Asparagine (TMS)4 188 X X   Raffinose 217, 361 X X 

Asparagine (TMS)3 116 X X   Gycerol (TMS)3 205 X X 

Glutamine (TMS)4 227 X X   Inositol (TMS)6 217 X X 

Glutamine (TMS)3 156 X X   Mannitol (TMS)6  319 X  

Histidine (TMS)3 254 X X   Sorbitol (TMS)6 319 X  

Lysine (TMS)4 174 X X   Glucose (or galactose)-glycerol conjugate (TMS)6 204/337 X X 

Tryptophan (TMS)3 202 X X       

Tyrosine (TMS)3 218 X X   Phosphorylated compounds    

      Phosphate (TMS)3 299 X X 

Carboxylic acids      -Glycerophosphate (TMS)4 299 X  

2,3-Dihydroxypropanoic-acid (TMS)3 292 X    Fructose-6-phosphate oxime-(TMS)6 315 X  

Citric acid (TMS)4 396 X X   Glucose-6-phosphate oxime-(TMS)6 387 X  

Fumaric acid (TMS)2 273 X X       

Malic-acid (TMS)3 345 X X   Nitrogenous compounds    

Threonic acid (TMS)4 103 X    Urea (TMS)2 189 X  

Ribonic acid (TMS)5  292 X    Allantoin (TMS)4 331 X  

Galactonic acid (TMS)6 292, 333 X    Allantoin (TMS)5 188/428/518 X  

Gluconic acid (TMS)6 292, 333 X X   Spermidine(TMS)5 144 X  

Glucaric (saccharic) or Galactaric (mucic acid (TMS)6)  292/333 X    Putrescine (TMS)4 174 X  

Pantothenic acid (TMS)3 103 X        
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G03012 Final Report - Section 4 
Sue Verrall/Derek Stewart/Manfred Beckmann 

 

 

Assessment of software for automated alignment and 

annotation of GC-MS and LC-MS data (Task 03.01) 

 

4.1 BACKGROUND TO EXPERIMENTAL SECTION 

 

Utilitarian, robust software are key to the use of any analytical approaches to developing 

unified data models and pre-processing strategies to yield meaningful and standardized 

statistical analyses of metabolome variability in crop plants is.  Highlighted as part of this 

proposal application was the diversity of approaches used to monitor and report upon the 

plant metabolome and the potential that these may have for food safety and compositional 

studies.  Indeed as part of the previous Agency-funded projects under the Safety Assessment 

of GM Foods research programme (G02) there were 12 collaborating sites in 6 projects 

produced metabolomics data for potato, wheat, barley, Arabidopsis and tomato.  These 

projects utilised a broad range of technical (analytical) approaches to create the compositional 

data and further levels of complexity were created by the diversity of the onboard (technology 

manufacturer supplied) software to analyse this data.  This is symptomatic of current 

metabolomics, where there are no rigorously applied and widely applied standards for 

experimental procedures, although efforts to address this are underway via the Metabolomics 

Standards Initiative (http://msi-workgroups.sourceforge.net/) and refereed reports (Fiehn et al 

2006, 2008). As a result the large amount of data collected is not necessarily, therefore, 

comparable.  This was further confounded by the fact that the diversity of the projects 

submitted and approved under the G02 programme meant that no prior arrangements were 

defined to ensure or enhance comparability of data from different projects.  However this 

apparent problem offered an opportunity to use the data generated in disparate labs with many 

different technologies, extraction and preparation approaches as a resource that could provide 

a meaningful and durable description of food raw material composition for any future safety 

or quality assessments.   

 

http://msi-workgroups.sourceforge.net/
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To achieve this aim a selection of samples /metabolic profiles derived from G02 and/or G03 

(bespoke spectra run as part of the new project) were used to cross compare the utility of the 

different user metabolomic analytical platforms (GC-MS and LC-MS). Furthermore, several 

software packages were evaluated using G02/3 derived raw data for attempted automation of 

peak alignment and spectral deconvolution for metabolome profile data formats available to 

the G03 project   

 

 

4.2 COMPARISON OF INSTRUMENT VENDOR SOFTWARE 
FUNCTIONALITY;  LIMITATIONS AND PROBLEMS OF USING 
AUTOMATED OUTPUT 

 

The vendor platform technology software, here was confined to those onboard the 

collaborating partners Thermo-Finnigan and Leco instruments, were cross compared to 

determine key similarities and differences and how these would impact upon metabolomic 

analysis and the detail and quantity of the data derived therein. 

 

Research at both SCRI (Shepherd et al, 2007; Dobson 2007, 2008) and Aberystwyth 

(Beckmann et al, 2007, 2008; Enot and Draper,2007; Enot et al, 2007, 2008; Overy et al, 

2008) has already developed many tuber profiles derived from the various platforms.  The 

work in SCRI has centred on a Thermo Tempus 1 (GC-tof-MS) and DSQ (Quad) and Agilent 

machines whilst in Aberystwyth the work utilised a LECO GC-tof-MS Pegasus 2. All of these 

platforms have broadly similar technologies with respect to ionisation and ion mass 

measurement.  Therefore, with the appropriate similar columns and chromatographic 

conditions a direct comparison of the on board operating and deconvolution software should 

be feasible.  The corresponding vendor software packages have several similarities but 

distinct differences which are listed below. 

 

Agilent   

 The generated chromatograms are analyzed using the onboard software, Chemstation , 

AMDIS and by manual examination to develop a bespoke (user) library of all peaks that 

are reproducibly seen. 

 Each metabolite is defined by a retention window and characteristic masses (ions). 
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 The onboard software (Chemstation ) is used to analyse for the presence of the 

metabolites in the bespoke library with the manual assessment for the absence of library 

peaks (peak checking). 

 A table is constructed compiling the relative intensity for the characteristic ions for each 

metabolite. 

 

 

Thermo-Finnigan 

 AMDIS is used to mine the total ion current chromatograms leading to the construction of 

a bespoke (user) library of all peaks that are reproducibly seen 

 Each metabolite is defined by a retention window and characteristic masses (ions) and 

depending on the user setup, a predictive structure as defined by comparison with the 

bespoke and/or commercial MS databases. 

 The on board software (Xcalibur ) generates Selected Ion Chromatograms (SICS) for 

each metabolite within the retention window. 

 A table is constructed compiling the relative intensity of the selected ion chromatograms 

for the characteristic ions of each metabolite  

 

Leco 

  The chromatograms are analysed using proprietary LECO software Chromatof  and a 

bespoke library is constructed of all peaks that are reproducibly seen and their spectra. 

 The onboard software (Chromatof ) is again used to mine the chromatograms along with 

manual confirmation of peak identities, the calculation of relative peak areas leading to 

the construction of a metabolite table  

 

Clearly the approach for each platform looks very similar but there are key differences with 

the LECO and Thermo systems with the former employing the deconvolution software 

PeakFind (part of ChromaTOF ) which is constructed to primarily develop de novo peaks 

lists for each run.  Conversely the Thermo Tempus system, with its Xcalibur  software 

utilises the NIST derived AMDIS software to deconvolute peaks leading to the development 

of a library of expected metabolite peaks.  This list is then used in an automated format to 
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screen subsequent data sequences (see Hargrove et al., 1981, Herron et al., 1996, Stein and 

Scott, 1994; Stein 1999; Halket et al 1999; Zhang, 2006). 

 

Analysis showed that the approaches by the AMDIS based and Chromatof  base software 

produced significant differences in the numbers of components identified and the qualitative 

results.  These largely focus on the lesser known or unknown components with AMDIS 

particularly prone to generating a significant number of false positive peaks due to several 

issues (see below).  In addition although each instrument should theoretically handle multiple 

data formats there was significant difficulty in interchanging data formats and this issue had 

led to the proliferation of 3
rd

 party software for such analyses.  The commercial and free 

software available are highlighted in Tables 4.1 and 4.2 respectively, 

 

As a result these differences in peak identification and spectrum deconvolution make routine 

comparison of datasets produced on different machines and at different sites very difficult and 

therefore unacceptable for the development of routine food compositional analysis.  However 

this may be better addressed once (or when/if) a uniform format can be adopted as noted 

above. 

 

The AMDIS software is now routinely used as a metabolomic deconvolution approach and 

despite its obvious attractiveness the downside of false positive peak generation, as discussed 

earlier, does detract from its utility. Developed by NIST (www.amdis.net), AMDIS was 

created as a method for extracting individual component spectra from GC/MS data files and 

then using these spectra to identify target compounds by matching to spectra in a reference 

library.  Based on the peak method of Dromey et al (1976) for the basis for spectrum 

extraction (deconvolution) both which showed this approach was shown to produce reliable 

results in large-scale tests (Shackleford et al, 1983) and importantly it followed an approach 

similar to that of an analyst.  Its utility is such that it has been adapted repeatedly to become a 

programme that accepts multiple data formats as shown below: 

 

 Bruker (*.msf) 

 Finnigan (GCQ, INCOS, and ITDS formats) (*.ms;*.mi;*.dat)  

 HP Benchtop and MS Engines (*.ms) 

 HP Chemstation (*.d) 

 Inficon GCMS (*.acq) 

 MassLynx NT Formats (*.*) 

 MicroMass (*.) 

http://www.amdis.net/
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 NetCDF (*.cdf) 

 Perkin-Elmer Turbo Mass (*.raw) 

 Saturn SMS (*.sms) 

 Shimadzu MS Files (*.R##) 

 Shrader/GCMate (*.lrp) 

 Varian Saturn Files (*.ms) 

 Xcalibur (*.raw) 

 

AMDIS utilisation generally takes the form of four distinct processing steps: 1. noise analysis, 

2. component perception, 3. spectrum deconvolution, 4. compound identification.  These all 

come with limitations that can impact directly upon the resultant peak tables  and therefore 

food safety and compositional studies.  The AMDIS approach of peak maximization 

(Dromely et al 1976) as the only means for perceiving components can cause problems 

particularly in the complex biological systems analysed in G02/03.  The co-elution and co-

maximisation of peaks can lead to them being identified as a single metabolite with a resultant 

(two compound-derived) single spectrum.  In addition if there is close elution/peak 

maximisation accompanied by broad peak tops leading to several local maxima a component 

may be identified more than once leading to the generation of several false positives.  An 

additional problem seen much more significantly in LC-MS is that if the peaks are broad and 

significantly larger than the analyses window setting then the peaks can be missed completely 

leading to the generation of false negatives.   

 

Perhaps the main problem associated with AMDIS is that of the requirement for a present or 

absent decision be made concerning the existence of a component leading to the missing 

value problem down the line in subsequent data analysis. For the biological complex spectra 

generated as part of the G02/03 programmes there will be uncertainty for several compounds 

due to their inherent low level in a specific experiment leading to its elimination as noise.  

This drawback is significant since there is a huge difference between a sample not being 

present and not being detected especially where food safety and toxicology is concerned . 
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Table 4.1  Commercial software tools for metabolomic data processing (Katajamma and Oresic, 2007). 

 

Name Vendor Features Main Application and examples 
BlueFuse. 

 

BlueGnome, Cambridge, UK Filtering, 

peak detection, and alignment 

Univariate and multivariate methods for data analysis Metabolomics with MS and NMR data 

 

Chenomx  

 

NMR Suite Chenomx, Edmonton, Canada Data conversion, analyzing spectra to compounds and 

concentrations 

Metabonomics with NMR data (Suade et al 

2006) 

Metabolomics module 

 

Expressionist Genedata, Basel, 

Switzerland 

Genedata Filtering, peak extraction, m/z and retention 

time alignment. Metabolite identification using third-

party databases.  Includes also analysis and 

interpretation modules and integrated database 

Cross-omics platform for transcriptomics, 

proteomics and metabolomics works with MS 

data 

LineUp   Infometrix Alignment of chromatographic data.  Alignment can be 

used also for spectroscopic data 

Chromatographic alignment 

MarkerLynx  Waters, Milford, MA, USA Peak detection and alignment. Principal component 

analysis (PCA) 

Metabonomics with LC–MS data (Idborg et al 

2005; Lenz et al 2005; Whitfield et al 2005 

MarkerView  Applied Biosystems, Foster City, CA, 

USA 

Peak detection and alignment. PCA and t-test methods 

for data analysis.  Visualization and reporting 

Metabolomics with LC–MS data (Wagner et al 

2007) 

MassHunter  

 

Profiling software Agilent Technologies, 

Santa Clara, CA, USA 

Feature extraction and alignment Proteomics with LC–MS data 

Metabolic Profiler  

 

Bruker Daltonic & Bruker BioSpin, 

Billerica, MA, USA 

Bucket raw data into retention time, m/z table with 

intensities. Identification using libraries. PCA for data 

analysis 

Metabolomics with MS and NMR 

metAlign,  

 

PlanResearch International B.V., 

Wageningen, The Netherlands 

Filtering, baseline correction, peak detection, 

alignment 

Broad, LC–MS and GC–MS data (Vorst, O. et 

al, 2005; Tikunov et al 2005; Keurentjes et al, 

2006; Bino et al 2005). 

MS Resolver  

 

Pattern Recognition Systems, Bergen, 

Norway 

Resolve multicomponent data from multidetection 

instrumentation into individual contributions 

Broad, LC–MS and GC–MS data (Idborg et al 

2005; Eide et al 2002) 

Profile  

 

Phenomenome Discoveries, Saskatoon, 

Canada 

File conversion, peak detection and alignment. Tools 

for statistical analysis and data mining  

Metabolomics with MS data 

Rosetta Elucidator  

 

Rosetta Biosoftware, Seattle, WA, USA Peak detection and alignment, statistical analysis and 

visualization 

Proteomics with LC–MS data 

Sieve  

 

Thermo Fisher Scientific, Waltham, MA, 

USA 

Direct comparison approach to comparing multiple 

LC–MS datasets. 

Uses ChromAlign for chromatographic 

alignment Proteomics with LC–MS data 

(Sadygov et al 2006) 
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Table 4.2   Freely available software for metabolomic data processing (Katajamma and Oresic, 2007). 

 

Name Features Main Application and 

examples 

License type Platform 

Chrompare 

(Frenzel et al, 

2003)  

 

Comparison of chromatographic 

peak lists and raw chromatograms, 

automatic and manual 

normalization 

Metabolomics with GC-FID Licence type unknown, 

available for download 

Microsoft Excel Visual Basic 

 

COMSPARI 

(Katz et al, 

2004)  

Visualization to aid searching for 

differences between pair of runs 

Metabolomics with LC–MS and 

GC–MS data (Katz et al, 2004) 

GNU General Public 

License 

Implemented in C, for any recent platform 

including Linux and Windows 

Continuous 

profile models 

(Listgarten et al, 

2007) 

Alignment and normalization of 

time series data 

Proteomics with LC–MS data Free for educational and 

research use, source code 

available 

Toolbox for Matlab 

 

HiRes (Zhao et 

al, 2006)  

Processing and analysis spectral 

data 

Metabolomics with NMR data  Free for research and 

clinical purposes 

Implemented in C++, for Windows platform 

 

LCMSWARP 

(Jaitly et al, 

2006) 

Retention time alignment and 

feature clustering 

Proteomics with LC–MS and LC–

MS/MS data (Umar et al, 2007) 

Unkown Implemented in C++ 

MapQuant 

(Leptos et al, 

2006) 

Noise filtering, peak detection and 

visualization. 

Proteomics with LC–MS Harvard University open-

source compatible license 

Implemented in C, for Windows and Linux 

Platforms 

MathDAMP 

(Baran et al, 

2006)  

Direct comparison of raw data sets 

without peak picking. Includes 

methods for preprocessing 

(binning, baseline subtraction, 

smoothing) and normalization 

Metabolomics with LC–MS, GC–

MS and CE–MS data  

Free  Package to Mathematica 

MET-IDEA 

(Broekling et al, 

2006)  

Extracts ion intensity data for listed 

ion/retention time values from 

multiple runs 

Metabolomics with LC–MS, GC–

MS and CE–MS data 

Freely available to academic 

users upon request 

Windows, .NET platform 

MSFACTs 

(Duran et al, 

2003) 

Alignment and comparison of raw 

chromatograms or peak lists 

generated with a third-party 

software 

Metabolomics with GC–MS and 

LC–MS data 

Freely available upon 

request for academic and 

non-commercial use 

Implemented in Java 

 

MSight (Palagi 

et al 2005)  

Visualization and visual analysis 

and comparison of multiple runs 

Proteomics with LC–MS data Free of charge Windows 

msInspect Peak detection, alignment, Proteomics with LC–MS data Free software available Implemented in Java. Requires R statistical 
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(Bellew et al, 

2006)  

normalization and visualization under Apache 2.0 License language 

MZmine 

(Katajamaa et 

al, 2006) 

Noise filtering, peak detection, 

alignment, normalization and 

visualization. Distributed 

computing 

Metabolomics with LC–MS and 

GC–MS data (Kind et al 2007; 

Rischer et al, 2006) 

GNU General Public 

License 

 

Implemented in Java 

SpecArray (Li et 

al, 2005)  

Noise filtering, centroiding, peak 

detection, alignment and 

visualization 

Proteomics with LC–MS data GNU General Public 

License 

 

Implemented in C, for Linux platform  

SuperHirn 

(Mueller et al 

2007) 

 

Peak detection, alignment and 

normalization. Includes also 

analysis capabilities 

Proteomics with LC–MS data Not Yet available Not yet available Implemented in C++, for 

Unix platforms 

Xalign (Zhang 

et al, 2005) 

Peak detection, alignment between 

samples and quality control 

Proteomics with LC–MS data Available upon request from 

the author  

Implemented in C++ 

XCMS 

(Katajamaa & 

and Oresic, 

2005) 

 

Noise filtering, peak detection and 

alignment 

Metabolomics with LC–MS and 

GC–MS data (Kind et al, 2007; 

Go et al, 2006; Want et al, 2006) 

 

GNU General Public 

License 

 

Implemented in R statistical language 
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4.3 REVIEW AND SELECTED TEST OF PLATFORM-INDEPENDENT 
SOFTWARE FOR AUTOMATED GENERATION OF PEAK TABLES FROM 
GC-MS AND LC-MS DATA. 

 

The increasing interest in the application of metabolomics to biological systems has also been 

accompanied by an increase in instrument independent software available to (theoretically) do 

the same function.  There are certainly many software packages freely and commercially 

available (Tables 4.1.& 4.2) for such approaches with many alignment programs for GC–MS, 

LC–MS, nuclear magnetic resonance (NMR) well reported (Duran et al, 2003; Katajamaa and 

Orešič, 2005; Katajamaa et al, 2006; Kind et al, 2007; Hongmei et al,  2008).  Of these many 

packages there is a wide range of metabolomic applications and few are focussed on the really 

problematic area of MS deconvolution.  The universality and general acceptance, albeit 

piecemeal, of the packages deemed it necessary to select examples of these for attempted 

automation of peak alignment and spectral deconvolution of the metabolome profile data 

formats available to the G03 project.  To best address this G02 and nascent potato 

metabolomic data were used and the following parameters were focussed on with the 

assessments of selected and most commonly used software tabulated in Appendix 4.1: 

 

 Cost, availability and conditions of use 

 Maintenance and support - can we expect improvements in the future? 

 Are the implemented methods explained or published? 

 Operating system 

 Open source 

 Import/export data format 

 Dependence on the analytical system  

 Scalability: data set size restrictions/running time decent for medium size (100 runs) high 

throughput metabolomics experiments 

 Level of parameterisation and user knowledge necessary to get the best out of the 

technique 

 

Furthermore, it was important to note from an operational point of view the operating system 

required and whether or not the code was open source.  Finally, a range of interoperability 

criteria were assessed in relation to import/export data format; whether dependent on the 

analytical system; scalability, including data set size restrictions/running time decent for 

medium size (100 runs) to high throughput metabolomics experiments; level of 

parameterisation and user knowledge necessary to get the best out of the technique. From all 

of the available software only two of the packages were successful in robustly delivering on 

the challenges faced from complex plant/crop metabolomic data; MetAlign and XCMS.  
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These seemed to offer the desired characteristics and these were assessed in greater detail for 

functionality using potato GC-MS and LC-MS data files generated at SCRI.   

 

 

4.3.1 MetAlign 

 

Metalign was devised at the Plant Research Institute, the Netherlands to distinguish between 

and filter out statistically significant differences between pre-defined classes of full scan LC 

or GC mass spectrometry data sets. It has been used several times (Tikunov et al, 2005; 

America et al, 2006; De Vos et al, 2007) and although initially launched as an expensive 

(€5000) commercially available platform independent package it is now freely available on 

request.   

 

To asses this package G02/3 GC - & LC MS data was utilised.  The LC-MS data utilised was 

of a cultivar experiment (G02) and this had been derived from 23 cultivars: Desiree, Record, 

P.Dell, Shelagh, Stirling, Torridon, Glenna, Morag, Eden, M.Piper, P.Javelin, Cara, P.Crown, 

Brodick, Barbara, Pink Fir Apple, G.Wonder, Inca Sun, Mayan Gold, Lumpers, Fortyfold, 

Anya. 
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Figure  4.1   A comparative screen capture of the (a) Thermo-Xcalibur derived raw 

GC-MS data of a polar extract of the reference potato cultivar Cara analysed using the 

G02001 derived SOPs and (b) the same raw GC-MS data subject to MetAlign directed 

file conversion to net.cdf, background subtraction, peak finding and signal reduction 

to one scan width. 

 

With respect to GC-MS data nascent chromatographic runs were used.  These were derived 

from SCRI RERAD funded experiments into potato flavour.  Briefly, the cultivars Desiree, 

Mayan gold and Cara were grown as described in the experimental section of SCRI‟s G02001 

final report (Transcriptome, proteome and metabolome analysis to detect unintended effects 

in genetically modified potato).  Following harvest all tubers were subjected to 4 weeks “skin 

set”, stored undercover at 10°C as per normal practice. Selected tubers were then stored at 0 

weeks/4°C, 6 weeks at 4°C and 17 weeks at 4°C.  The tubers were then analysed using the 

SOPs generated in G02001 and the raw GC-MS data subject to analysis by MetAlign 

 

The immediate possibilities and advantages of MetAlign are obvious with respect to its ability 

to background subtract, a dominant feature of MetAlign (Figure 4.1). 

 

(a) 

(b) 
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This rationalization of the data is more clearly seen if the data is focussed in on a smaller time 

window (Figure  4.2).  It is clear that the MetAlign processed data is “simpler (Fig 4.2b), 

having baseline corrected and reduced each peak to a single scan event.  At each of these scan 

events MetAlign has identified the masses which peak at this retention time.  This process is 

similar to deconvolution, producing spectra which can be used for external library searches to 

tentatively identify components in the data set.   

 

When challenged with multiple chromatograms from the potato experiments the 

reproducibility of MetAlign was robust when providing reproducible peaks for the same 

compound in different chromatograms (Figure 4.3).  With respect to the output three options 

are available: a detailed Ascii output, Excel Compatible output and Differential Retention 

Display.  The utility of the former is that the secondary statistical packages, such as 

Genstat™, Simca-P10™ etc, can be used.  The output generally consists of amplitudes, noise 

and retention times for every mass scan event. 

 

The significant differences between MetAlign and the other commercial platform onboard 

software are with respect to the processing (Table 4.3) 

 

Table 4.3  The comparative difference between MetAlign and Xcalibur software for 

metabolomics chromatogram processing 

 

 MetAlign Xcalibur 

Total peak found 20,000 100 

Peak Indent Scan number & mass Specific ident from bespoke 

processing method 

preparation and 

standards/database 

comparison 

Run time processing runtime 

(14 files) 

360 minutes 30 minutes 

Peak validation None Dependent on databases to 

search against (mins/hours) 

Compound Identification unknown Seconds with a % probability 

or match to the databases 
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 Figure 4.2    (a) A comparative screen capture of the raw Thermo-Xcalibur derived GC-MS 

 data of a polar extract of the reference potato cultivar Cara analysed using the 

 G02001derived SOPs;  retention window 6.0-6.9 minutes. (b)  The raw GC-MS data of  (a) 

 subject to MetAlign directed file conversion to net.cdf, background subtraction, peak 

 finding and signal reduction to one scan width; retention window 6.0-6.9 minutes. 

 

 
  

Figure 4.3  Three MetAlign baseline corrected files (a) verifying the same compound 

 (highlighted) using extracted mass spectra (b) at retention time 6.34. 

 

(a) 

(b) 

(a) (b) 
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The results of principal component analysis (PCA) of the Xcalibur and MetAlign data sets 

generated from the potato storage experiments were remarkably similar following 

multivariate analysis. (Figure 4.4).  It is clear from these plots that the segregations are very 

similar, despite the PCA generating data formats and albeit in different directions.  However it 

is when this cumulative multivariate data are data mined that the problems with MetAlign can 

arise.  Since the datapoints for MetAlign are described by scan number and mass, unlike 

Xcalibur which has a compound identification capability, the analysis of the PCA plots to 

define the data points responsible for the segregation becomes tortuous and in essence 

meaningless for MetAlign derived data.  This is highlighted in Figure 4.5 where the PCA 

plots of Figure 4.4 are re-interpreted to show the data points causing, or driving, the 

segregation.  For the Xcalibur processed data the processing methods is set up to annotate the 

datapoints and can have multiple masses describing a peak. This means that for the PCAs 

clear identification/annotation of the compounds is utilised to construct them allows the user 

to see, in this example, that the compounds glucose, fructose and sucrose were driving the 

segregation of the Cara (17 weeks/4°C) data away from the bulk of the other samples.  This 

supports the previous reports of the potato cultivar Cara‟s susceptibility to low temperature 

sweetening and starch breakdown (Bournay et al, 1996; Rivero et al., 2003; Dobson et al 

2007).  However, with the MetAlign generated loading plots the lack of a “screened” or 

annotated processing method leaves many data points (scan number and mass) to describe the 

segregation leading to excessive over population of the plot and an inability to easily interpret 

the data.   
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 Figure 4.4   Application of the Xcalibur and MetAlign processing software to the raw chromatograms generated on Thermo Tempus GC-

 ToF-MS from the potato storage experiment.  The outputs derived from MetAlign were analysed by Simca-P10 and those from Xcalibur 

 by Genstat to generate principle component analysis plots 
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Figure 4.5   The loadings plots generated from the PCA displayed in Figure  4.4 (potato storage experiment).  The loading plot on the left 

is generated from the MetAlign derived data with an associated exploded view of part of the plot.  The loadings plot on the right is 

derived from the Xcalibur annotated processing method and, although showing the same segregations are much easier to analyse and 

interpret within a biological frame of reference. 
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It is clear (particularly in the zoom view; Figure 4.5) that clusters of colour (individual 

masses, same scan) are causing the 3 long term storage Cara samples to separate.  These 

masses could be from a single component which then requires the user to return to the raw 

data file and library searching at that specific the scan number to identify and annotate the 

compound/peak.  At present this is not automated in MetAlign making it too labour intensive 

for utilitarian metabolomics assessment.  It does however have mean that MetAlign has utility 

as a process to check (relatively) quickly that a data set is suitable for further onboard 

(Xcalibur, ChromaTof etc) processing. 

 

With respect to LC-MS analysis MetAlign was again shown to have comparative drawbacks.  

It can realistically handle well chromatographed data (Figure 4.6) but as peaks start to shift or 

if the scan intervals are not regular (due to user setup differences; a not uncommon occurrence 

when cross comparing data from numerous or different sites) then MetAlign can fail to align 

the chromatograms within a data set leading to unusable data. (Figure 4.7) 

 

In summary MetAlign has a place in metabolomic studies but it is unlike to replace the 

technology associated onboard software used in conjunction with an experience user.  It was 

suitable when running small data sets, but large sets require significant computing power due 

to the generation of extremely large temporary files whilst chromatogram aligning.  These are 

stored where the software has been installed, so space restrictions or PC interruptions can lead 

to fatal program crashes.  More restricting is the fact that the generated peak list contains no 

annotation; consist only of scan number and mass.  The identification of components must be 

done manually by using the raw data files and an appropriate mass spectrum library.  

 

4.3.2 XCMS 

The other metabolomic analytical software package gaining favour is XCMS (Dunn et al, 

2008; Nordström et al, 2008; Wikoff et al, 2007; Nordström et al, 2006; Smith et al, 2006; 

Want et al, 2006).  The XCMS package reads and processes LC/MS data stored in NetCDF 

(AIA/ANDI), mzXML, and mzData files. The authors claim that XCMS includes numerous 

options for visualizing and interacting with that data. In addition, it is claimed to include 

functionality for peak picking, non-linear retention time alignment, and relative 

quantification. The programme comes packaged with R embedded.  R is a language and 
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environment for statistical computing and graphics and provides a wide variety of statistical 

(linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, 

clustering, etc.).  The combined package should therefore be capable of simultaneously pre-

processing, analyzing, and visualizing the raw data from hundreds of samples.   

Once downloaded the program was trialled successfully with the packaged data set which 

produced successful a text report of the peaks found. However production of extracted ion 

chromatographs using the example commands did not appear possible or feasible using the 

example statements.  
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 Figure 4.6  Selected LC-MS chromatogram processed by Xcalibur (upper) and MetAlign (lower) software.  The exploded sections s

 hows the retention window 8.0-11.0 minutes and how the MetAlign software has reduced the Xcalibur peaks to stick peaks 
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 Figure 4.7  Potato (Cara cv.) polar extract GC-ToF-MS and LC-MS (iontrap) traces generated using MetAlign.  The software can handle data 

 generated with regular scan intervals, such as GC-ToF-MS derived data (a) thereby allowing alignment.  However any mismatch on scan intervals 

 renders chromatogram alignment unusable (b) such as some LC-MS derived data.  The top two LC-MS MetAlign generated traces plots (b) have 

 slightly different scan intervals whilst the bottom plot clearly has a different time intervals between the scans leading to an inability to align the peaks 

 and subsequently process to yield robust peak tables. 

 

(a) MetAlign generated (GC-(TOF)MS traces 

 

(b) MetAlign generated LC-MS traces 
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It was important to note that to employ and exploit the facilities available within XCMS the 

data had to be full scan LC-MS, unlike the vendor software that can deal with truncated or 

partitioned chromatograms.  As a point of routine the data sets collected at SCRI were all LC-

MS/MS (LC-MS
2
) which are incompatible with XCMS.  A data set containing Desiree (S 

Tuberosum), Phureja (S Tuberosum ssp phureja, a diploid breeding line), Inca Sun (S 

Tuberosum ssp phureja), Mayan Gold (S Tuberosum ssp phureja), Montrose (S Tuberosum) 

and Pentland Dell (S Tuberosum) was extracted and re-run using full scan LC-MS in positive 

mode as outline in the G02001 SOPs.  Within this set Desiree and Phureja were the sequence 

quality controls and the other four varieties of one replicate from 3 harvest dates.  The initial 

test run used the Desiree and Phureja samples (Fig 4.8) since their files represented repeat 

injections and the replicates therefore contain the same major peaks.   

 

These and the other associated LC-MS raw data were set in the XCMS program folder (as 

instructed by the XCMS help files) but these raw data files were not recognised.  XCMS is 

run using syntax and structure as defined by the embedded program R, but this is non-

intuitive and requires a user with specific experience in this environment which makes 

subsequent analysis of the data set problematic for the uninitiated.  However the analysis was 

eventually run and the output was in the form of a retention time deviation plot (Fig 4.9) 

which highlighted 89 retention time groups on a first analytical pass and 236 following a 

second pass.  This data was then worked on to identify the significant peaks.  Close inspection 

of the data set showed that there were approximately 12 peaks between 2.5 minutes and 14 

minutes. These XCMS-derived significant peaks are shown overlaid on the original LC-MS 

TIC trace (Fig 4.10).  The XCMS programme did miss peaks, for example at 11.8 minutes 

(708 secs, highlighted) with a mass of 903, however these missing peaks may be “found” by 

passing the data though the “peakfind” routine repeatedly.  This highlights the drawback of 

XCMS: how many repeats are required to fully describe the metabolome?  Realistically this 

“chemistry free” analysis can be set as part of the routine and allowed to repeat until the 

changes in the significant peaks reduces to < 2%. 

 

 

 

 

 

 



Page 134 of 370 

 

 

 
 

 

 
 

 

 Figure 4.8  The LC-MS (Thermo LTQ systems) polar extract chromatograms of 

 Phureja (upper) and Desiree (lower). 
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 Figure 4.9.  XCMS output file for analysis of LC-MS raw data derived from the polar 

 extracts of Desiree, Phureja potato controls and the varieties Inca Sun, Mayan Gold,, 

 Montrose and Pentland Dell.  The first two varieties are diploid phureja subspecies 

 whilst the latter two are common tetraploid tuberosum varieties.  The output from 

 XCMS is in the form of a retention time deviation vs. retention time plot. 
 

 

 Figure 4.10  The combine original LC-MS TIC and the overlaid XCMS generated (♦) 

 significant peaks. An example of how XCMS can miss peaks is highlighted (O) with 

 this peak not present in the overlaid XCMS generated (♦) significant peaks. 
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Unlike many of the other packages XCMS comes with a peak identification ability via a link 

to the Metlin metabolite database (http://metlin.scripps.edu/) which requires a mass range as 

an input.  However this metabolite database is limited with respect to the analytes/metabolites 

available since for the XCMS data reports generated from the potato experimental set the 

mass 852 (chaconine, a neurotoxic glycolalkaloid common at low levels in all potatoes) 

yielded 14 different putative structures all of which were either complex fatty acids or 

glyceride derivatives; Chaconine was not registered within the Metlin database.  This is a fatal 

flaw for food safety and compositional applications 

 

To realistically assess XCMS the full LC-MS experimental dataset was trialled. This 

contained the cultivars with 3 harvest points, 2 quality control samples and 3 injections were 

analysed. This represented 6 cultivars ( 4 test + 3 control) x 3 harvests/reps x 2 peak-find 

passes and this took a total time of 12 minutes.  The data was saved to text file and analysed 

using SIMCA (PCA analysis).  The exact same data was also subject to analysis using the 

Thermo Xcalibur software and similarly analysed by PCA. 

 

Desiree and Phureja (QC data) cluster in both data sets and are segregated away from the 

experimental data set.  Figures 4.11 highlights that close similarities between the Xcalibur and 

XCMS processed data as represented on PCA plots.  The associated loading plots are 

represented in Figs 4.12 a & b and 4.13 a & b, respectively.   In the Xcalibur processed data 

peak P205RT9.51 (Fig 4.12b) is the same peak as M205T591 in the XCMS data set (Fig 

4.13b) and within the XCMS data there are other peaks at the same retention time suggesting 

breakdown products from a single compound (mass fragments).  In general there is a broad 

agreement with the segregation of compounds (Xcalibur) and masses/RT (XCMS) but the 

latter (XCMS) is predisposed to miss peaks unless pre-set on a punishingly repetitive re-scan 

schedule.  For example in the XCMS dataset are peaks with masses 166 and 103 with a 

retention time of 7.4 minutes were missing but present in the Xcalibur dataset.  This was a 

function of the data being subject to only 2 passages through the XCMS peakfind routine.  

Passes through the peakfind routine in conjunction with statistical analysis assessing the 

validity of the additional information gained will guide the user to the number of peakfind 

passes required to extract all relevant data.  However this will be completely dependent on the 

analytical setup procedure and cannot be enshrined in an SOP.  

 

http://metlin.scripps.edu/
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In conclusion, XCMS runs on the R platform which is open source, and becoming widely 

recognised as a portable platform for statistical analysis.  The limited trial highlighted the 

utility of this approach in comparison to targeted bespoke software (in this case Xcalibur).  

Furthermore, XCMS is not intuitive and required a greater degree of programming skills than 

are routine found amongst the chemical/biochemical community.  However, if used as part of 

a metabolomics initiative involving programmers the R-based XCMS software could form the 

basis of a centralised food database metabolomics repository.  Indeed, proficiency within the 

R environment would allow for scaling using an internal standard, and further statistical 

procedures could be written to analyse datasets, and these routines would add further 

consistency when analysing multiple experiments. 
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 Figure 4.11.  PCA plots derived from the Thermo LTC-LTQ-MS systems.  The 

 samples were Desiree - ■, Phureja - ■ (potato controls) and the varieties Inca Sun - ♦, 

 Mayan Gold - ♦, Montrose -  and Pentland Dell - ▲. All material was harvested at 3 

 time points.  The PCA data was derived from and Xcalibur (upper) and XCMS (lower) 

 processed peak tables. The arrow represent the trend of harvest date/maturity. 
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 Figure 4.12.  The full (a) and exploded (b) PCA loadings plot derived from the 

 Xcalibur derived PCA scores plot Fig 4.11 upper.  The outlined data point has a 

 corresponding  match in the XCMS dataset (Figure 4.13b). 

(a) 

(b) 
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 Figure 4.13.  The full (a) and exploded (b) PCA loadings plot derived from the 

 XCMS-derived PCA scores plot Fig 4.11 lower.  The outlined data point has a 

 corresponding match in the XCMS dataset (Fig 4.12b) 
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Appendix 4.1 Evaluation of software packages 

 

 

 

Name MZmine 
Source MZmine - LC/MS Toolbox (http://mzmine.sourceforge.net/features.shtml 

Reference BMC Bioinformatics 2005, 6:179 (http://www.biomedcentral.com/1471-

2105/6/179/abstract) 

Availability GNU GPL - Java software - multi platform - source code available 

Last release V 0.60, April 2006 (possibly still maintained) 

General Use Tool for processing of LC/MS raw data 

Features smoothing and filtering of spectra;  visualisation;  peak picking and automatic peak 

detection. 

General Comments Peak table generation seems a rather rudimentary approach as it is based by searching the 

closest peaks from known master peak list - A peak is defined by {mz, δmz, rt, δrt, 

height, area} 

Input Import NetCDF/mzXML files 

Output Peak table of dimensions: Num. of samples * Num. of peaks in the master peak list 

 

 

Name Chromatof 
Source LECO Instruments -  

http://www.leco.com/products/sep_sci/chromaTOF/chromaTOF.htm 

The software cannot be bought independently of the machine  

Reference  

Availability Commercial instrument software for operating Leco GC-tof-MS instruments 

Last release V3.25 optimized for Pegasus 

General Use Tool for processing of GC and LC/MS raw data 

Features Built-in automatic deconvolution;  peak-list generation;  peak-list alignment. 

General Comments Peak list alignment for metabolomics data not satisfying as the algorithm is based on 

deconvolved mass spectra, which do not always represent the actually deconvolved peak 

Input Leco raw-data only 

Output NetCDF files, CSV files, peak lists including database (NIST) search results and 

deconvolved mass spectra 

 

 

Name AnalyzerPro 
Source http://www.spectralworks.com/MatrixAnalyzer.aspx 

Reference http://www.spectralworks.com/analyzerpropublications.asp 

Availability Commercially available  

Last release  

General Use data processing application for MS data 

Features Accurate Mass Capable - handles high precision data as well as integer mass. 

Any Chromatographic MS data - any data that has some aspect of time resolution 

Intuitive User Interface - builds on web browser familiarity 

Qualitative Analysis - because you can expect the unexpected 

Quantitative Processing - using external or internal standards 

Combined Quan and Qual Reports - more extensive sample information in less time 

Custom Reports - readily generation to be application specific 

Automatic Spectral Enhancement - no user intervention or prior knowledge required 

Seamless Integration with NIST - and any NIST format library 

Targeted and non-Targeted Analysis - flexible and comprehensive 

Vendor Independent - one system for all including legacy instruments 

General Comments Peak list alignment for metabolomics data not trivial. 

Input most vendors raw data and NetCDF files  

Output Target Component Libraries; Target Quantitation Libraries 

http://mzmine.sourceforge.net/features.shtml
http://
http://
http://www.spectralworks.com/MatrixAnalyzer.aspx
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Name BinBase 

Source http://fiehnlab.ucdavis.edu/projects/binbase_setupx  
Reference Fiehn O, Wohlgemuth G, Scholz M (2005) Automatic annotation of metabolomic mass spectra by 

integrating experimental metadata. Proc. Lect. Notes Bioinformatics 3615, 

242439 (http://fiehnlab.ucdavis.edu/publications/publications/DILS%202005_Fiehn_Scholz_Wohlge

muth.pdf 

Availability Web interface freely accessible 

Last release 19/06/2008 V3.0 

General Use web-based metabolomics LIMS, Database system for automated metabolite annotation 

Features high performance clustering:  fatty acid methyl ester based retention index correction;  kovatch 

retention index based retention index correction;  automated library generation;  central configuration;  

linking with external resources;  replacing of empty values;  support for GC-Tof with Leco pegasus 

3.0/ 2.*; support for quadrupole; GCxGC support;  import msp files as reference library;  export of 

msp files;  LGPL compatible;  highly customizable matching of samples;  integration with setupX;  

integration with external LIMS systems;  possible to access using web services;  multi user support;  

based on meta informations for a smarter matching and bin generation;  fully automated;  retention 

index correction based on internal/external standards:  quantification possible. 

General 

Comments 

Not intuitive requiring a significant level of chemometric trailing 

Input UniqueMass;  S/N;  Purity;  R.T (seconds);  Quant S/N; Quant Masses; Dimension Time 2 

Output XML. XLS , TXT  

 

 

 

Name MET-IDEA (Metabolomics Ion-Based Data Extraction Algorithm) 
Source http://bioinfo.noble.org/download/  

Reference Broeckling CD, Reddy IR, Duran AL, Zhao X and Sumner LW. MET-IDEA: data extraction tool for 

mass spectrometry-based metabolomics. Anal Chem. 2006 Jul 1;78(13):4334-41. 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list

_uids=16808440&query_hl=4&itool=pubmed_docsum)  

Availability Freeware 

Last release 07-01-2008, V2.0 

General Use Data processing tool to quantify ion abundances from GC(LC)-MS data - General idea is that the user 

defines the master list of compounds in a form of "ion/retention time" pair. The software will then 

extract an estimation of the area of each "IRt" in every sample  

Features  

General 

Comments 

Fine as far as it goes but it has limited scope for datamining unknowns 

Input Raw NetCDF fies:  ASCII file with IRt pairs - can also be manually edited in the software extracted 

from AMDIS output. 

Output peak table - each variable representing one IRt 

 

 

 

Name MetaQuant 
Source http://bioinformatics.org/metaquant  

Reference MetaQuant: a tool for the automatic quantification of GC/MS based metabolome data, Bioinformatics 

Advance Access 17/10/2006 

(http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btl526v1?papetoc)  

Availability Freeware 

Last release 14/01/2008 

General Use  

Features Import of GC/MS data in a particular CSV or netCDF format  

Automatic, lab tested peak recognition and peak integration algorithms  

Automatic calibration function  

Different regression algorithms  

Usage of retention times or retention indices for compound definition, calibration and analysis  

http://fiehnlab.ucdavis.edu/projects/binbase_setupx
http://fiehnlab.ucdavis.edu/publications/publications/DILS%202005_Fiehn_Scholz_Wohlgemuth.pdf
http://fiehnlab.ucdavis.edu/publications/publications/DILS%202005_Fiehn_Scholz_Wohlgemuth.pdf
http://fiehnlab.ucdavis.edu/publications/publications/DILS%202005_Fiehn_Scholz_Wohlgemuth.pdf
http://fiehnlab.ucdavis.edu/publications/publications/DILS%202005_Fiehn_Scholz_Wohlgemuth.pdf
http://fiehnlab.ucdavis.edu/publications/publications/DILS%202005_Fiehn_Scholz_Wohlgemuth.pdf
http://fiehnlab.ucdavis.edu/publications/publications/DILS%202005_Fiehn_Scholz_Wohlgemuth.pdf
http://fiehnlab.ucdavis.edu/publications/publications/DILS%202005_Fiehn_Scholz_Wohlgemuth.pdf
http://fiehnlab.ucdavis.edu/publications/publications/DILS%202005_Fiehn_Scholz_Wohlgemuth.pdf
http://binbase.fiehnlab.ucdavis.edu:8080/confluence/display/BinBase/supported-systems
http://binbase.fiehnlab.ucdavis.edu:8080/confluence/display/BinBase/supported-systems
http://binbase.fiehnlab.ucdavis.edu:8080/confluence/display/BinBase/supported-systems
http://binbase.fiehnlab.ucdavis.edu:8080/confluence/display/BinBase/supported-systems
http://binbase.fiehnlab.ucdavis.edu:8080/confluence/display/BinBase/supported-systems
http://www.gnu.org/licenses/lgpl.html
http://binbase.fiehnlab.ucdavis.edu:8080/confluence/display/BinBase/customizeable
http://binbase.fiehnlab.ucdavis.edu:8080/confluence/display/BinBase/integration
http://bioinfo.noble.org/download/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16808440&query_hl=4&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16808440&query_hl=4&itool=pubmed_docsum
http://bioinformatics.org/metaquant
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btl526v1?papetoc
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Quantification with or without prior calibration  

Improved peak analysis correction functions with possibility of summarization and manual integration  

Export of quantification results into MS-Excel, XML , CSV and SBML file format  

Graphical Batch-Analysis with possibility of analysis comparison  

Powerful commandline-based Batch-Analysis with or without MetaQuant config file (.mcfg)  

Commandline analysis creates a MetaQuant result file (.mres), which can be opened with the GUI 

version  

Compound classification options (e. g. KEGG, CAS)  

Internal standard can be described on preferences panel leading to normalized peak areas  

Easier calibration with equimolar mixes 

General 

Comments 

Quantification of GC-MS metabolomics profiles - Performs automatic quantification of a predefined 

set of compounds  in one or several chromatograms  

Input raw GC/MS profile in CSV/NetCDF format  

Output XLS, XML and SBML peak tables  

 

 

 

Name MSFACTs (Metabolomics Spectral Formatting, Alignment, and Conversion Tools):  
Source http://www.noble.org/PlantBio/MS/MSFACTs/MSFACTs.html  

Reference Duran, A.L., Yang, J., Wang, L. and Sumner, L.W. (2003). Metabolomics Spectral Formatting, 

Alignment and Conversion Tools (MSFACTs). Bioinformatics 19(17): 2283-2293. Similar approach 

described in "Progressive peak clustering in GC-MS Metabolomic experiments applied to Leishmania 

parasites", Bioinformatics 2006 22(11):1391-1396 

 

Availability Freeware for academia 

Last release Aug 2003  - no recent update/release - Software support/maintenance doubtful 

General Use Alignment of integrated chromatographic peak lists  

 

Features  

General 

Comments 

Difference of retention times between two adjacent peaks in one run must be smaller than RT  

differences between 2 runs. 

Decision regarding the window size must be taken. 

RT alone is used to resolve "collisions" (two peaks from one run are falling in the same cluster). 

Reported results are based on fairly well resolved chromatogram.  The application for true 

metabolomics is therefore limited 

Completeness of RTalign has not been reported 

Input ASCII files  

Output tab delimited data 

 

 

 

Name GASP 
Source http://www.genedrift.org/gasp.php  

Reference  

Availability Freeware to academia 

Last release 01-10-07 

General Use Aligns peaks from multiple gas chromatograms enabling the user to detect statistically significant 

differences between levels of compounds present in the specimen under study 

Features The program reads output files from Xcalibur, HP Chemstation and AMDIS, converts and align these 

files in order to make the comparisons. Format of file not known 

Can also align chromatographic data processed by AMDIS deconvolution software (available from 

NIST).  

R plugins to allow simple forms of statistical analysis  

General 

Comments 

Alignment of integrated chromatographic peak lists - No description of the techniques to correct RT, 

neither to perform multiple alignment  

Input Xcalibur, HP Chemstation and AMDIS peak list files 

Output Peak tables  

 

http://www.noble.org/PlantBio/MS/MSFACTs/MSFACTs.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=14630657&query_hl=5&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=14630657&query_hl=5&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=14630657&query_hl=5&itool=pubmed_docsum
http://www.genedrift.org/gasp.php
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Name MetAlign 
Source http://www.pri.wur.nl/UK/products/MetAlign/ 

Reference . Tikunov, A. Lommen, C.H.R. de Vos, H.A. Verhoeven, R.J. Bino, R.D. Hall, P. Lindhout, A.G. 

Bovy, Plant Physiol. Break Through Technologies Section 139 (2005) 1125-1137. A Novel Approach 

for Non-targeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles. 

Availability Formerly commercial now freeware 

Last release 08-01-07 

General Use GC and LC-MS 

 

Features Includes highly parameterized smoothing, baseline correction and statistical chromatographic 

alignment options. These options were recently extended by a mass alignment procedure for the 

accommodation of high mass-accuracy instruments.   

General 

Comments 

similar to that of Xcalibur, however deciphering the components of the dataset which are driving 

these results from the many thousands of data points produced using MetAlign becomes arduous.  

Also MetAlign is applicable to GC-EI-TOF-MS analysis, but appears not to perform deconvolution, 

in other words the combination of extracted mass tags into full MSTs. 

Input Universal acceptor 

Output  

 

 

 

Name XCMS 
Source http://metlin.scripps.edu/download 

Reference Smith CA, Want EJ, O'Maille G, et al. XCMS: Processing mass spectrometry data for metabolite 

profiling using Nonlinear peak alignment, matching, and identification. Analytical Chemistry, 2006, 

78(3), 779-787 

Availability Freeware 

Last release V  1.11.22,  28-04-08 

General Use peak picking and nonlinear alignment software predominantly for LC-MS 

Features  

General 

Comments 

Processing tools for LC(GC)-MS data -  Performs automatic peak identification and integration by 

fitting a Gaussian peak model on one trace - Peak are then grouped together if they close enough - 

Missing peak infilling by integration the expected time window - Allows iterative retention time 

correction based on "well behaved" peaks 

Input Reads and processes LC/MS data stored in NetCDF (AIA/ANDI), mzXML, and mzData files 

Output Peak table of selected peaks  

 

 

http://www.pri.wur.nl/UK/products/MetAlign/
http://metlin.scripps.edu/download/
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GO3 Final Report - Section 5 
Manfred Beckmann/John Draper 
 

 

Development of methodology for standardized generation 

and pre-processing of ESI-MS metabolite fingerprint data 

(Task 02.02 and parts of Task 04.02 and 04.03) 

 

 

5.1 BACKGROUND TO EXPERIMENTAL SECTION 

 

A key aspect of the G03 project was to ensure that the metabolite fingerprinting techniques 

developed in G02 had both in-built data quality assessment and importantly will produce data 

that might be used for „predictive‟ classification of samples in the future.  An important 

practical consideration is that the techniques developed must be sufficiently robust to allow 

direct comparison of data generated on different instruments. For example there is little point 

in developing a technique if current data can only be compared with data generated on the 

same machine within the same run batch. By definition, global metabolite fingerprinting 

techniques are not quantifying a set number of discrete variables in comparison with authentic 

standards, but instead are providing „snapshots‟ of the relative ratios of metabolite signals in 

exceedingly complex mixtures.  Against this background it is clear that protocols for 

assessing data quality and ensuring any data „calibration‟ to cope with inherent instrument 

drift or detection of occasional operator-related variance have to be developed.  As the data 

are highly dimensional (1000‟s of variables) then fingerprint data quality cannot be checked 

by eye or checked by using simple univariate statistics, instead multivariate analysis 

techniques must be used to reduce dimensionality in order to assess reproducibility.  Thus 

procedures need to be developed to ensure that robust data comparisons can be made both 

within and between sample batches analysed at different times over a period of several 

months.   

 

At the time of writing the merged G03 project it was assumed that NMR fingerprinting data 

from IFR relevant to potato would be available.  This proved to be the case, but on deeper 

investigation it was clear that  the data set were only produced on a single instrument and thus 

there was no scope for aligning data output from different machines. In addition the data was 
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limited to samples generally not covered by other major profiling/fingerprinting experiments 

and so integration of NMR results with other metabolomics data was not possible.  

Additionally, from discussions with NMR experts it was also clear that NMR data was 

absolutely quantitative and thus pre-processing was generally rigorously handled by 

instrument software and as such there were few instances were operator involvement was 

required.  For these reasons the limited work on examining the IFR NMR data was dropped 

from the G03 project.  

 

During the process of merging the two separate GO3 projects it was agreed with the FSA that 

research would use non-transgenic potato data collected during the G02 project as well as new 

data sets produced in external projects for validation purposes. As much work had already 

been carried out on the transgenic potato tuber data sets used in the G02 project it was 

important to have some independent samples to validate, especially the data pre-processing 

and data mining methodologies.  It was initially hoped   that further metabolomics data sets 

relevant to potato would become available from external laboratories in the SAEEFOODERA 

programme in which SCRI was a participant.  In the event these data were not available in 

time and were replaced by more extensive and challenging sample populations produced by 

SCRI and Aberystwyth in different projects.  These samples included a major focus on plant 

tissue extracts of both starchy tubers (potato) and leaves (Brachypodium, rice and 

Arabidopsis). In particular a complex experiment involving rice blast (a fungal pathogen) 

infection of Brachypodium leaves provided a very challenging sample set for data alignment 

and was used to validate both the extraction, data pre-processing and data mining SOPs.  As 

an aside, for the purpose of developing standardized metabolomics methods for ESI-MS the 

extraction protocols were also tested with further commonly encountered sample types 

including microbial cultures (yeast), blood fractions and urine. 

 

 

5.2 OVERALL OBJECTIVES OF EXPERIMENTAL SECTION 

The ability to compare multivariate data from different time batches is imperative to success. 

In the last four years in G02006 (and other internal projects) we have explored several 

routines for mass alignment to validate ESI-MS fingerprint data with acquisition dates from 

within a week to as much as 6 months apart.  Our first major intention was to examine the 

methodology which was used previously in the G02 project to generate ESI-MS data sets on 

two very different systems (a Micromass LCT and Thermo-Finnigan LTQ linear ion trap 
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respectively). At the same time we also reviewed recent publications concerning the 

development of mass spectrometry fingerprinting. From this background we developed a 

standardised SOP describing in detail all the common steps (with alternative instructions were 

necessary) to allow the production of quality assured ESI-MS fingerprint data on any 

instrument.  The methodology review covers aspects of data generation including 

considerations relating to overall experimental statistical design, sample extraction and 

approaches for quality assurance.  Following this we validated a data generation and data pre-

processing procedure which can be used to prepare ESI-MS data in a common format for data 

mining.  Once shown to be working in potato the validation was undertaken using an 

independent data set representing disease progression in  Brachypodium leaves infected by 

the rice blast fungus (data produced in a separate BBSRC project in Aberystwyth: see Parker 

et al., 2008 
49

).  For convenience this validated protocol is described separately from the 

introduction and discussion sections as a separate section (5.4).   

A key element of these procedures is the development of standardised software tools for data 

pre-processing.  The development of these tools continued to be in conjunction with staff on 

the BBSRC MetRO project and this activity is described in detail in Section 8 of the report 

which will need to be consulted for background.   The final protocols are presented in an 

instructional format in Section 5.4 and have been published recently in a Nature Protocol 

(Beckmann et al., 2008 
60

).  Finally, one of the overriding requirements of FSA GO3 project 

is to develop a standardised fingerprinting procedure for assessment of overall potato tuber 

chemical composition.  With this in mind we will explore the use of ESI-MS fingerprinting to 

classify and explore the differences between traditionally-bred potato cultivars used as control 

in the G02006 project developing tools to test substantial equivalence between GM and non-

GM potato tubers (see G02006 report).  

 

Ultimately in the G03 project we will explore a strategy for fingerprint data alignment and 

comparison to develop a database of fingerprint information that will have value for 

compositional comparisons many years ahead. This is described in detail in Section 9 of the 

report and has been published in Beckmann et al., 2007 
48

. 

 

 

 



Page 150 of 370 

 

5.2.1 Summary of objectives 

 

 Review literature on direct infusion/flow injection metabolite fingerprinting and 

introduction to the major issues related to standardization of FIE-MS fingerprinting 

procedure 

 Develop standardized protocols for generation of FIE-MS data which can used on both 

ion trap and tof instruments (LTQ, LCT).  These should include QA procedures for 

ESI-MS fingerprinting. 

 Develop standardized approaches for data pre-processing (base line corrections, 

outlier detection, normalization. 

 

5.3 INTRODUCTION TO METABOLITE FINGERPRINTING USING 
NOMINAL MASS FLOW INJECTION ELECTROSPRAY MASS 
SPECTROMETRY (ESI-MS) 

 

Genomic technologies are now commonplace in experimental strategies aiming to understand 

specific gene function, in the search for molecular „biomarkers‟ linked to disease or to 

determine drug mode of action
1, 2

. Likewise, plant breeding programmes investigating 

complex traits relevant to agriculture or researchers attempting to optimise fermentation 

processes increasingly utilise global profiling methods to assay gene expression and 

metabolism under circumstances where the genetic basis of any differences are unknown 
3, 4

. 

In contrast to transcriptomics or proteomics experiments the global metabolite content of the 

majority of biologically-derived samples is only partially understood 
5
.  Metabolite diversity 

estimates suggest that upwards of 200,000 natural compounds exist 
6
 but unfortunately pure 

chemical standards are widely available for only a small percentage of this number. 

Additionally, unlike DNA and proteins which are made of repeating units of a small number 

of basic components (nucleotides or amino acids, respectively), natural metabolites are 

represented by a very wide range of chemistries.  Developing meaningful information on the 

total metabolite composition of a biological sample is therefore a difficult task.   

 

Traditional approaches for assaying metabolite content involve the use of 

chromatography to first attempt to separate metabolites before detection, thus generating 

quantitative or semi quantitative information on individual metabolites. Such metabolite 

profiling methods require exquisite control over the chromatographic process to obtain 
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reproducibility and demand rigorous 
7
 approaches to pre-process data in order to correctly 

deconvolve, align and annotate peaks.  Importantly any chromatography column matrix will 

undergo gradual detoriation with repetative use, resulting in significant changes in data 

characteristics („instrument drift‟) after a period  of constant operation in larger (> 200 

samples) profiling experiments.  An alternative approach to capture information relating to 

total metabolite content is to develop a spectrometric „fingerprint‟ without any 

chromatography 
8-10

.  In fingerprint data single variables do not relate to individual 

metabolites; depending on the approach, many chemicals can contribute to several signals in 

any spectrum and it is equally common for several metabolites to contribute to the same 

signal 
4, 9

. 

 

5.3.1 Metabolite profiling and metabolite fingerprinting technology 

Established technology for quantitation of targeted metabolites in complex mixtures includes 

gas or high pressure liquid chromatography (GC and HPLC) linked to a variety of detectors 
11-

15
.
  
However, such approaches are by definition selective 

5, 6, 16-18
, providing information only 

on a sub-set of metabolites that are well resolved during chromatography and for which pure 

standards are available.  Using more sensitive „time of flight‟ detectors GC-tof-MS  „profiles‟ 

comprising  the relative ratios of 2-3 hundred polar metabolites have been described 
4, 6, 7, 12, 

13
.  

By attempting to profile all metabolite peaks detected automatically by instrument software 

this latter approach was likely to provide a more comprehensive coverage of  the metabolome.  

However, over 60% of peaks in GC-tof-MS peak tables generally represent unknown 

chemistry with poor or no matches to existing reference spectra, which makes peak annotation 

and alignment non-trivial 
5-7, 16

.  Recent advances in ultra high pressure chromatography 

instrumentation have stimulated improvements in metabolite profiling using UHPLC 
19

.  

However, peak finding, peak alignment and peak annotation in large sample batches remains 

challenging as a result of aging of chromatography columns and instrument drift 
20, 21

.   

 

A more „global‟ overview of total sample metabolite composition can be obtained from 

„fingerprinting‟ techniques which do not incorporate a chromatographic step 
 4, 5, 9, 16, 22

.  For 

example, spectrometeries, such as Fourier Transform Infra Red (FT-IR) 
23

 and Nuclear 

Magnetic Resonance (NMR) 
10, 24

 generate global chemical „fingerprints‟, however, they 

generally require a further level of directed analysis to link any differences in wavenumber 
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(FT-IR) or chemical shifts (NMR) to specific chemistry 
16

.  In contrast, „fingerprinting‟ 

techniques based on mass spectrometry such as flow injection electrospray ionisation mass 

spectrometry  (FIE-MS) or direct infusion mass spectrometry (DIMS) offer the advantage that 

the measured „variables‟ (mass to charge [m/z] ratios) can be more directly linked to an 

individual metabolite by the additional information of atomic mass
 25-28

. 

 

 

5.3.2 Flow Injection Electrospray Mass Spectrometry (FIE-MS) 

Amongst different types of ion sources (Electrospray ionisation, ESI; Atmospheric pressure 

chemical ionisation, APCI; Atmospheric pressure photo ionization, APPI; multimode sources 

combining ESI and APCI) the ESI source can be regarded as standard and is probably the 

most commonly used ion source.  In FIE-MS the analyte is introduced to the ion source in 

solution as the flow from liquid chromatography, whilst in DIMS the analyte is delivered 

directly either from a syringe pump, or, via a nano-volume pipette using a liquid handling 

robot 
26, 29, 30

.  During the electrospray process ionization is accomplished by the loss or gain 

of a proton or other adducts, and charged analyte molecules can carry either single or multiple 

charges.  Electrospray is a very „soft‟ method of ionisation as very little residual energy is 

retained by the analyte upon ionisation. As such minimal (usually no) fragmentation is 

produced and the ionised analyte is often referred to as the "pseudo molecular ion” 
31, 32

. For 

studies requiring structure elucidation, this leads to an additional need for tandem mass 

spectrometry in which parent ions of analyte molecules can be fragmented in a second phase 

of analysis at higher ionisation energies.   Although ideally suited to more polar chemicals, 

even molecules that do not have acidic or basic groups can be charged through the formation 

of adducts with various ions such as Cl
-
  ions in negative ion mode or commonly K

+  
or Na

+ 
in 

positive ion mode 
31

.  Common adducts and neural loss fragments detected in the present 

procedure are described in Table 5.1. The formation of such adducts is highly dependent on 

the salt content of the crude sample matrix.  Initially, these adduct ions may appear to confuse 

the spectrum, but actually they have diagnostic value in the determination of  molecular 

weight (M) by searching for the simultaneous occurrence of adduct mass differences 
4, 9, 27-29, 

31-33
.   
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        Cation Mass  Cation Mass  Anion Mass 
                [M+H-HCOOH]1+ M - 45  [M+NH4]1+ M + 18  [M-3H]3- M/3 - 1 

[M+H-H2O]1+ M - 17  [M+Na]1+ M + 23  [M-2H]2- M/2 - 1 

[M+H-NH3]1+ M - 16  [M+H+CH3OH]1+ M + 33  [M-H2O-H]1- M - 19 

[2M+H]1+ 2M + 1  [M+K]1+ M + 39  [M-H]1- M - 1 

[2M+Na]1+ 2M + 23  [M+2Na-H]1+ M + 45  [M+Na-2H]1- M + 21 

[2M+2H+3H2O]2+ 2M + 28  [M+H+2K]1+ M + 77  [M+Cl]1- M + 35 

[2M+K]1+ 2M + 39  [M+2H]2+ M/2 + 1  [M+K-2H]1- M + 37 

[2M+2Na-H]1+ 2M + 45  [M+H+Na]2+ M/2 + 12  [2M-H]1- 2M - 1 

[M+H]1+ M + 1  [M+H+K]2+ M/2 + 20  [2M+Na-2H]1- 2M + 21 

[M+Li]1+ M + 7  [M+2Na]2+ M/2 + 23  [2M+Cl]1- 2M + 35 

[2M+H+Na]1+ M + 20     [2M+K-2H]1- 2M + 37 

        
Table 5.1   Expected nominal mass ion adducts commonly found in FIE-MS data.  The list of 

nominal mass ions is restricted to adducts which are likely to form in an electrospray source. 

The conditions described in this protocol.  Mass ions regularly detected in FIE-MS analyses 

are highlighted in blue.  Their occurrence and abundance is however matrix dependent and 

metabolite specific.   

 

Commonly available LC-MS instruments suitable for FIE-MS vary with regards to detection 

technique, ion source design, mass range, sensitivity and mass resolution, but most, if not all, 

can produce a spectrum in which ion signals within the mass range m/z 65 to m/z 1000 can be 

designated into nominal mass signals differing by 1 m/z.   Ion trap mass spectrometers are 

particularly useful for FIE-MS as they allow the isolation of a large number of ions for 

fingerprint generation which in instruments with tandem detectors are also available for 

secondary ionisations when studies require further structural information.  The basic process 

used to generate a FIE-MS fingerprint involves the injection of extract into a stream of solvent 

entering the ionisation chamber at a steady rate.  A typical infusion profile may last only 1 

min rising sharply to the peak‟s apex and then tailing off more gradually as analytes slightly 

delayed by weak interactions and diffusion processes within the solvent lines enter the ion 

source (Fig. 5.1).   
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Figure 5.1   Ideal Flow-Infusion chromatogram of Brachypodium leaf extract 

acquired on the LTQ mass spectrometer.  

 

  

A delay of a couple of minutes before the next sample is infused into the solvent stream can 

avoid any „carry over „ between consecutive injections and provides a region of signal „noise‟ 

that can be used for background subtraction (Fig. 5.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2   Applying background subtraction for signal processing.  
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The scan range comprising approximately the central three quarters of the major infusion peak 

is used to generate mass fingerprint data by averaging all mass-to-charge (m/z) intensities 

(Fig. 5.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3  Averaged mass spectra of a typical infusion peak from potato 

tubers 

 

 

Nominal mass spectra generated by FIE methods thus contain approximately 1000 m/z 

variables where ideally each nominal m/z signal represents a metabolite that is separated from 

different metabolites by virtue of their molecular mass (Fig. 5.4).  Clearly, it is possible for 

several metabolites, associated adducts or other ionisation products, to have very similar or 

the same nominal molecular weight and thus in FIE MS fingerprints each m/z „bin‟ integrates 

signals from all metabolite ions which share the same nominal mass 
33

.   
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Figure 5.4     Example plot of a nominal-mass raw-intensity matrix after signal 

processing 

 

MS fingerprints each m/z „bin‟ integrates signals from all metabolite ions which share the 

same nominal mass 
33

.   

 

 

5.3.3 Constraints in the use of nominal mass FIE-MS 

Global compositional assessments of biological samples is made challenging by the chemical 

complexitity of the metabolome, coupled with huge differences between the concentration 

ranges of individual metabolites and large natural biological varaibility. Consequently, no 

single analytical approach can truly offer comprehensive coverage of metabolite diversity and   

provide strictly quantitative measurements.  Generally, metabolite fingerprinting using FIE-

MS can provide a useful „first pass‟ method for compositional analysis as part of an overall 

metabolomics investigation (Fig. 5.5) before embarking on a deeper analysis using 

hyphenated mass spectrometry techniques (GC-MS and LC-MS) targeted to specific 

metabolite classes 
11, 14, 15

.    More specifically, FIE-MS is suitable in experiments demanding 

high sample  
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Figure 5.5  Nominal mass, non-targeted  FIE-MS fingerprinting in the context of a 

metabolomics experiment  

 

 

throughput, as with no chromatography requirements, little sample pre-treatment, simple data 

pre-processing  and instrument cycle times of less than 5 minutes it is feasible to construct 

FIE-MS experiments capable of analysing more than 1000 samples per week without 

significant problems in data quality.  Additionally, FIE-MS fingerprinting can be applied in a 

wide range of circumstances where metabolite profiling might prove unproductive as prior 

detailed understanding of sample chemistry is unnecessary.   

 

The protocol developed in the G02 project and validated in the G03 project focuses on the 

generation of low mass resolution spectra in which m/z signals are binned to nominal mass 

and concentration measurements are presented only as relative intensity ratios.  As such the 

procedure can be carried out on a wide range of instruments, including common, relatively 

cheap ion trap machines. Related variants of this protocol can be found in the literature, 

including methods that demand higher mass resolution instruments where the aim is to 

generate semi-quantitative data 
22, 27-29

.  Such methods using high mass accuracy differ from 

the present qualitative procedure as the m/z signals necessarily are veiwed as discrete 
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variables linked to a specific metabolite.  Particularly in DIMS experiments producing semi-

quantitative data then factors such as ion supression 
34-37

, need to be taken into account and 

thus a more detailed understanding of expected sample chemistry is important 
27-29.

 

 

5.3.4 Applications of metabolite fingerprinting by FIE-MS 

FIE-MS has been used to study a range of biological systems focusing to date mainly on polar 

extracts from microbes and plants 
4, 8, 9, 22, 25-29, 38-44

. Some success also has been reported in 

the use of FIE-MS for more targeted metabolite fingerprinting using mammalian biofluids 

(blood and urine) to detect individuals with metabolic disorders 
45

 or investigate metabolic 

differences between animal breeds (e.g. discriminating dog breeds by urine fingerprinting; 

MB, unpublished results).  Investigations with microbes have included the development of 

chemical taxonomy approaches to investigate the genetic diversity of fungal contaminants in 

food 
28

 or identity of bacterial species in mixed populations 
38

.  Similarly, FIE-MS has found 

utility also in the optimisation of fermentation processes producing valuable secondary 

metabolites using either plant or bacterial cells 
40, 41

. Studies investigating quantitative traits in 

introgression lines between two species of tomato 
43

 or classification of siblings in 

Arabidopsis crosses 
26

 have demonstrated the power of metabolite fingerprinting for large 

scale analysis of  breeding populations.  Further studies have used FIE-MS to confirm that 

only the intended changes in metabolism had occurred in plants genetically engineered to 

exhibit novel enzyme activity 
4, 27

.  In functional genomics studies on specific plant and 

microbial mutants FIE-MS has been used to investigate the phenotypic effects of gene 

disruption or unscheduled expression 
9, 25

.  Similarly, metabolite fingerprinting using mass 

spectrometry provides a first pass tool to investigate whether there are fundamental changes in 

metabolism associated with plant responses to either environmental or development signals or 

biotic stress 
27, 42, 44

. 

 

In FIE-MS data any potentially „explanatory‟  (statistically significant and biologically 

relevant in context) m/z signals 
46

 highlighted by data mining can be linked directly to 

candidate metabolites by atomic mass, providing further advantages over other metabolite 

fingerprinting methods such as NMR or FT-IR 
4, 9, 27-29

.   The high throughput nature and 

reproducibility characteristics of FIE-MS should also make the technique ideal for large scale 

classification tasks involved in screening crude samples derived from human population 

studies relating to nutritional/health status and disease pre-disposition in the emerging era of 
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personalised medicine or nutrition 
47

. Similar utility is expected in typical screens used in the 

pharmaceutical industry to evaluate drug mode of action and in the food industry to make 

comparative assessment of raw food material provenance and quality 
48

. 

 

5.3.5 Considerations for overall experimental design  

Multidisciplinary collaborations 

To utilise FIE-MS fingerprinting to its full potential demands the efficient integration of 

analytical chemistry expertise with biologists, biostatisticians and chemometricians to achieve 

the workflow outlined in Figure 5.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6   Work flow in FIE-MS high-throughput analysis 

 

 

 

As outlined in the overview section the basic methodology was develop in the G02 project 

and here is validated using largely FIE-MS fingerprinting in the context of data generated for 
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49
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with statisticians is also presented which  aims to confirm that fingerprints are suitable for 

subsequent in-depth data analysis. The data analysis approaches and software resources 

designed specifically for the investigation of FIE-MS data quality and in-depth data mining 

are described in detail in Section 8 and in a Nature Protocol by Enot et al. 
50

.   

Sample characteristics and sampling 

FIE-MS has been shown capable of using major metabolome characteristics to classify 

individual species 
22

.  It is equally powerful enough to investigate, within a single species, 

both subtle multivariate differences between distinct stable genotypes (ecotypes, cultivars, 

varieties, introgression lines) as well as determining specific metabolite signals that are 

explanatory of individual genetic modifications 
4, 9

.  Thus, it is extremely important that 

samples are comparable to one another if FIE-MS fingerprinting is to be used to address 

biological questions in an adequate way.  Success in experimental design will depend on prior 

understanding of the sources of potential variability in any biological system allowing 

appropriate and pragmatic (i.e. realistic and cost effective) steps to be taken to minimise such 

variance.  Care must be taken to sample tissue explants or biofluids from organisms at the 

same developmental phase and exposed to the same environment wherever possible.  In all 

cases adequate meta-data must be recorded to account for any unforeseen confounding factors 

relating to individual samples 
51

. For example plants are generally grown in specific dark-light 

cycles and will exhibit entrained diurnal changes in metabolism and so must be sampled at the 

same time of day.   Similarly, samples derived from animals should take into consideration, 

hormonal, feeding/drinking or behavioural patterns, particularly when homeostatic bio-fluids 

such as blood and urines are sampled.  From an instrument perspective samples should be 

analysed using identical protocols and within a reasonably short, previously defined, time 

window to avoid the effects of „instrument drift‟.  A detailed description of minimal 

information required for a metabolomics experiment is currently undergoing standardisation 

52
. As an example Appendix 5.1 provides a summary of appropriate meta-data fields for a 

typical sample in the plant-pathogen interaction system used to illustrate the principle of FIE-

MS metabolite fingerprinting.   

 

Apart from controlling biological variability in samples and instrument variability it is 

important to stress the need to ensure that sample matrix effects on MS signal generation are 

minimised. One factor commonly associated with electrospray ionisation is the phenomenon 

of ion suppression 
34-37

. The main cause of ion suppression is a change in the spray droplet 
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solution properties caused by the presence of relatively abundant non-volatile or less volatile 

solute
28, 37

 In the present protocol no attempts are made to compensate for these affects as it is 

assumed that FIE-MS fingerprinting is used most effectively for the  „first pass‟ quantitative 

comparison of similar sample matrices as a prelude to subsequently more informed analysis 

by targeted metabolite analysis using methods incorporating chromatographic techniques 

(Fig. 5.6).  Under such circumstances by adhering rigorously to experimental protocols to 

maintain reproducibility it is assumed that ion suppression would affect all samples equally 

making any fingerprint comparisons meaningful.  The core methodology focuses on a 

description of metabolite fingerprinting applied to plant leaf extracts as a typical sample.   

 

Statistical experimental design 

It is very important that the experimental statistical design is adequate for the problem under 

study.  The high dimensionality of metabolome fingerprints (often approaching 2000 

variables) dictates that powerful multivariate data analysis techniques are required for 

adequate modelling 
9, 16, 46, 50, 53

.  Each data analysis technique  requires specific numbers of 

sample replicates per biological class to develop adequate models with high classification 

accuracy that home in on variables statistically significant to the biological problem under 

study rather than „noise‟ in the data 
9, 16, 46, 50, 53

.  Supervised multivariate methods require 

sufficient samples to provide both training and test sets and importantly the „generalisability‟ 

of any metabolome model can only be checked if completely independent experimental 

sample sets are available for validation purposes. Under conditions, particularly of sample 

paucity it is possible to develop „overtrained‟ or uninterpretable metabolome models that 

unknowingly are confounded by class-specific regular variance (“noise”) within the data.  As 

a general „rule of thumb‟ we suggest that a minimum of 18 independent biological replicates 

are normally sufficient for most studies (i.e. 18 leaves each from different plants), but 

wherever practical this should be increased depending on the degree of variance within 

sample classes and magnitude of difference expected between the biological classes under 

investigation.  

Sample extraction  

Basic considerations for sampling, metabolite extraction and extract storage in metabolomics 

experiments have been described previously in a Nature Protocol 
7
 with reference to higher 

plants.  The extraction solvent used will not only dictate the range of metabolite classes 

eventually contributing to the FIE-MS fingerprint but will also effect ionisation behaviour.  
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The present extraction protocol was developed specifically to provide as comprehensive 

coverage of the metabolome as possible when applied to a wide range of sample classes and 

was validated using GC-tof-MS non-targeted profiling 
7
.  As individual metabolites are not 

measured the data is not quantitative. If there is a need to target specific chemical classes (e.g. 

non-polar lipids) or a requirement to generate quantitative data then the extraction 

methodology needs to be modified to use suitable solvents and internal standards, which is 

outside of the scope of the present high-throughput, non-targeted, qualitative fingerprinting 

procedure.   

 

Although in principle any tissue extract (plant material like leaves or phloem exudates, single 

cells like yeast or fungi, bio-fluids like urine or blood) can be submitted to FIE-MS analysis, 

preference is given to extraction procedures which result in a predominantly aqueous 

methanol matrix to aid ionisation of metabolites in the ion source.  In practise, most biological 

samples can be extracted routinely using a modified Bligh and Dyer solvent mix 
54

 consisting 

of pre-chilled (-20°C) chloroform:methanol:water at a ratio of  1:2.5:1.  In the case of 

ostensibly aqueous samples (e.g. cells in culture media, fresh potato tubers) one part of water 

in the solvent mix can be omitted and to one part of the sample a chloroform:methanol mix in 

the ratio  1:2.5 is added.  Therefore, a crude single phase extract is still obtained for 

subsequent FIE-MS analysis.  The extraction protocols developed for potato tubers and 

Arabidopsis leaves in the preceding GO2 project protocol has been validated in the present 

GO3 project by optimized extraction of freshly harvested Brachypodium leaf material as a 

typical matrix 
49

.   

LC-MS instrument specification, sample run batches and quality control 

For reasons of clarity the described protocol for FIE-MS fingerprinting in Section 5.4 focuses 

on the use of a single instrument, the LTQ linear ion trap (Thermo Finnigan), mainly because 

of its versatility and ability to acquire data for both ionization modes in a single analysis in a 

mass range from m/z 15 to m/z 2000.  If required, multiple MS/MS experiments are possible 

to follow up secondary ionisations of either the most abundant or predefined mass ions.  

Additionally, tuning and mass calibration for high-throughput FIE-MS routine analyses has to 

be performed only three to four times a year.  This is of advantage if for example biological 

experiments involving dynamic changes in metabolome (e.g. time dependent host-pathogen 

interactions) have to be compared in replicate experimental batches several months apart 
49

.   
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During the G03 project we have shown that present procedure can be adapted for use with a 

wider range of LC-MS instruments which might possess various degrees of sensitivity and 

mass resolution.  For example, this protocol has also been applied to FIE-MS analysis on LCT 

and Q-Tof instruments (Micromass) 
48, 55

.  FIE-MS using high-resolution and accurate mass 

instruments equipped with time-of-flight detectors may need some attention regarding mass-

drifts in long analysis sequences with many samples as there is an apparent sensitivity of 

flight tubes to temperature fluctuations 
56

.  A „Lock-Spray Exact Mass Ionization Source‟ is 

highly recommended if the acquired accurate mass information is to potentially be used in 

further metabolite identification.  Alternatively, the most abundant mass ions can be used to 

initially align mass spectra to avoid potential binning errors 
21

.  Generally speaking, increases 

in mass resolution are concomitant with a proportional increase in data dimensionality, which 

in turn effects experimental design with regards to the numbers of replicates required to 

achieve statistical robustness 
50, 53

.  For the high throughput, first pass m/z fingerprinting 

procedure presently described we advocate integration of all signals to the nearest nominal 

mass to constrain data dimensionality 
22

.  This strategy also avoids any problems with false 

positive or false negative signals that can result from drifts in instrument mass accuracy over 

time. From a pragmatic perspective, non-targeted, nominal mass FIE-MS fingerprinting also 

has the advantage that any instrument in any laboratory should be able to replicate any 

measurements thus possibly providing extended scope for future data integration 
48, 55

.  To 

accomplish this objective the data analysis strategy is based on the measure of relative ratios 

of m/z-signals in each fingerprint generated from large numbers of samples in a single 

analytical batch.   

 

In high-throughput analyses there is a possibility of subtle levels of instrument baseline drift 

caused by „carryover‟ effects from preceding samples.  This effect adds to the overall variance 

in the total data, which demands appropriate numbers of replicates for mining robust data 

models.  Randomizing sample classes in the run sequence is mandatory to avoid bias due to 

the position of samples within the injection order and  should be practised generally at all 

levels within the protocol to minimize systematic errors.  Carryover effects are not fully 

compensated by auto-zeroing the detector at the beginning of an analytical run; because of the 

„plug‟ flow of a newly injected sample, where the infused sample volume replaces the actual 

mobile phase, some of the deposition inside the solvent lines will be carried forward to the 

end of a run.  Applying background subtraction has been proven advantageous for 

classification and data mining.  Within this context raw data signal acquisition and data pre-
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processing is therefore performed in four rudimentary steps: 1) binning to nominal mass thus 

decreasing data dimensionality and minimising mass accuracy effects; 2) background 

subtraction of individual sample-attributed ion intensity as a simple baseline correction; 3) 

log10-transformation reducing data-set variance; and 4) normalization of data-set to total ion 

count providing relative ratios of m/z-signal abundance.  These four steps are sufficient for the 

quality assessment of the FIE-MS analysis, process variability and the underlying experiment.  

Further in-depth data analysis only requires the background subtracted matrix (output of steps 

1 and 2 above).  Any decision to additionally use log10-transformation and normalisation is 

dependent on assessment of process variability; the robustness of classification models and 

overall accuracy will further dictate the workflow of statistical analyses 
50

.   

 

A quality control (QC) sample of known composition is not necessarily required in FIE-MS 

experiments. Instead, a „mastermix‟ (MM) sample composed of all the sample extracts to be 

analysed in a particular batch 
48

 (see REAGENT SETUP in Section 5.4) can be used to 

monitor instrument response throughout the analysis of a large batch of samples.  It is 

recommended to infuse at least four MM-samples at the beginning of a batch of samples to 

create a constant system background in acquired mass spectra of subsequent infusions.  This 

prevents the detection of outliers of early samples when investigating injection order effects. 

Specifically unsupervised data modelling techniques such as Principal Components Analysis 

(PCA) are generally useful to check on data quality in large experiments by visualising 

distinct sample outliers or irregular instrument drifts in PCA score plots 
50, 53, 57-59

.   

 



Page 165 of 370 

 

5.4 PROTOCOL DESCRIBING STANDARDISED PROCEDURE FOR FIE-
MS FINGERPRINTING 

 

5.4.1 REAGENTS 

 Water: Milli-Q quality (≤ 18 MΩ*cm) 

 Chloroform: GLC – Pesticide residue grade (Fisher C/4963/15) 

 Methanol for extraction: trace analysis grade (Fisher M/4020/17) 

 Methanol for mobile phase: HPLC grade (Fisher M/4056/PB17)  

 Acetonitrile: Far UV, HPLC gradient grade (Fisher A/0627/17)  

 Acetone: Analytical reagent grade (Fisher A/0600/17)) 

 Liquid nitrogen (BOC) 

 Argon 5.0 (BOC)  

 Helium 5.0 (BOC)  

5.4.2 EQUIPMENT 

 LTQ linear ion-trap detector (Thermo Finnigan, 

http://www.thermo.com/com/cda/product/detail/1,,22534,00.html ) 

 Surveyor (Thermo Finnigan) liquid chromatography (LC) system consisting of 

Autosampler and MS-pump 

 HPLC-glass vials, 2 mL crimp top (2-CV, Chromacol, http://www.chromacol.com/ ) 

 Micro-vial insert, 200 µL (Chromacol, 02-NV) 

 Aluminium crimp cap, rubber/PTFE seal (11-AC7, Chromacol) 

 Cap crimper and decrimper 

 Dewar (thermally insulated flask) for liquid nitrogen, 2 x 1L (Dilvac) 

 Personal protective equipment (PPE) for lab work 

 Appropriate PPE for handling liquid nitrogen 

 Long forceps (to retrieve sample tubes from liquid nitrogen) 

 Single hole puncher (5 mm ID, Fisher, http://www.fisher.co.uk/ ) 

 Pair of scissors, single hole puncher , cork borer (harvesting) 

 1000 µL pipette and tips (Gilson, 

http://www.gilson.com/Products/product.asp?pID=67 ) 

 100 µL pipette and pipette tips (e.g. Gilson)  

 Balance (e.g. Sartorius BP 211 D) 

http://www.thermo.com/com/cda/product/detail/1,,22534,00.html
http://www.chromacol.com/
http://www.fisher.co.uk/
http://www.gilson.com/Products/product.asp?pID=67
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 Glass measuring cylinders 500, 250, 100 mL  

 Screw-cap glass bottles between 50 mL and 2L (ensure solvent resistant e.g. Duran) 

 Eppendorf  ‟safe-lock‟ tubes 2mL (Eppendorf AG, 

http://www.eppendorf.com/int/index.php ) 

 Refrigerated centrifuge (Hettich, EBA 12R) 

 Orbital shaker (IKA Vibrax VXR) in cold room at 4 °C  

 Mixer mill, MM200  or MM301 (Retsch, http://www.retsch.com/44.0.html?&L=0 )  

 Teflon adaptor for 1.5–2.0 ml micro-vials (Retsch)  

 Stainless steel cone balls (Retsch) 

 Stainless steel balls of ball bearing quality (5 mm diameter) and acetone washed  

 SpeedVac; Centrifugal vacuum concentrator Univapo 150H with Unijet II 

Refrigerated Aspirator (UniEquip, http://www.uniequip.com )  

 Xcalibur mass spectrometry data management software (Thermo Finnigan) 

 Matlab (The MathWorks, Inc., http://www.mathworks.com/ )  

 R: A Language and Environment for Statistical Computing (R Foundation for 

Statistical Computing, http://www.R-project.org ) 

 Computer: PC (Microsoft Windows 2000 or XP) or Mac (e.g. G5) 

5.4.3 REAGENT SETUP 

Bligh and Dyer extraction mix  

Ensure enough extraction mix is prepared for all samples of the experiment to minimize 

variability.  Use a pre-cleaned (thoroughly rinsed with water, methanol and chloroform) screw 

cap glass bottle of appropriate size.  Add solvents in the order water-methanol-chloroform in 

the ratio 1:2.5:1.  Close bottle, shake to mix thoroughly and store at -20°C.  For sample 

extraction  aliquot extraction mix into 50 ml screw cap glass bottle for convenience and avoid 

cross-contamination of extraction mix with samples during pipetting.   

Master-Mix samples (MM)  

MM is ideally a mix of aliquots of extracts from every sample in the experiment that can be 

used to monitor instrument performance throughout a long run series.  For practical purposes 

it has been proven advantageous to first prepare master mix samples for each biological class 

separately.  For each sample class pipette a minimum of 50 µl solvent extract of each 

biological replicate into a fresh 2 mL Eppendorf tube and mix thoroughly.  In a second step 

http://www.eppendorf.com/int/index.php
http://www.retsch.com/44.0.html?&L=0
http://www.uniequip.com/
http://www.mathworks.com/
http://www.r-project.org/
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pipette a minimum of 100 µl of the single class master mixes into a fresh 2 mL Eppendorf 

tube to obtain the MM for the experiment.  Mix thoroughly and store all master mix samples 

at -80 °C.   

Mobile phase for HPLC  

The mobile phase used in FIE-MS analysis of soft leaf tissue sample extracts (Brachypodium, 

Arabidopsis, Tobacco) is methanol:water (50:50, v:v).    Always use freshly prepared and 

sufficient solvent mix for an analytical batch to minimize sources of variability due to mobile 

phase changes.  In practice, different methanol-water ratios have been used as a mobile phase 

for FIE-MS analysis ranging from 30 % to 70% methanol.  Because of the „plug‟ flow in FIE-

MS experiments the mobile phase does not directly affect the ionisation of sample 

metabolites, but does help to prevent build-up of contamination in transfer lines, possible 

carry-over effects, the increase of background signals in large batches and, therefore, 

minimises sample related machine variability.  As a rule for any LC-MS system to be used, 

the run time, mobile phase composition and occasionally the flow rate (up to 100 µl/min for 

e.g. plasma, urine) should be adjusted to insure that signal intensities at the end of an infusion 

profile equal those intensities acquired at the beginning of a run.   

 

5.4.4 PROCEDURE 

The general assumption is that the majority of users reading the current protocol will have 

mass spectrometry experience and an experienced operator for their LC-MS system when 

applying FIE-MS analysis.  It is not possible to provide detailed information on essential 

maintenance and calibration of all mass spectrometry instruments, but the following 

information emphasises important equipment quality checks, which should be undertaken 

prior to and during any batch of FIE-MS analyses (see also Quality Control below).  

Recommended analytical settings for an LTQ instrument (Thermo-Finnigan) are part of the 

protocol (PROCEDURE, steps 14 to 16.  

Before starting a run sequence ensure analytical instrument is fully operational and 

specifically that:  (A) the system has been appropriately calibrated and tuned (follow vendor‟s 

specifications);  (B) Syringe, injection line and injector are flushed; (C) Tip of spray capillary 

is in good condition and properly adjusted; (D) Ion source is clean; (E) Solvent reservoirs 
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contain fresh solvent sufficient for the batch of samples, and (F) A stable spray and a constant 

mass spectrum is achieved for each ionisation mode and mass range using the mobile phase 

only. 

 

As this protocol for high throughput analysis of plant leaf extracts is based on the injection of 

samples in the extraction mix we have to expect precipitation of sample constituents within 

the mobile phase transfer lines.  Tubing contaminated with plant leaf extracts can be easily 

cleaned with 100 % acetonitrile after a batch of samples.  On a day to day basis however 

preceding samples with different matrix characteristics might have contaminated the 

analytical instrument, which requires more drastic manual cleaning.  To remove precipitation 

in solvent lines apply a sequence of solvents with different polarity and acidity (see also 

vendor‟s recommendation.  Depending on the mobile phase delivery system, presence of 

restrictors, tubing, ion source geometry and detector characteristics of different LCMS-

systems sample volumes and concentrations have to be adjusted and for higher flow rates a 

flow splitter has to be considered to maintain a mobile phase flow rate of around 50 µl into 

the ion source.  Check vendor‟s recommendations and optimize sample delivery system in test 

runs.  

FIE-MS analysis optimisation and quality control (QC)  

It is generally advisable to undertake test analyses/pilot experiments to optimise extraction, 

sample concentration, injection volumes, flow rates and mobile phases when working with 

new sample matrices or different instruments.  The examination of a dilution series of extracts 

or master mixes of samples under investigation is of particular importance to identify 

potential ion suppression effects, which might be caused by high salt concentrations or highly 

abundant metabolites.  In such instances the dilution of samples could increase the 

information content of mass spectra by preventing detector overload, or by increasing 

injection time in ion traps.  Related instrument characteristics (e.g. dead time or automatic 

gain control; check vendor‟s specifications) generally dictate the maximum number of ions or 

ion intensities to be detected.  General guidelines to assessing fingerprint quality include 

empirical measures such as total ion count of infusion profiles and the number and intensity of 

mass ions.  It is good practice in high throughput FIE-MS analyses to routinely check the 

performance of the analytical system and the quality of acquired data visually.  Raw data of 

solvent extracts generally have a file size of 5 to 7 Mega Bytes (MB) in centroid mode and 

vary within an experiment of 200 samples by 0.5 MB.  Depending on the matrix the total ion 
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count (TIC) at the apex of an infusion peak is commonly between 1*10
6
 and 1*10

7
.  A rapid 

drop in the file size of raw data files by more than 1 MB as well as a distorted or missing 

infusion peak in the chromatogram indicate instrument-related problems, which are most 

likely caused by a blocked needle or injector transfer lines, a blocked ion transfer line; or 

contaminated or not appropriately adjusted spray needle in the ESI source.    

Sampling and extraction 

1 Label two sets of 2ml Eppendorf „safe-lock‟ tubes uniquely at the side of the tube; one 

set for harvest/extraction and the second set for storage. [Troubleshooting: Milling 

[steps 1 and 6]  

2 For harvest/extraction (set 1 tubes) add a stainless steel ball to each Eppendorf tube 

and close caps loosely.  New stainless steel balls are protected by an oil film and 

should be thoroughly cleaned using acetone before use (wash at least three times and 

air-dry in fume hood). 

3 Quickly sample 1 x 40 mm leaf segment per plant (in this case the model grass species 

Brachypodium distachyon) into a 2-ml Eppendorf tube containing a stainless steel ball 

49
.    [Troubleshooting: Harvest Location [step 3]]. Close tube tightly and rapidly flash 

freeze sample-containing tube in liquid nitrogen.  For Arabidopsis leaves, use 4 x 5 

mm diameter leaf cores 
7
. For tobacco leaves, use 2 x 8 mm diameter leaf lamina 

cores, avoiding major veins and midrib.  For other sample types see Box 5.1. 

CAUTION  Work with liquid nitrogen only in well ventilated areas; use PPE 

4 Transport harvested material to lab in a low-temperature liquid within a suitable 

Dewar.  

5 Insert sample tubes into pre-cooled (low-temperature liquid or freezer) Mixer-mill 

teflon adaptors suitable for 1.5–2.0 ml micro-vials. Homogenize in Mixer-mill for 30 

sec at 30 Hz. 

6 Quickly open tube and add 1 ml of extraction mix (chloroform:methanol:water, 

1:2.5:1, pre-cooled at -20 °C; see 5.4.3 REAGENT SETUP) using a calibrated 

pipette and close tube tightly.    For LTQ-FIE-MS fingerprinting no internal standard 

is required; however, internal standards can now be added if the same sample is also 

required for other analytical techniques (e.g. GC-MS analysis 
7
).   [Troubleshooting: 

Milling]  
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CAUTION  Chloroform may be a potential carcinogen; use PPE. 

CRITICAL STEPS 4 TO 6 Avoid thawing of samples 

 

Box 5.1 Other sample types 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 Vortex for 10 s and place on crushed ice for the next step [Troubleshooting Phase 

Separation] 

8 Shake tubes by hand to ensure that all sample is washed into the extraction mix if any 

milled plant material has deposited onto the inside of the cap.  

During extraction keep samples on ice and use appropriately pre-chilled solvents. 

Potato tuber   

 Prepare „Pot-Extraction Mix‟: CHCl3/MeOH/H2O (2:5:1) and store at -20
°
C;  

 Start with Step 1;  

 In Step 2 use stainless steel cone balls instead of stainless steel balls; 

 In Step 3 use one 10 mm diameter x 3 mm thickness core; take sample of inner medulla 

at least 1 cm below skin or take a core with outer skin; 

 In Step 5 defrost potato tuber disk on ice and add 150 µl pre-chilled „Pot-Extraction Mix‟ 

prior to milling; after milling a slurry should be obtained;  

 In Step 6 add only 850 µl „Pot-Extraction Mix‟; check for phase separation because of 

high water and sugar content in potatoes; 

Yeast (chemostat)  

 Start with Step 1 and ignore Steps 2 to 7; 

 Use 500 µl culture medium + 500 µl MeOH + 500µl glass beads; 

 3 freeze/thaw/vortex cycles; (beat-beating 30 sec); 

 Proceed with Step 8; 

Urine  

 Start with Step 1 and ignore Steps 2 to 10; 

 Use 50μL sample + 100μL H2O + 350μL MeOH ; 

 Vortex and centrifuge for 6 min at 14,000g; 

 Proceed with Step 11; 

Plasma/Serum  

 Prepare „P/S-Extraction Mix‟: CHCl3/MeOH/H2O (2:8:1) and store Duran bottle labels as 

„P/S-Extraction Mix‟ at -20
°
C; 

 Start with Step 1 and ignore Steps 2 to 7; 

 For extraction add a micro spoon full of glass beads to one set of Eppendorf tubes; 

 Add 100 µl serum/plasma; 

 Add 820 µl ‟P/S-Extraction Mix‟ 

 Insert sample tubes into pre-cooled (low-temperature liquid) PTFE adaptors. Homogenize 

in mixer-mill for 30 sec at 30 Hz 

 Proceed with Step 8 
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9 Agitate for 15 min in an orbital shaker (950 rpm) at 4 °C in the dark.  

10 Centrifuge for 3 min at 14,000g and 4 °C.  

11 Use 1 mL Gilson pipette to transfer supernatant to second set of labelled tubes, and 

store in a -80 °C freezer. 

PAUSE POINT  Samples can be stored at -80 °C for up to 3 months.   For short periods 

(up to a month) sample degradation by air is negligible as there is sufficient solvent vapour in 

the tube.  It is however advisable to store samples for longer periods under inert gas to prevent 

extracts from oxidization and degradation by reactants in atmospheric air. Gently replace 

atmospheric air in tubes with inert gas.  Argon gas is preferred because it is heavier than other 

air constituents and will isolate the liquid from atmospheric oxygen. Use nitrogen gas if argon 

is not at hand.  If you as a user are concerned about the stability of metabolites (e.g. when 

samples have a high content of fatty acids) you are advised to store extracts in solvents free of 

dissolved oxygen and/or add antioxidants (e.g. butylated hydroytoluene, BHT). 

12 Retrieve stainless steel ball and discard precipitate-containing tubes appropriately. 

CAUTION Halogenic reagents and solutions should be disposed with halogenic waste. 

 

LTQ instrument set up and sample analysis  

13 Before starting the analytical run sequence ensure the LTQ instrument is fully 

operational and the sample concentrations are optimised for FIE-MS analysis.   

14 Set ion source parameters and instrumental conditions as follows: sheath gas 

(nitrogen) pressure at 40 arbitrary units; Auxiliary gas (nitrogen) pressure at 5 

arbitrary units; helium as collision gas (incoming pressure: 40 psi); 4.5 kV (ESI+) and 

4.0 kV (ESI-) spray voltage and +15 V (ESI+) and -13 V (ESI-) capillary voltage; 

temperature of the heated transfer capillary is set to 380 °C. 

15 Set data acquisition method to acquire data in positive and negative ionisation mode as 

follows:  5 min MS run time (duration);  1 segment;  4 scan events with scan rate 

„normal‟, scan type „full‟ and data type centroid;  scan event 1: positive polarity, 

normal mass range from m/z 50 to 2000;  scan event 2: positive polarity, low mass 

range from m/z 15 to 200;  scan event 3: negative polarity, normal mass range from 

m/z 50 to 2000;  scan event 4: negative polarity, low mass range from m/z 15 to 200.  

[Troubleshooting Acquisition Time and MS Detector] 
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16 Set autosampler injection and pump parameters as follows:  autosampler tray 

temperature to 15 
°
C and sample injection mode to „partial loop‟.  Set mobile phase 

flow to 60 µl*min
-1

 of premixed methanol:water (50:50).     

17 For FIE-MS analysis transfer 60 µl of supernatant to HPLC crimp cap glass vials 

containing a 200 µl micro glass insert.   

18 Load HPLC vials, including biological extracts, mastermix (MM) samples and 

extraction solvent blanks, into autosampler in a randomised run order and edit 

sequence in Xcalibur (Thermo-Finnigan) files describing loading order.     Set sample 

injection volume to 20 µl. [Troubleshooting Sample Batch [step 18]] 

19 Start FIE-MS analysis run (see EQUIPMENT SETUP:  FIE-MS analysis optimisation 

and quality control (QC)).  

 

Signal-processing  

 

All software resources derived from the G03 project are maintained on an Aberystwyth 

University web site describing the FIEmspro data pre-processing and data mining package.  

This package has resulted from efforts to convert all software code used for data mining into a 

common platform language „R‟  and was developed jointly with David Enot  on the BBSRC 

MetRO  project and has been published in a Nature Protocol by Enot et al., 2008 
50

 .    It is 

assumed that all individuals using FIEmspro will have some training in command line 

programming and as part of the GO3 project the whole package was tested independently by a 

seconded computer scientist Dr Chuan Li.  The final format of the data pre-processing and 

data mining package and instruction manual was validated  and refine during  interactions 

with biologists/analytical chemists with no experience of computer programming. 

 

The basic FIEmspro package contains the following resources all in an „R‟ format: 

 original code in the FIEmspro package 

 tutorials of how to use FIEmspro 

 an example data set 

 an example work flow covering data extraction, pre-processing, quality checking and 

data mining 
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An overview of the development of the FIEmspro package and how to use it are presented in 

Sections 8 and 9 of the GO3 report.  In the current section reference is made only to scripts 

used for data extraction from instruments.  A range of examples of potential QA problems 

with FIE-MS data sets are described as a series of anticipated results which explain the 

sources of the problems and give advice on how to correct them. The next stage of the 

generating of FIE-MS fingerprinting data is to extract the raw data from the instrument and 

develop a matrix of  binned mass spectra as shown previously in Figure 5.4.    

 

20 Export data by converting raw data files to ANDI NetCDF  files using XConvert 

(Thermo Finnigan ).   

21 Download all software required for raw data binning as outlined in Box 5.2. Use R-

package „FIEmspro‟ 
50

 and the script provided in Box 5.3 to generate a matrix of 

binned mass spectra (see Fig. 5.4).   

22 Identify in „scan event 1‟ (positive polarity, normal mass range from m/z 50 to 2000) 

of a representative infusion profile (see Fig. 5.1) scans „x1, x2‟ and „x3, x4‟ for sample 

and background, respectively (see illustration in Fig. 3).    For further details see R-

package FIEmspro manual 
50

 and ANTICIPATED RESULTS.   
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Box 5.2 Software required for raw data binning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23 Calculate scan range values „y1‟ to „y4‟ for vector „scrng’ [see R-package FIEmspro 

manual 
50

 ] required for function „fiems_ltq_main‟ as follows:  subtract '1' (the Scan 

Event) and then divide by '4' (total of 4 scan events).  Therefore, the scan range values 

for the sample are y1=(x1-1)/4 (begin scan sample) and y2=(x2-1)/4 (end scan 

sample), and for the background y3=(x3-1)/4 (begin scan background) and y4=(x4-

1)/4 (end scan background),  with equal scan differences for sample and background  

y2-y1 = y4-y3.   

 

 R: download and install the latest release at http://cran.r-project.org/   

 R-Packages: follow the link „Software‟/„Packages‟ at http://cran.r-project.org/  

download by clicking the appropriate „Available Bundles and Packages‟.  Required are:  

Package e1071;  Package randomForest;  Package MASS;  Package ncdf;  Package 

impute;  Package KernSmooth.   

 At (http://www.aber.ac.uk/... )  download R-Package FIEmspro  and example NETCDF  

files for test purposes. 

 Download and install an editor for Windows (e.g. Tinn-R, 

http://www.sciviews.org/Tinn-R/  or MacOS X (e.g. SubEthaEdit 2.2, 

http://www.codingmonkeys.de/subethaedit/).  

 Use a spread-sheet program (e.g. MS Excel) to generate the comma separated values 

file „runinfo.csv‟ as provided for test purposes for LTQ data in Box 7 or for LCT/Q-

Tof data in Box 8  

 After successful installation of the R-program, required R-packages and an appropriate 

editor use the scripts provided in Box 7 and Box 8 to check the functionality of 

functions fiems_lct_main  and function  fiems_lct_main, respectively.   
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Box 5.3 Example for processing NetCDF files of ‘LTQ’ FIE-MS metabolite 
fingerprint data using FIE-MSpro 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24 Define further input arguments for function „fiems_ltq_main‟ [see R-package 

FIEmspro manual 
50

].  Argument „my_path‟ is the location of the folder where results 

are to be saved and where to find the file is specified in the argument „runinfo‟.  

Argument „runinfo‟ is the name of a CSV-file (e.g. runinfo.csv) created in a spreadsheet 

editor (e.g. MS-Excel) containing run and sample information (list of factors) of the 

1. Factor list „runinfo.csv‟ for LTQ-binning of NetCDF files 

Example factor list to test functionality of function fiems_ltq_main in R.  A comprehensive list is 

imbedded in the list data(abr1) of R-package FIEmspro.  Copy content of table into a e.g. 

spreadsheet editor and save as comma separated values file.  Change content of column 

„pathcdf‟ to the path of the folder containing LTQ NetCDF files. 

 

injorder pathcdf filecdf remark name rep class 

1 C:/Xcalibur/ANDI-LTQ/050509-Abr1 01.cdf ok 12_2 2 2 

2 C:/Xcalibur/ANDI-LTQ/050509-Abr1 02.cdf ok 13_3 3 3 

3 C:/Xcalibur/ANDI-LTQ/050509-Abr1 03.cdf ok 15_4 5 4 

 

2. Script for LTQ-binning of NetCDF files 

For a full description of arguments and functionality of function fiems_ltq_main see R-

Package FIEmspro manual. The functionality of function fiems_ltq_main is currently 

limited to the use of 4 scan events, where it is assumed that respectively two scan events differ 

only in the value for the ionisation mode.   

##  Workflow to process LTQ ANDI NetCDF files, which are  

##  generated by XConvert (Thermo-Finnigan), into a M x N matrix of 

##  'M' mass spectra and 'N' nominal mass-to-charge ratios using 

##  fiems_ltq_main(my_path,runinfo,y1,y2,y3,y4,limit) 

 

## START SCRIPT ================================================== 

 

library(FIEmspro) 

 

my_path <- "H:/050509-Abr1" 

runinfo <- "runinfo.csv" 

tmp <- fiems_ltq_main(my_path,runinfo,35,95,190,250,0.7) 

 

## END SCRIPT ==================================================== 

 

For a full description of arguments and functionality of function 

‘fiems_ltq_main’ see Package FIEmspro manual. 
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experiment including the path and the name of saved NetCDF files (Box 5.3).  As a 

good starting point set argument „limit‟ to „0.7‟.   

25 Save modified script (Box 5.3) as „LTQcdf2mat.r’ and run script in R.  The returned 

values are saved by default as LTQ-mean.RData in folder „my_path‟.  Additionally, 

single items are saved by default as TEXT files: posh.txt, posl.txt, negh.txt negl.txt, 

myparam.txt (containing „scrng‟ and „limit‟ for reference purposes 

 

First-pass data analysis to evaluate overall data quality   

26 Assess data quality by visual inspection.  Check size of raw data file: about 0.5 MB 

of the mean file size is expected.  A sudden drop or gentle decrease of the file size of 

samples by injection order by more than 1 MB, a missing or smaller than an accepted 

infusion peak (see Fig. 5.1) indicates instrument related problems (e.g. empty solvent 

reservoir; blockage in sample injection or solvent lines; blockage of ion source).     

27 Assess data quality by multivariate analysis as outlined in Box 5.4 by performing 

Principle Components Analysis (PCA) and additionally Principle Component Linear 

Discriminant Analysis (PC-LDA).  Examples of known problems and solutions are 

given in ANTICIPATED RESULTS and details on how to further assess data quality 

(e.g. function „ticstats’ in R-package FIEmspro) are provided in Section 8 and 9 of the 

present report and published in a Nature Protocol by Enot et al. 
50

. 

28 Make a decision to continue analysis based on previous step: Either (A) submit data 

set for further in-depth analysis including data mining, feature selection and model 

validation if evaluation of PCA and/or PC-LDA reveal that data set is of suitable 

quality, (B) repeat data pre-processing if binning errors are detected, (C) thoroughly 

maintain instrument and repeat instrumental analysis if machine variability is greater 

than the expected biological variability, or (D) repeat and/or redesign biological 

experiment if troubleshooting has failed to improve data quality sufficiently to 

produce robust models.  Bear in mind that steps 2 to 19 are potential sources of 

experimental variability adding to overall process variability.   

CRITICAL STEPS 27 AND 28   It is generally assumed that an individual with experience 

in multivariate data analysis will be involved in signal processing and assessment of data 

quality.  A Nature Protocol by Enot et al. 
50

 provides detailed protocols and suitable 

algorithms. 
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Box 5.4 Use of Principal Components Analysis and Linear Discriminant Analysis 
to preliminarily assess FIE-MS data quality 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) Perform Principal Component Analysis (PCA) to examine both consistency of samples 

from each class (time points) and reproducibility between different batches of infected 

plants.  

2) Check that all sample classes shows clear grouping when analysed individually by PCA 

and are reasonably well discriminated from others. 

3) Examine PCA scores plots to identify any potential sample outliers for removal in order 

to improve data quality (e.g. see Figure 5a). 

4) Use PCA loadings plots (e.g. see Figure 8) to identify possible binning errors and 

reprocess the data using adjusted binning limits (e.g. see Figure 9). 

5) Examine Linear Discriminant Analysis (PC-LDA) scores plots for any overlap between 

sample classes (e.g. Fig. 9b).  Good discrimination between classes could indicate 

potentially good prospects for data modelling even if biological variance is relatively 

high 
50

 .  

6) Examine confusion matrix for misclassification.  Columns of the matrix represent 

instances in a predicted class, while rows represent the instances in the actual class.  

Therefore, high values (the number of biological replicates per class) in the diagonal 

and low values (ideally zeros) in all other fields indicate low misclassification rates 

between actual and predicted classes.  

7) Calculate associated class separation metrics (e.g.  eigenvalues) and classification 

accuracy and make a decision whether to continue with the experimental material for 

further in depth studies. As a general rule eigenvalues of less than 2.0 in models 

comparing two sample classes indicate poor class discrimination. 
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5.4.5 TROUBLESHOOTING 

 

Milling [steps 1 and 6] 

As caps of sample tubes might crack if not properly fixed in the milling device sample 

information written on the cap could be lost.  If lids show signs of stress replace with a new 

one to avoid spillage of solvents during extraction. 

Harvest Location [step 3] 

Ideally, samples should be harvested in the growth environment to minimize disturbances and 

potential stress responses of the plants (other than excisions/puncturing) due to transport of 

material other locations. 

Phase Separation [step 7] 

At this step phase separation might occur. Possible reasons are: aged extraction mix, higher 

than expected tissue water content, too much leaf material resulting in too much additional 

cell-water, too much leaf material resulting in high metabolite and/or salt concentration.   

Use only freshly prepared extraction mix.  If phase separation is noticed in a relatively small 

number of samples add stepwise 50 µl methanol (up to four times) until a single phase has 

been formed.  In general, phase separation can be prevented by either increasing the methanol 

proportion or decreasing the water content in the extraction mix (preferred).  In contrast, 

phase separation can be forced by adding 100 to 200 µl water.  If it is necessary to extract a 

larger number of leaf explants (e.g. 4 in the case of Arabidopsis) then the volume of 

extraction mix needed should be determined in test extractions.  The extraction capacity of the 

solvent mix is limited by a conserved solvent-to-tissue ratio 
53

. 

MS Detector [step 15] 

Depending on individual LC-MS instrument detector characteristics sample sets may have to 

be analysed for positive and negative ionisation mode separately which might require regular 

tuning.  It is advisable to prepare two separate sets of samples as the effect of an already 

pierced septum after the first injection in combination with the dwell time in the autosampler 

might alter the composition of the samples.  Time-of-flight detectors could show an unwanted 

mass drift, which is however of no importance when binning m/z values to nominal masses.  

If it is anticipated to use high resolution/accurate mass data the inclusion of an internal 

standard, an external standard (quality control, QC-sample; mastermix, MM-sample) or a 
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lock-mass system may be considered.  A mass range from m/z 50 to 1200 is sufficient for 

detecting most metabolites.   

Acquisition Time [step 15] 

The acquisition time depends on parameters like length and diameter of tubing, flow rate and 

sample matrix composition.  Test runs should give information on when infusion profiles 

show a constant baseline to prevent carryover.  This can normally be achieved after between 1 

and 6 min.  However, a system set up resulting in peak widths of at least 30 sec are 

anticipated as a chromatographic effect can be observed in the sample peak, which helps to 

minimize ion suppression effects.   

Sample Batch [step 18] 

Depending on the characteristics of the analytical instrument up to 240 leaf samples can 

generally be analysed successfully in a single day.  It is however recommended to work in 

smaller batches of for example 4 batches of 5 biological replicates comprised of 12 classes 

where samples are injected in a different randomized order in each batch.  Batches can then be 

combined in a single run sequence sequentially.  In the case of technical problems, one has to 

repeat only the affected batches in the sequence.  Master-Mix samples run with each batch are 

of diagnostic value to investigate potential problems.   

 

 

 

 

 

 

 

 

5.5 ANTICIPATED RESULTS 

 

The major objective of the present protocol is to describe how to generate a non-targeted, 

FIE-MS metabolite fingerprint of complex biological samples that would be suitable for in-

depth data analysis. The procedure has been used to analyse many sample types and the 

specific biological samples we use to describe anticipated results relate to the study of plant-

pathogen interactions as described by Parker et al. 
49

.  The experiment contains a time series 

of leaf tissues sampled from Brachypodium leaves following infection with the fungal 
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pathogen Magnaporthe grisea. This biological system is expected to display moderate levels 

of biological variability at each time point associated with the efficiency of fungal spore 

germination and the level of synchrony of disease development between different infected 

leaves.  At the same time as the disease progresses there will be substantial changes in the 

metabolome of pathogen challenged leaves, thus providing biological sample classes with 

distinctly different metabolome characteristics.  These sample features represent a challenging 

biological system which will require a large number of replicate samples to be analysed for 

adequate data modelling 
9, 53

 and provide an excellent context to describe high throughput, 

non-targeted, metabolite fingerprinting. 

 

5.5.1 Signal processing 

In order to reduce data dimensionality m/z-values are binned to nominal mass in steps of 1 

atomic mass unit (1u) by summation of mass intensities of consecutive m/z values between 

e.g. u-0.3 and u+0.7 (binning limit = 0.7) of each nominal mass.  The value for the binning 

limit has to be defined by checking m/z-values in mass spectra of vendor‟s software and is 

generally set between 0.7 and 0.8 (see also: First-pass data analysis).  To generate a single 

mass spectrum for an FIE-MS analysis the averaged m/z intensities of the mass spectrum of 

the background between scans x3 and x4 (see Fig. 2) are subtracted from the averaged m/z 

intensities covering three quarters of the mass spectrum of the infused sample (scan range x1 

to x2).  Scan ranges for sample and background should be of equal length.  Mass spectra are 

then combined and aligned in an m x n-matrix in sample injection order with m rows of 

analyses and n columns of nominal m/z-values for each ionisation mode and mass range.  The 

values in this matrix can be plotted as shown previously in Fig. 4.  FIE-MS experiments on an 

LTQ instrument (Thermo-Finnigan) as described in this protocol results in four data matrices: 

positive low mass range [m/z 15-200], positive normal mass range [m/z 50-200], negative low 

mass range [m/z 15-200], and negative normal mass range [m/z 50-200]), which are analysed 

separately.  In low mass range the multipole RF voltage is lowered from 400 V (normal) to 

approximately 120 V to allow the detection of mass ions below m/z 110.   

 

5.5.2 First pass data analysis 

A detailed overview of concepts and procedures for sample classification and data pre-

processing using FIE-MS data is presented in Section 8 and 9 of the present report. The 

multivariate data analysis methods use sample clustering or sample discrimination approaches 
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to determine whether FIE-MS fingerprints derived from samples of the same class are 

reproducible (Box 5.4).  Such methods allow for the detection of sample outliers (caused by 

unexpected experimental variance) which when removed from the total data set improves its 

quality and increases the prospects of informative data mining.   Suitable software for raw 

data pre-processing and quality assessment are available as part of the R-package „FIEmspro‟ 

50
 on the Aberystwyth University, Institute of Biological Sciences  web site 

(http://users.aber.ac.uk/jhd ). 

 

Figures 5.6  to 5.10 and Tables 5.2 and 5.3 illustrate process related problems, which are 

commonly  encountered, using the FIE-MS negative ion low mass range (m/z 15 - m/z 200) of 

infected Brachypodium distachyon leaf material 
49

.  The raw intensity data matrix obtained 

after signal processing was first log10-transformed and then normalized to total ion count 

(TIC).  Outliers are obvious in PCA (Fig. 5.6a) but difficult to detect in PC-LDA (Fig. 5.6b).  

Here, samples 17 and 20 appear well separated from the rest of the samples in the PCA score 

plot indicating a potential problem with these two samples related to biological or overall 

process variability.  Two useful output metrics from Linear Discriminant Analysis (PC-LDA) 

are classification accuracies and Eigenvalues.  Classification accuracy is best visualised as a 

„confusion matrix‟ which displays the  

 

 

 

 

 

 

 

 

 

 

Figure 5.6  Use of PCA and PC-LDA for initial investigation of data quality 

 

 

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015
-0.01

0

0.01

0.02

0.03

0.04

0.05

PC1

Set A FIE-Neg (15-200)

P
C

2

Class-1
Class-2
Class-3
Class-4
Class-5
Class-6
Control

-5 -4 -3 -2 -1 0 1 2 3 4

x 10
-3

-5

-4

-3

-2

-1

0

1

2

3

4
x 10

-3

DF1

Set A FIE-Neg (15-200)

D
F

2

Class-1
Class-2
Class-3
Class-4
Class-5
Class-6
Control

a b

17

20

PC1 DF1

D
F

2

P
C

2



Page 182 of 370 

 

(a) Classification with initial data  (b) Classification with data after 

outlier removal 

                                        True sample class    True sample class 

  1 2 3 4 5 6 C    1 2 3 4 5 6 C 

                                      1 10 3 1 1 1 4 0  1 10 3 1 1 1 4 0 

2 3 10 1 4 1 1 0  2 2 11 1 4 1 1 0 

3 2 2 13 0 1 1 1  3 1 2 14 0 1 1 1 

4 1 0 1 14 2 1 1  4 1 0 1 13 2 1 1 

5 0 1 2 0 15 1 1  5 0 1 2 0 14 1 1 

6 1 0 1 2 2 11 3  6 1 0 1 2 2 11 3 
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C 3 0 1 1 1 2 12  
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ss
 

C 1 0 1 1 1 2 14 

                                      

(c) Classification with new data after 

instrument cleaning  

 (d) Classification after correcting 

binning problem 

                                        True sample class    True sample class 
  1 2 3 4 5 6 C    1 2 3 4 5 6 C 

                                      1 20 0 0 0 0 0 0  1 20 0 0 0 0 0 0 

2 0 20 0 0 0 0 0  2 0 20 0 0 0 0 0 

3 0 0 20 0 0 0 0  3 0 0 20 0 0 0 0 

4 0 0 0 20 0 0 0  4 0 0 0 20 0 0 0 

5 0 0 0 0 20 0 0  5 0 0 0 0 20 0 0 

6 0 0 0 0 3 17 0  6 0 0 0 0 2 18 0 

P
re
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ic

te
d

 C
la

ss
 

C 0 0 0 0 0 0 20  P
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ss
 

C 0 0 0 0 0 0 20 

                     
 

 

Table 5.2   Confusion matrices from Linear Discriminant Analyses (PC-LDA) 

illustrated in Figures 5, 6, 7 and 9 after sample data quality assessment and problem 

troubleshooting. The negative ionization, low mass range data from twenty samples of 

each biological class were included in each PC-LDA.  The numbers in red on the 

diagonal highlight the number of samples correctly predicted in each class. 

 

 

 

number of times a sample is correctly classified or designated as a different class.  In the 

present experiment each biological class is represented by 20 samples. Eigenvalues are a 

measure of the degree of class separation in each discriminant function (DF) vector.  

Confusion matrices and Eigenvalue data for the data models displayed in each of Figures 5.6, 

5.7, 5.8 and 5.9 are summarised in Table 5.2 and Table 5.3 respectively. The original data 

shows Eigenvalues smaller than 2.0 which is indicative of a poor data set 
50

 (Table 5.2), 

suggesting that metabolome differences between compared sample classes are barely 

significant. Low eigenvalues are reflected in poor classification accuracies with up to 50% of 

samples per class confused with another class (Table 5.2a).  

 

Outlying samples are common in complex biological experiments and 20 biological replicates 

allow the removal of up to two samples per class from the data matrix.  Unfortunately, 

removal of outliers in this example did not improve the quality of score plots (Fig. 5.7).   
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Figure 5.7   Reanalysis of data after removal of sample outliers. 

 

Eigenvalues were still below an acceptable value of 2.0 (Table 5.3) and too many samples 

remained misclassified (Table 5.2b).  In the present example the source of variability was 

identified, after troubleshooting the analytical instrument, as a small particle in the sample 

transfer tube between injection port and injection valve of the autosampler.  Following 

reanalysis of the sample set using a thoroughly cleaned analytical system (PROCEDURE 

Steps 13 to 25) first pass data analysis using PCA and PC-LDA produced the scores plots 

shown in Fig. 5.8. PC-LDA models had good classification rates and high Eigenvalues for the 

first four discriminant functions (Table 5.2c and Table 5.3).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8  Scores plots obtained after instrument troubleshooting and sample 

reanalysis  
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 However, clustering in PC2 dimension (Fig. 5.8) showed that samples split into two 

distinctive groups which is often indicative for a mass binning error.   The PC2-loading plot 

(Fig. 5.9) revealed that raw m/z-values for nominal mass 97 and/or 98 were not correctly 

binned.   

 

 

 

 

 

 

 

 

Figure 5.9  PC2 Loading Plot revealing a mass binning error. 

 

Repeating signal processing using a correct binning limit in function „fiems_ltq_main‟ 

produced a data matrix of very good quality: samples cluster into classes in PCA (Fig. 5.10a), 

show good separation in PC-LDA (Fig. 5.10b), have high Eigenvalues in the top five DFs 

(Table 5.3) and show hardly any confusion between classes (Table 5.2d).  The data matrices 

can now be subjected to in-depth statistical analysis including data mining, feature selection 

and model validation.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Scores plots obtained after repeating data pre-processing using an adjusted 

binning limit.  
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  Eigenvalues after addressing sources of variability 

        

DF 

Initial 

data 

Outlier 

removal 

Instrument 

cleaning 

Binning limit 

adjusted 

            1 0.81 0.87 36.71 54.39 

2 0.70 0.71   6.92 10.22 

3 0.56 0.58   4.66   6.53 

4 0.45 0.51   2.44   4.04 

5 0.31 0.33   1.04   1.83 

D
is

cr
im

in
an

t 

F
u
n
ct

io
n
  

6 0.19 0.24   0.63   0.92 

        

 

 

 

Table 5.3  Eigenvalues for first six discriminant functions (DF) from PC-LDA 

illustrated in Figure 5.6, 5.7, 5.8 and 5.10  after sample data quality assessment and 

problem troubleshooting.  
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Appendix 5.1  

Meta-data describing experimental factors that could be sources of 

variability prior to tissue extraction in samples derived from rice blast 

infected  Brachypodium distachyon leaves  

1. Protocol Reference  

Parker, D., Beckmann, M., Enot, D.P., Overy, D.P., Rios, Z.C., Gilbert, M., Talbot, N. & 

Draper, J. Rice blast infection of Brachypodium distachyon as a model system to study 

dynamic host/pathogen interactions. Nature Protocols   3, 435-445 (2008)
49 

 

2. Plant Genotypes and Fungal Strains  

 Plant species: Brachypodium distachyon 

 Genotype: ABR 1 

 Seed source: Aberystwyth University, IBS 

 Seed batch: 2003 

 Pathogen strain: Magnaporthe grisea GUY11 

 Source: Aberystwyth University, IBS 

 Fungal stock batch: September 2004 

 

3. Fungal inoculum preparation  

 Institute: Aberystwyth University, IBS 

 Location of trial: Fisons Cabinet No. 3  

 Fungal culture medium: 10 plates of Complete Medium agar 

 Fungal culture inoculation date:  13.04.2005  

 Fungal culture conditions: 26
 o
C, 16h light/dark cycle 

 Conidia  germination check date: 23.04.2005 

 Conidia germination frequency: 85% 

 Conidia harvesting date:  25.04.2005 

 Filtered conidia concentration: 1 x 10
5
 conidia mL

-1
 in gelatine water 

 

4. Plant Growth Conditions  

 Institute: Aberystwyth University, IBS 

 Location of trial: IBS growth room Polysec 5 

 Layout: 6 Trays with 90-100 plants each  

 Sowing date: 05.04.2005   

 Tray size [mm]: 15” x 19” trays (Vacapots, H. Smith Plastic Ltd.) 

 Soil: Levington Universal Extra (Scotts UK Professional) supplemented with gravel 

(50:50; v/v) to improve drainage 

 Day/Night cycle setting [hours]: 16/8 [day from 3:00 – 19:00] 

 Day/Night temperature setting [
o
C]: 23/21  

 Average Day/Night humidity: 68/68    +/- 10% 

 PAR value [mmol s-1 m-2]: 140 +/- 10 



Page 190 of 370 

 

 Light source: 55W (Osram, Sylvania, Mrnich) high-frequency lighting tubes (4,580 

lumen output) supplemented with 2* 30W clear tube cooled lighting (Osram)  

 

5. Pathogen Challenge Conditions  

 Plant age: 5 leaf stage (21-28d post sowing) 

 Plant infection date: 25.04.2005 

 Inoculum volume per  plant tray: 10ml 

 Inoculum application: artist‟s airbrush 

 Post inoculation treatment: water well and bag for 2 days 

 Disease progression assessment date: 29.04.2005 

 No. Infection sites per cm leaf: 35, type 3-4 on Valent scale  

 

6. Harvest and Storage  

 Harvest date(s): Harvest days 1-6 from 26.04.2005 to 30.04.2005    

 Time of day: 11.00 – 12.00 

 Hours of light: 8 – 9 

 Tissue: Central 4 cm of  leaf 

 No of samples per plant: 1,  stored separately in Eppendorf tubes containing a 

stainless steel ball for milling  

 Fresh weight: 40-60 mg per sample (estimate) 

 Storage: snap freeze in liquid nitrogen within approx. 10 sec and store at –80
o
C until 

extraction 

 Sample IDs: DP.12.001 - DP.12.240  
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GO3 Final Report - Section 6 
David Overy/John Draper/Nigel Hardy 

 

 

Development of a pilot database for annotation of nominal 

mass ESI-MS data (part of Task 03.02) 

 

 

6.1 BACKGROUND TO EXPERIMENTAL SECTION 

 

Before the project started it was agreed with the FSA that the development of standardised 

data generation, pre-processing and data mining for metabolomics would be based largely on 

the potato tuber data generated in Aberystwyth, IFR, Golm and SCRI.  One of the first 

objectives of the G03 programme in Section 1 was to make contact with all laboratories that 

had produced metabolomics data sets for the G02 project. As outlined earlier, the subsequent 

development and assessment of a G02 data archive indicated that there was only one small 

NMR data set and only a small amount of LC-MS data containing a relatively (compared to 

GC-tof-MS) small number of measured peaks.  A decision was thus made early on to base 

most of the development of standardised metabolomics methods using GC-MS to represent 

profiling data and FIE-MS to represent fingerprinting data.   

 

An overall aim of the G03 project was to develop a list of the metabolites commonly found in 

potato tubers that might be usefully measured in any future analyses of composition. Those 

chemicals might be represented as peaks in GC-MS or LC-MS data or m/z signals in FIE-MS 

fingerprints. At the end of the G02 programme the FSA were already aware that many of the 

consistently measurable metabolite peaks seen in both GC-tof-MS and LC-MS data were of 

unknown chemistry.  In Section 3 of the present programme we integrated GC peak lists 

developed on 4 different instruments, however, as expected, this did not lead to the annotation 

of many more previously unknown peaks using major GC-MS spectral database such as 

NIST.   A particular problem with the LC-MS data was that most peaks are not represent by a 

spectrum (electro spray ionisation [ESI] rarely fragments molecules), but only by a retention 

time and a typical mass signal.   
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We had initially intended to start generating LC fractions of potato tuber extracts for more 

detailed analysis of unknown metabolite peaks.  However, as the G03 project was getting 

underway there was a major shift internationally to stop trying to deconvolve good quality LC 

peaks and instead use automated chromatographic data alignment software (e.g. MetAlign or 

XC-MS: see Section 4) to process the LC-MS raw data to develop a retention time versus m/z 

signal matrix, which often contained more than 3000 features.  Thus in such LC-MS data a 

„feature‟ is simply a combination of a retention time and an m/z value, with the latter 

corresponding to the ion signals integrated in nominal mass bins in FIE-MS fingerprints of the 

same sample.  Thus, whether m/z signals are separated in time (LC-MS), or integrated into 

nominal mass bins (FIE-MS) the annotation of ions is of paramount importance to help 

describe the composition of any food raw material.  

 

 

6.2 OVERALL OBJECTIVES OF EXPERIMENTAL SECTION 

 

Unlike GC-tof-MS (in which molecules are derivatized and fragmented by electron impact 

ionisation) the „soft‟ ionisation afforded by ESI in both LC-MS and FIE-MS approaches 

means that there is a good chance that the parent metabolites can be putatively identified 

directly based on their mass.   A major effort was thus focused on the development of a 

nominal mass ESI-MS signal annotation database (ArMEC) strategy within the G03 project.  

The details of the actual software engineering required to develop the ArMEC database is 

presented separately in Section 2.5. 

 

6.2.1 Summary of objectives 

 

 Review the literature on the problems of annotation of ESI-MS signals 

 Develop a pilot database architecture to hold information on metabolites 

  predicted to be present in potato tubers (described in Section 2.5 ) 

 Develop tables of predicted ESI-MS signals for adducts and fragments of each 

expected metabolite. 

 Develop examples of measured ESI-MS fingerprints using chemical standards 

 Develop query and output tools to interpret fingerprinting data (development 

described in Section 2.5). 
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6.3 INTRODUCTION TO DEVELOPMENT OF A PILOT  ANNOTATION 
DATABASE FOR LC-MS DATA 

 

 

Metabolite fingerprinting techniques using soft ionization mass spectrometry are applicable to 

a variety of research fields: from screening for metabolic changes, to the assessment of food 

standards in crops and food products 
1-4

; from microbial taxonomy and physiology 
5,6

 to 

analysis of transgenic plants and breeding population genotyping 
3,7

.  Fingerprinting 

techniques such as flow injection electrospray (FIE) ionization or atmospheric pressure 

chemical ionization (APCI) mass spectrometry strive to provide a high-throughput, non-

targeted representation of a suspended moment in the metabolism of an organ, organism or 

interaction between organisms
8
.  Applied as a “first pass” screening protocol, discrimination 

between samples can be achieved using fingerprinting techniques without prior knowledge of 

expected differences 
8-10

.  FIE-MS methodologies are quite rapid as they do not involve a 

chromatographic or derivatization step, with average analytical run times reported between 1-

5 minutes per sample 
2-9

.  Additionally, the use of soft ionization mass spectrometry, in 

comparison to electron impact ionization, results in a predominance towards molecular ions 

rather than molecular ion fragments, which in turn, enhances the ability of the user to identify 

metabolites in complex matrices 
9
.  

 

The standardised procedure used the generate FIE-MS data in the G02 project is described in 

detail in Section 5 of this report.  The  protocol focuses on the use of datasets in which m/z 

signals have been binned to nominal masses (i.e. rounded up or down to whole numbers) as 

described in the Nature Protocol by Beckmann et al. 
8
. Nominal mass data is particularly 

useful as many laboratories do not have routine access to high mass resolution instruments 

capable of high throughput analyses.  From a practical perspective the use of nominal mass 

data not only reduces data dimensionality but also obviates potential problems associated with 

mass drift in high accuracy instruments and offers a much to simpler strategy for future data 

alignment and dataset integration with other laboratories. 

 

6.3.1 Ionisation products generated in electrospray ion source 

 

The largest constraint regarding FIE-MS fingerprinting is that analytes must dissolve in a 

solvent exhibiting moderate conductivity and, if not already in an ionic form when dissolved, 
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must inductively ionize while passing through the conductive electrospray capillary.  

Molecules expected to be detected using FIE-MS range from non-polar species that undergo 

electrochemical oxidation/reduction, to polar and neutral species undergoing dynamic proton 

association/dissociation as well as association with ion of organic or inorganic salts 
11

.  A 

FIE-MS fingerprint of an organism‟s metabolome, covering a mass range from 50-2000 Da, 

can be quite complex.  With a representative estimate of the metabolome of any given 

organism ranging between 4000-25000 metabolites and an estimate of the chemical diversity 

in the plant kingdom alone in excess of 200,000 metabolites 
12-14

, signal interpretation and 

metabolite annotation of FIE-MS fingerprints may seem a daunting task. However metabolite 

diversity within a specific organ/tissue type is obviously substantially lower and, as 

concentrations of individual metabolites may differ from each other by several orders of 

magnitude, only a small proportion (perhaps up to 10%) of these huge numbers will be 

routinely detected by FIE-MS in any typical crude extract made using a single extraction 

solvent.  

 

Compounding the complexities of a wide chemical diversity, metabolites are often 

represented by several signals in FIE-MS fingerprints. Along with (de)protonated molecular 

ions and their associated isotopes, salt adducts of alkali metals, neutral losses (i.e. of water, 

ammonium or formate), homogeneous dimer and/or dimer ion pair adducts are routinely 

observed in FIE-MS profiles.   The formation of dimer complexes occurs in solution through 

hydrogen bonding interactions with their respective molecules and the energy imparted by the 

electrospray interface is insufficient to break these complexes prior to analysis in the mass 

spectrometer 
15

.    In the gas of the electrospray, strongly bonded Na
+
 and K

+
 complexes form 

with molecules which do not readily ionize in solution, such as sugars and glycols, but which 

have polar groups that are electrochemically suitable for producing ionized analytes 
16

.  

Metabolites possessing an acidic moiety (i.e. carboxylate, sulfonate and phosphonate groups), 

are more susceptible to deprotonation and efficient ionization in negative mode electrospray 

and are therefore more prominent in negative FIE-MS fingerprints 
15

.  Chloride ion adducts, 

readily identified by the natural isotope distribution pattern of chlorine (Cl
35

 and Cl
37

), have 

been reported for a variety of compounds, including triacylglycerols, aromatic and aliphatic 

carboxylic acids, amides, amino acids, aromatic amines, phenols and non-ionic surfactants, 

neutral glycolipids and glycosphingolipids 
17

. 
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6.3.2 Identification of explanatory signals in FIE-MS data 

A major output of metabolomic experiments involving FIE-MS fingerprinting, is the 

identification of highly significant signals (i.e. explanatory variables) that account for 

compositional differences between sample classes.  Data processing and feature selection  in 

metabolomics data is described in Sections 8 and 9 of the present report which should be 

consulted for details and in the  Nature Protocol by Enot et al. 
18

. Of the various supervised 

data mining options available, Decision Trees have proved in the past to have high 

classification power as well as the ability to identify explanatory variables in the complex tree 

structures that they generate 
3, 7, 18

.  One of the best ways to improve the performance of 

Decision Tree based algorithms is to grow „ensembles‟ of trees in order to identify variables 

that are consistently highlighted when several thousand different trees are developed from the 

same data. In the G02006 project we showed previously  that one such „ensemble‟ method 

provided by the supervised classification tree algorithm Random Forest (RF) efficiently 

ranked metabolite signals for significance in their ability to explain the difference between 

different sample classes 
7, 18

.     

 

RF models provide insight into the underlying data structure and cope exceptionally well with 

high dimensional data sets 
18, 19

.  While various statistical approaches may be employed to 

identify discriminatory signals, the use of RF was justified as it provided a measure of both 

model robustness and variable importance without a requirement for prior data dimensionality 

reduction or data transformation to fulfil statistical assumptions.  Importantly, RF retains all 

variables in the final model, including those exhibiting covariance because they are related to 

a single metabolite.  This property of RF models allows the user to intuitively determine the 

relationships between signals derived potentially from the same metabolite.  Particularly a 

correlation analysis of variables within the list of selected signals can prove very useful to 

find signals linked to the sample metabolite and thus help in the annotation process 
7
.  For 

example, correlation analysis of the explanatory signals (m/z) highlighted by RF in FSA 

G02006 data successfully confirmed signals having consecutive mass to charge ratios (m/z) to 

represent isotopes and in some cases highlighted additional salt adduct signals relating to the 

same metabolite 
7
.  By understanding the relationship between m/z signals and predicting 

those likely to be derived from the same metabolite it was clear that the top 30-40 signals in 

RF lists of variables ranked with respect to discriminatory value in FIE-MS fingerprint 

comparisons were populated with multiple signals potentially relating to only a small number 

of metabolites. We reasoned that the mathematical relationships between such signals could 
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be calculated mathematically and decide to develop a specific database 

(http://www.armec.org/) to help in annotation of ESI signals
3, 7, 19

.
  
  

 

6.3.3 ESI-MS signal annotation using metabolite database resources  

The process of annotating explanatory molecules is greatly helped by the construction of a 

species specific FIE-MS and FIE-MS/MS
n 

database.  This resource can be populated by 

compiling a list of metabolites, that have been reported either in the literature or in other 

databases, for the species of interest (see Section 2); and then subsequently predicting 

possible adduct formation, neutral losses and dimeric associations in FIE-MS fingerprints, in 

addition to making in-house measurements when standards are available.  When trying to 

annotate a nominal mass signal using commercial databases, searching on species specific 

databases rather than all purpose, general metabolite databases, allows for a more reasonable 

initial annotation of signals strictly pertaining to the metabolome of the species under 

investigation.  Subsequent to this, signals without annotations can then be queried using more 

wide-ranging metabolite databases.  Publicly available metabolome databases vary in relation 

to the overall number of metabolites they contain and the range of metabolites covered (i.e. 

natural product to synthetic or combinatorial libraries).  Databases such as KEGG 
20

 are 

general to a range of organisms as they are based upon biochemical pathways; whereas others 

such as TAIR 
21

, KNApSAcK 
22

 and HMDB 
23

 are based on a species specific archive, and in 

the case of fully genome sequenced species such as Arabidopsis thaliana (TAIR), a link is 

made from metabolite to pathway to genome.  Large libraries such as CAS (accessible using 

SciFinder) 
24

 can often be misleading for the annotation of a biological metabolome as, 

although it is the largest small molecule database publicly available, the content is composed 

of many artificially synthesized chemicals 
24

.  PubChem was found by Kind and Fiehn 
25

 to be 

the most reliable database for use in wide-ranging metabolite annotations as this database 

contains over 5 million entries and is a compilation of several databases such as KEGG, 

ChemIDplus and NCBI. Such databases contain a plethora of information about individual 

metabolites which can be considered fixed and of value in metabolite annotation (e.g. 

molecular mass, structure, synonyms) and thus transferable between databases.   However, 

information relating to real ionisation behaviour (i.e. common adducts and fragments formed 

during soft ionisation in ESI, and spectra in MS/MS
n
 fragmentation experiments) of a specific 

metabolite has to be generated in the context of an individual sample matrix within a specific 

instrument following a specific analytical procedure. Similarly, literature references on the 

http://www.armec.org/
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presence or absence of a metabolite, the pathways it is actually involved in and its measured 

concentration levels are not provided in many general databases and such information can be 

extremely helpful when interpreting metabolite signal identities by focusing on previously 

measured chemistry.  

 

6.3.4 Consideration of Overall Experimental Design 

Due to the limitation of low levels of mass accuracy, a certain level of ambiguity is present 

when nominal mass MS approaches are used, which makes the confirmation of putative signal 

annotation representing complex matrices of unknown composition difficult without further 

chemical investigation.  This is exceptionally the case with FIE-MS fingerprinting as the 

chromatographic step is missing.  The use of high resolution instrumentation can help solve 

this issue, as molecular formula can be predicted from MS measurements: however in 

addition to issues of maintaining correct calibration, purchasing and operating such a machine 

is expensive and therefore not feasible for use in all laboratories.  As it is likely in most 

complex biological samples that more than 40% metabolites are still structurally 

uncharacterised within any instrument platform, then a major consideration in FIE-MS 

fingerprinting is the reproducible annotation of m/z signals highlighted by data modelling.  

Fragmentation of nominal mass signals by FIE-MS/MS
n
 technologies and comparison of the 

fragmentation trees with either commercially available packages (such as Mass Frontiers from 

Thermo Finingan) or in-house MS
n
 databases generated using commercial standards have 

proven to be successful for the annotation of ESI-MS/MS
n
 spectra 

26-29
.  As ion trees for 

particular adducts are unique to a given molecular structure, confirmation of the putative 

metabolite identifications and associated adduct/neutral loss/dimeric states can be supported 

by FIE-MS/MS
n
 experiments.  However, in the case where putative identifications are shared 

by molecules exhibiting the same molecular weight and structural similarity (e.g. 

monosaccharides), FIE-MS/MS
n
 experiments will only be able to prove the identification of 

the class of compound and its adduct/neutral loss/dimeric association.  Confirmation of 

putative signal annotations for these metabolites must therefore be carried out by protocols 

employing chromatography. 

 

Signal annotation following gas chromatography mass spectrometry (GCMS) employing 

databases searching (e.g.  NIST) and comparison to commercial standards, is an accepted 

method for metabolite confirmation; however, due to the derivatization step necessary for 
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chromatography, a direct correlation to observed m/z signals in the FIE-MS fingerprint, 

although possible, remains tentative.  Application of liquid chromatography coupled with 

electrospray ionization-MS avoids the need for derivatization, allowing for a direct relation 

between signal annotation and observed nominal mass; however there are some limitations in 

the representation of the total FIE-MS fingerprint due to issues of analyte polarity as well as 

the possibility of the formation of additional solvent adducts.  Against this background we 

decided to base our studies on the use of a linear ion trap instrument (such as the Thermo 

LTQ) with MS/MS capability linked to a high quality HPLC system to provide an ideal 

platform for FIE-MS fingerprinting and the subsequent investigation of  important signals. 
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Figure 6.1: Flow diagram of steps used to annotate metabolite signals from a FIE-

MS fingerprint representing a specific sample matrix.  A detailed description of 

each step is provided in the PROCEDURE (Section 6.4). 

 

 

The first part of this section of the project was to develop a standardised way of creating a 

species specific ESI-MS database which culminated in the development of an on-line resource 

(ARMeC). This research was initiated in a BBSRC ISIS project by a visiting research Dr 

David Overy, who subsequently joined the G03 project. The second part of the protocol 

provides instruction on how to putatively identify metabolites based on database queries of 

signals of interest from individual FIE-MS fingerprints (see flow diagram, Figure 6.1) and 

from explanatory FIE-MS fingerprint signals derived from metabolome comparisons as 
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determined by data mining (using for example RF classification trees) and correlation 

analyses (see flow diagram, Figure 6.2).  Collaboration with data mining experts is a key 

factor to ensure that only good quality data models with high interpretability potential are 

submitted for interrogation 
7
.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2:  Flow diagram of steps for the annotation of explanatory signals from 

FIE-MS fingerprint data modelling experiments.  A detailed description of each 

step is provided in the PROCEDURE (Section 6.4). 
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explain metabolome differences between two or more sample classes (explanatory variables).  

Because of the attributes described above, Random Forest was focused upon here for the 

elucidation of a ranked list of explanatory variables which is used as a starting point for the 

second part of the protocol.  However, the approach taken in this protocol can also be applied 

to annotate explanatory variables derived from other data modelling algorithms such as 

Support Vector Machine analysis or Partial Least Squares Regression analysis 
31

.  Further 

statistical analysis expertise is also required to evaluate the behaviour of highlighted signals; 

strong correlations between specific ions could be indicative of a common origin from a 

specific metabolite or closely linked elements of a metabolic pathway.  Data analysis software 

resources, instructions for their use and specially tailored scripts for RF data mining and 

correlation analysis are provided within the protocol described below and have been 

published in the Nature Protocol by Enot et al. 
18

. 

 

 

 

 

6.4 PROTOCOL DESCRIBING METABOLITE IDENTIFICATION 
STRATEGIES FOR NOMINAL MASS FIE-MS METABOLITE 
FINGERPRINTS 

 

 

6.4.1 REAGENTS 

 Chloroform (CHCl3), for residue analysis (Fischer Scientific, cat. no. C/4963/15) 

o CAUTION: Chloroform is toxic and should be handled under a fume hood 

using appropriate safety clothing 

 Methanol (MeOH), HPLC grade (Fischer Scientific, cat. no. M/4056/17) 

 Water, double distilled 

 Sodium hydrogen carbonate, anhydrous (NaHCO3), analytical reagent (Fischer 

Scientific, cat. no. S/2920/53) 

 Potassium hydrogen carbonate, anhydrous (KHCO3), analytical reagent (Fischer 

Scientific, cat. no. P/4120/50) 

 All standards used were at least of 97 % purity.  Organic acids were used as free acids 

where possible.  Standards appeared generally to contain traces of sodium or 

potassium salts.  Standards were purchased from different sources: Sigma/Aldrich, 

Fluka, Acros, Merck.   
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Extraction Solvents 

 A detailed discussion of extraction solvents for use in flow injection electrospray 

ionisation mass spectrometry is presented in the accompanying Nature Protocol by 

Beckmann et al. 
8
. Although specific solvent combinations can be used to maximize 

the yield of extracted metabolites, in the general case of high throughput FIE-MS 

fingerprinting a consensus has to be made as to a particular solvent combination 

employed: one that maximizes metabolite extraction.  The solvent combination of 

CHCl3, MeOH and H2O has been recommended for plant metabolomics 
32

. The 

solvent ratios used in the following protocol were CHCl3: MeOH:H2O (2:5:2; v:v:v).     

 

Flow Infusion Solvents 

 Depending on the solvent type selected, additional adduct ions could be generated (i.e. 

if CH3CN is used then CH3CN adducts are also seen).  Whichever standard operating 

procedure has been selected for use in the lab, these conditions should be maintained 

as deviation from these running parameters might have direct influence over signals 

present in the in-house database. Use of acid in the solvent will reduce the number of 

salt adducts (drive the formation of [M+H]
+
), but inhibits effective fingerprinting in 

negative ion mode.  The flow solvent used in the following protocol was MeOH:H2O 

(50:50; v:v). 

 

o CRITICAL Addition of acid to the flow solvent will hinder simultaneous 

monitoring in both ionisation modes.    

 

 Metabolite standards in extraction solvent: Dissolve 1 mg of the metabolite 

standard into 1 mL of selected extraction solvent (metabolite stock).  Prepare a 1:10 

dilution by adding a 100 L aliquot to 900 L of extraction solvent for use in FIE-MS 

and FIE-MS/MS
n
 analysis.  

 

 Metabolite standards in NaHCO3: Prepare a 1 M stock solution of NaHCO3: H2O 

(84:1; mg:mL; w:v).  Perform a serial dilution to obtain a 1:1000 dilution of the 

original NaHCO3:H2O solution by removing a 100 L aliquot into 900 L of 

extraction solvent and then repeating this with the resulting solution two more times.  
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To get a 1:10 dilution of the metabolite standard add 100 L aliquot of the metabolite 

stock to 900 L of the NaHCO3:H2O (1:1000) solution and vortex prior to injection.   

 

 Metabolite standards in KHCO3: Prepare a 1 M stock solution of KHCO3:H2O 

(100:1; mg:mL; w:v).  A serial dilution is then prepared by removing a 100 L aliquot 

into 900 L of extraction solvent and then repeating this step with the resulting 

solution two more times to obtain a 1:1000 dilution of the original KHCO3:H2O 

solution.  To obtain a 1:10 dilution of the metabolite standard add 100 L aliquot of 

the metabolite stock to 900 L of the KHCO3:H2O (1:1000) solution and vortex prior 

to injection.  

 

 

6.4.2 EQUIPMENT & SOFTWARE 

 

Injection parameters 

 Aliquots of various standard solutions were injected at a rate of 3 l/min using a 

Hamilton syringe (250 l) into a 3 μl/min solvent flow of water/methanol (50:50) 

from a Surveyor liquid chromatography system (ThermoFinnigan).  As data collection 

was interchanged between positive and negative ion mode, the solvents were not 

acidified.   

 

Mass spectrometer parameters 

 Mass Spectrometer parameters for FIE-MS and FIE-MS/MS
n
 analysis: A 

standard procedure for use of a LTQ mass spectrometer (ThermoFinnigan) is provided 

in Section  5 of the G03 report and in related Nature Protocol by Beckmann et al. 
8
. To 

summarise, data collection is carried out in positive and negative mode and the 

ionization conditions are as follows: spray voltage 4.5 kV (ESI+) and 4.0 kV (ESI-), 

+15 V (ESI+) and -13 V (ESI-), transfer capillary temperature set to 80 C.  

Calibration and tuning of linear ion trap are carried out to vendor specifications.  

  

o CRITICAL  Differences in applied cone voltage will have a direct impact on the 

ionization (and potential fragmentation) of the analyte.  Equivalent equipment 
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parameters should be used when comparing FIE-MS spectra against previous data 

generated from standards.   

 

 Mass spectrometer parameters or MS/MS
n
 experiments: Scan window set for 20 

scans, isolation width set to 1 m/z, normalized collision energy 40 V, activation Q 

0.250, activation time 30 ms, wideband activation turned on, source fragmentation at 

20 V.  Mass range settings are dependant upon molecular weight of target ion.  

 

Database Software 

To enable efficient and reliable annotation of metabolites, the database of species specific 

FIE-MS and FIE-MS/MS
n
 data must exhibit a number of characteristics.  First, the data 

should be consistent and ideally it should be as complete as possible. However, in the case of 

metabolomics of food raw materials where large numbers of metabolites remain to be 

structurally identified it is clear that data collections will expand and undergo regular update 

which should incrementally improve the accuracy of annotation. Second, the data must be 

structured and organised in such a way as to enable efficient querying.  Finally, the data must 

be accessible in a controlled way to multiple users at the same time.  Spreadsheets, that may 

be produced using software packages such as Microsoft® Excel, provide a simple approach to 

the storage of such a data collection.  However, such spreadsheets typically provide little 

inherent support for actions such as constraint checking and query optimisation and are not 

designed for simultaneous access.  While this is not necessarily a problem for a standalone 

database of limited size that contain static data; in situations where the data collection may 

expand or undergo regular update, or where it is desirable for the data collection to be 

publicly available, a more robust solution is required.  

 

Database Management Systems 
33

 (DBMS) are software tools that are designed to support 

development of and access to databases.  They perform constraint checking to maintain data 

integrity and support different data organisations to optimise querying.  These benefits do not 

come without the associated costs of design, development and population of the database, but 

the added utility that they give to a data collection will often outweigh those costs.  We have 

built a database for the Oracle® 9i DBMS to house our collection of species specific FIE-MS 

and FIE-MS/MS
n
 data. A publicly accessible web-based interface to this database has also 
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been developed using Java servlet JavaServer Pages and can be publicly accessed at 

http://www.armec.org/ . 

 

Random Forest data mining software 

It is assumed that users will generally collaborate with experienced data analysts to generate 

lists of 30-40 highly ranked m/z; appropriate data mining methods are described in the 

Sections 8 an d9 of the present report and have been published in a Nature Protocol by Enot et 

al. 
18

. The present protocol utilises the classification tree algorithm Random Forest which has 

been shown to perform well for analysing FIE-MS fingerprint data 
7, 18

. Random Forest 

analysis can be performed in the freely available and multi-platform R environment 

(downloadable at http://www.r-project.org/) using the additional package randomForest 

(http://cran.r-project.org/src/contrib/Descriptions/randomForest.html). Variable importance 

score computation requires the argument importance to be set to TRUE.  One of the 

interesting properties of RF, is that a model does not overfit: the generalization error will 

reach a certain value no matter how many trees are built.  Selection of an initial value for 

ntree=2000 (the number of trees calculated) is a good starting point for most analyses.  All the 

other parameters of randomForest function can be used with their default value.  It is 

advisable to perform several simulations with much larger numbers of trees and check 

whenever the variable importance scores are not affected by ntree. 

 

Correlation analysis software 

The output of any feature selection process (e.g. Random Forest analysis) applied to 

comparisons of FIE-MS fingerprints data is a (often ranked) list of perhaps 30-40 m/z signals 

with potential power to explain the difference between two or more biological sample classes.  

With each ionisation mode it cannot be assumed that all metabolites are represented simply as 

protonated or deprotonated masses in FIE-MS fingerprints.  Depending on their chemistry 

metabolites could be present predominantly as specific adducts or fragments; therefore in 

order to predict the identity of a parent metabolite, it is important to identify signals that might 

be derived from the same molecule.  Correlation analysis between a selected number of 

signals of higher explanatory value can be performed with any clustering software 

application.   The R package Rarmec has been developed to both provide correlation 

calculations and correlation plots as well as automatic queries to the ARMeC website 

(http://www.armec.org/) to retrieve and sort all possible ionisation products corresponding to 

http://www.armec.org/
http://www.r-project.org/
http://cran.r-project.org/src/contrib/Descriptions/randomForest.html
http://www.armec.org/
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each cluster.  Rarmec is freely available at http://users.aber.ac.uk/jhd.   

 

In order, to handle both positive and negative correlations that could occur in metabolomics 

data, the dissimilarity measure between each variable pair is defined as: one minus the 

absolute value of the Pearson correlation coefficient between two signals (function cor).  

Clustering is performed with the function hclust with its default settings for complete 

agglomeration.  Isotopic relationships usually exhibit the strongest correlation with an 

expected Pearson coefficient greater than 0.8.  Please note that amongst a number of different 

agglomeration strategies, we advise the use of complete linkage or average linkage (UMPGA) 

methods to find similar clusters.  Both methods are competitive and should give the same 

results regarding the clusters with the most correlation. Because of the nature of the similarity 

measure, one must check the direction of the correlation (i.e. positive or negative correlation) 

before presuming the origin of the relationships between two signals. 

 

6.4.3 PROCEDURE 

Creation of species specific ESI-MS prediction database 

 

1) Using a spreadsheet program (e.g. Microsoft Excel) compile a list of reported/expected 

metabolites as well as information on synonyms, molecular weight, molecular structure and 

formula for a given species based upon literature reports and available databases (see Section 

2 of the present report). For example the general metabolic pathways in KEGG 
20

 can be 

visualised to identify subsets of metabolic steps for which enzymes have been described in 

individual species.  Databases such as TAIR 
21

, KNApSAcK 
22

 and HMDB 
23

 are already 

based on a species specific archive. A typical example of useful information can be viewed in 

the “Metabolite Summary” section of ARMeC (http://www.armec.org/) which, based on the 

G02 programme data, currently has metabolite information for potato tubers and Arabidopsis 

leaves and can easily be extended and edited to accommodate new species-specific 

information.  

 

2)   Calculate potential FIE-MS m/z signals (regarding (de)protonated ion, adduct, neutral loss 

and dimeric combinations) for each metabolite (see Table 1 for calculations).  This can be done 

conveniently using a spreadsheet such as the “RF Mining Spreadsheet” found on the ARMeC 

website    (http://www.armec.org/). 

http://users.aber.ac.uk/jhd
http://www.armec.org/
http://www.armec.org/


Page 207 of 370 

 

 

3)  Evaluate potential neutral loss predictions against structural information and eliminate 

predictions with structural impossibilities (for example, a molecule without a carbonyl 

functional group is unable to undergo a neutral loss of formate).   

 

4) Acquire representative pure standards of the listed metabolites where possible. [see 

REAGENTS] 

 

Table 6.1:  Calculation table for possible ion states observed in positive and negative 

ion mode. 

 

Positive Ion Mode  Negative Ion Mode 

Ion State Formula  Ion State Formula 

[M+H]
+
 M+1  [M-H]

-
 M-1 

[M+Na]
+
 M+23  [M+Na-2H]

-
 M-21 

[M+K]
+
 M+39  [M+K-2H]

-
 M-37 

[M+H-H2O]
+
 M-17  [M+Cl]

-
 M+35 

[M+H-HCOOH]
+
 M-45  [M-COOH]

-
 M-45 

[M+H-NH3]
+
 M-16  [2M-H]

-
 2M-1 

[2M+H]
+
 2M+1  [2M+Na-2H]

-
 2M-21 

[2M+Na]
+
 2M+23  [2M+K-2H]

-
 2M-37 

[2M+K]
+
 2M+39    

 

5) Individually profile available standards by FIE-MS, initially in the chosen extraction 

solvent and then in NaHCO3 and KHCO3 solution, to determine the pattern of actual 

(de)protonated ion, adduct, neutral loss and dimeric combinations. Detailed instructions for 

FIE-MS are provided in Section 5 of the report and published in the Nature Protocol by 

Beckmann et al. 
8
; in the present protocol the extraction solvent is chloroform:methanol:water 

(2:5:2; v:v:v) and the flow injection solvent is composed of methanol:water (50:50; v:v).  

 

6) Use the ion prediction list to annotate expected ion signals.  Record and update the 

database with fragment ions not present in the prediction list. 

 

7) At this point several trends in the formation of adducts or neutral losses may be observed.  

For example, many disaccharides commonly only produce [M+Na]
+
 and [M+K]

+
 ions in 

positive ion mode as illustrated by the behaviour of sucrose in Figure 6.3a-c.   
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8)  Use FIE-MS/MS
n 

to create individual fragmentation trees of recorded (de)protonated 

nominal mass ions as well as adducts, neutral losses, dimeric combinations and associated 

fragments.  For example Figure 3d and 3e show fragmentation spectra of the major salt 

adducts of sucrose standards. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3:  FIE-MS fingerprinting of sucrose solutions showing the effect of salts 

in the sample matrix. FIE-MS fingerprints of (a) sucrose solution, (b) sucrose in 

NaCOOH solution and (c) sucrose in KCOOH solution.    FIE-MS/MS spectra of 

parent ions, (d) m/z 365 [M+Na]
+
 and (e) m/z 381 [M+K]

+
.    In both cases the sucrose 

salt adducts fragment to release the corresponding monosaccharide salt adduct, either 

without (219 or 203) or with (201 and 185) a neutral water loss. The structural identity 

of prominent ion products (in red) are shown in square brackets 
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Developing ion trees of major m/z signals within a specific sample matrix under FIE-
MS conditions to guide signal annotation 

 

9)  Prepare sample extracts and carry out FIE-MS fingerprinting according to a standardized 

in-house protocol (for a recommended procedure see Section 5). At this point you may wish 

to remove an aliquot of the extract and add to an equivalent volume of metabolite standard 

solution to create a “spiked” extract and carry out steps 11 to 13 for confirmation of putative 

annotations where m/z signals in the original extract fingerprint resulted from more than one 

predominant metabolite (see Step 13). 

 

10)  Specify m/z signals of interest for annotation.  Query database (e.g. ARMeC) for all 

potential (de)protonated ions, adducts, neutral losses, dimeric combinations or metabolite 

fragments potentially corresponding to the m/z signal.  Please note that steps 16 – 24 below 

describe how to interrogate a ranked list of significant m/z signals in order to determine which 

co-varying signals are potentially derived from the same progenitor metabolite. 

 

11)  Sequentially perform FIE-MS/MS
n
 experiments for all targeted ions.  First collects a 

mass spectrum of a standard.  In a second step increase the energy for collision induced 

dissociation (CID) of a all selected target (parent) mass ions and respectively collect a mass 

spectrum of the fragmentation product(s) (daughter ion).  Thirdly, perform CID for all 

selected daughter mass ions detected in the second step and repeat where possible this step in 

further MS/MS experiments until no mass ion is detected.  Examples of fragmentation trees 

for a  major unknown metabolites signal in FIE-MS spectra derived from Brachypodium 

extracts is presented in Figure 6.4  
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Figure 6.4: FIE-MS/MS
3
 fragmentation tree record of an unknown 

Brachypodium metabolite (m/z 461) in negative ion mode.   (a)  FIE-MS fingerprint 

of a Brachypodium leaf section harvested 3 days after infection with the rice blast 

pathogen. Labelled in red is a signal (m/z 461) representing a highly explanatory 

metabolites with no known matches in the ARMeC database of MS/MS spectra. 

Panels (b) to (d) show a typical MS-3 fragmentation tree record for this unknown 

metabolite. 
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12)  Query MS/MS
n
 database with parent m /z signal and resulting predominant daughter ion 

fragments (m/z signals with a relative abundance of 60% or greater).   

 

13) Use daughter ion fragments to confirm identity where multiple possibilities of parent m/z 

signal identity exist.  If predominant daughter ion fragments appear to be originating from 

more than one contributing metabolite you may wish to carry out Step 9 using aliquots of 

sample extracts spiked with metabolite standards corresponding to the multiple predicted 

signal annotations.  

 

14)  If identification of the target m/z signal is not possible by database query of the MS/MS
n
 

fragmentation tree (i.e. if a MS/MS
n
 tree has not been recorded in the database for the 

metabolite annotations under query or multiple hits are recorded having the same MS/MS
n
 

tree), then further profiling of the extract by an additional chromatographical method (e.g.  

HPLC-ESI-MS/MS
n
 or GC-ToF-MS) is required 

32, 34, 35
 . 

 

15)   In cases where fragmentation patterns do not match database archives, further queries 

should be attempted using additional, more generalized metabolite database resources.   

 

Annotation de novo of explanatory signals from data modelling  

 

16)  Obtain list of statistically significant (explanatory) metabolites generated by multivariate 

analysis of FIE-MS fingerprints representing different biological sample classes.  A detailed 

description of this process is described in Section 8 and 9 of the present report. Appropriate 

software resources to utilise Random Forest decision tree analysis are indicated in the 

Equipment section. In the present protocol the results of data mining experiments from 

analysis of  either a time course of pathogen-infected  Brachypodium leaves 
30

 or potato tuber 

representative of several varieties 
19

 provide example data models. 

 

17)  Perform correlation analysis using top ranked signals from both FIE-MS positive and 

negative ion modes separately. Generally all variables with a Random Forest Importance 

Score > 0.002 or a P-value < 0.001 may be considered significant 
7, 18, 31

.   
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18) Identify isotopic relationships from the strongest correlating signals of consecutive mass 

values having an expected Pearson coefficient greater than 0.8.  Isotopes should not only be 

strongly correlated but should also exhibit distinctive ratios, with the m/z signal decreasing as 

the mass increases (see examples in Figure 6.10 and Figure 6.11).   Additionally, isotopes 

should also exhibit the same intensity trends in each sample class (see examples in Figure 

6.10 and Figure 6.11 in Anticipated Results).   

 

19)  Query each explanatory m/z signal against the ESI-MS prediction database (e.g. ARMeC) 

and annotate all possible putative identifications, corresponding to either the (de)protonated 

nominal mass ion, salt adduct, neutral loss, dimeric combinations or associated fragments.  

Salt adducts of major signals are also expected to be strongly correlated (see Figures 6.10 and 

6.11 for examples). 

 

20) Enter the m/z signal into a calculation spreadsheet (for a model spreadsheet and more 

detailed instructions refer to RF mining instructions at http://www.armec.org/) and determine 

all possible associated ion signals in a situation where the m/z signal were to represent the 

(de)protonated molecular ion, a salt adduct of either Na or K, a neutral loss of water, 

ammonium or formate, the homogeneous dimer ion or a dimer ion pair adduct of Na or K.  

Use the resulting list of possible associated ion signals to search against the RF ranked list and 

highlight all associated ion signals.  

 

21)  Record into an annotation table all of the (de)protonated nominal mass ion, salt adduct, 

neutral loss or dimeric combination corresponding to all putative identifications made in steps 

19 and 20.  Note that in our experience 
3,7,17

 it is not uncommon to find that 3 or 4 (or even 

more) explanatory m/z are in fact all ionisation products of a single molecule (e.g. see the 

sucrose cluster in Figure 6.10 in Anticopated Results).    This intuitive analysis provides a 

first pass approach to predict the likely mass of the parent metabolite and allows targeted 

analysis of a sub-set of m/z signals by MS/MS
n 
and more logical interpretation of MS/MS

n 

data in instances where metabolite structure is unknown. 

 

22)  Subject each m/z signal representative of a potentially highly discriminatory metabolite to 

FIE-MS/MS
n
 fragmentation as described in steps 10-14 above.  Note it may be difficult to 

generate good quality MS/MS
n 

spectra for low abundance signals.  In such circumstances 

more success might be achieved by use of longer infusion times using a robotic direct 

http://www.armec.org/
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injection system, such as the Nanomate (as described Section 5 of the present report) or 

following separation of m/z signals in the sample matrix following Ultra High Pressure Liquid 

Chromatography (UHPLC) 
35

.  

 

23)  Compare the FIE-MS/MS
n
 fragmentation trees against the database as previously 

described in step 12 to reduce the number of putative identifications in the peak table.   

 

24)  If identification of the target m/z signal is not possible by database query of the MS/MS
n
 

fragmentation tree (i.e. if a MS/MS
n
 tree has not been recorded in the database for the 

metabolite annotations under query or multiple hits are recorded having the same MS/MS
n
 

tree), then further profiling of the extract by an additional chromatographical method (i.e. 

HPLC-ESI-MS/MS
n
 or GC-ToF-MS) is required 

32, 34, 35
  

 

25)  In cases where fragmentation patterns do not match database archives, further queries 

should be attempted using additional, more generalized metabolite database resources. 
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6.5 ANTICIPATED RESULTS 

 

Profiling of Standards 

Several trends regarding the relationship between adduct formation, neutral losses and 

metabolite class should become visible after fingerprinting metabolite standards by FIE-MS.  

Understanding the structure of the most prevalent ionisation products of any particular 

metabolite is of major importance when trying to predict the molecular origin of any m/z 

signal in an FIE-MS fingerprint. When non-buffered flow solvents are used, Na
+
 and K

+
 ions 

are the most prominent adducts observed in positive mode FIE-MS.  FIE-MS/MS
n
 

fragmentation patterns of [M+H]
+
, [M+Na]

+
 and [M+K]

+
 ions can differ 

25
; therefore it is 

crucial that standards are profiled in both Na
+
 and K

+
 buffered solutions (see Figure 6.3 in 

previous section).  It is important to note here that if buffering salts are used to acidify or 

alkalize the FIE-MS carrier solvent, the appropriate salt ion adducts should be compensated 

for.  For example, if ammonium acetate is added to the carrier solvent, adduct predictions 

should include the occurrence of an ammonium ion adduct ([M+NH4]
+
) in positive ion mode.  

The use of either free acid or salt forms of metabolite standards can affect ionisation 

behaviour as illustrated for sodium benzoate which preferentially forms ion clusters in the 

presence of sodium (Figure 6.5). Additionally, depending on the carrier solvent used for flow 

injection, the formation of solvent ion clusters might have to be accounted for.  No 

solvent/molecular ion clusters were observed using the flow solvent combination advised in 

this protocol; however solvent/protonated molecular ion clusters (i.e. [M+H+CH3CN]
+
) and 

solvent/alkali metal/molecular ion clusters (i.e. [M+Na+CH3CN]
+
) have been observed when 

CH3CN has been used for ESI-MS 
37, 38

.  Depending on their chemical structure, many 

metabolites are commonly encountered as signals relating to neutral loss fragments as 

illustrated for 2-phenylglycine and 5-chlorosalicylate in Figure 6.6; m/z representing the loss 

of formate (both metabolites) or loss of an ammonia group (2-phenylglycine) are stronger 

signals than molecular ions.  Figure 6.6b illustrates the typical appearance of chlorine isotopes 

differing by 2 mass units, reflecting the natural isotopic ratio of Cl35 and Cl37. 
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Figure 6.5: The effect of sodium on the formation of ion clusters. A standard 

solution of benzoic acid was analyzed by FIE-MS fingerprinting in positive (a and c) 

and negative (b and d) ionization modes, as either a free acid (a and b) or salt solution 

(c and d).  The structural identity of prominent ion products (in red) are shown in 

square brackets. 
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Figure 6.6:  Examples of neutral losses and chlorine isotopes in metabolite 

spectra. FIE-MS spectra of (a) 2-phyenlglycine in positive ionisation mode 

and (b) 5-chlorosalicylate in negative ionisation mode illustrate the presence of 

metabolite fragments as major ions.  The chemical moieties (amino and 

carboxyl groups) lost after ionisation of 2-phenylglycine are circled in (b). 
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Identification of Metabolites using FIE-MS/MSn 

 

Depending on the molecular structure and relative quantity, FIE-MS/MS
n
 fragmentation of 

metabolites within the mass range of 150-1000 Da typically yield fragmentation trees with 

components ranging from MS/MS to MS/MS
3
 fragments; however for larger molecules such 

as short chain polymers (1500-2000 Da) up to MS/MS
6-9

 fragments can be expected.  In the 

case of low molecular weight molecules (approx. 50-150 Da), FIE-MS/MS experiments result 

in molecular fragments of a molecular weight below the mass range of the detector (<50 Da).  

Figure 6.7 is an example of the identification of 2 predominant nominal mass signals in the 

FIE-MS fingerprint of a potato tuber using FIE-MS/MS
n
 experiments.  In Figure 6.7, the 

prominent nominal mass ion 852 m/z represents the protonated [M+H]
+
 ion of chaconine, a 

glycoalkaloid having 3 glycoside units (namely one glucose attached to 2 rhamnose units), 

whilst m/z 868 represents the lower abundance glycoalkaloid  solanine which similarly has 3 

glycoside units (namely one galactose linked to a glucose and a rhamnose unit).  Subsequent 

fragmentation experiments of the 852 m/z and 868 m/z ions results in a series of fragmentation 

trees, uniquely representative of the [M+H]
+
 ion of the alkaloid moiety solanidine with 

sequential loss of a single monosaccharide unit following each round of ionisation.   

 

Putative Annotations by Database Queries 

 

Querying metabolome databases with the generated FIE-MS signal list will result in a 

multiple number of putative identifications for any one given nominal m/z signal.  The 

application of a species specific metabolome database for queries initially reduces the number 

of probable “hits” to create a shortlist of putative m/z signal identifications as shown for the 

signal m/z 175 in Figure 6.8a & 6.b.   
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Figure 6.7: FIE-MS/MS
3
 fragmentation trees of the potato tuber glycoalkaloids 

chaconine and solanine in positive ion mode showing sequential loss of sugar 

units.  The chemical structures of both potato glycoalkaloids are presented and sub-

unit structure summarized diagrammatically at the top of the figure (Sol. = Solanidine; 

Dgluc = D-glucose; Drham = D- rhamnose; Dgal = D-galactose).  The loss of specific 

sugar units is illustrated at each stage of the fragmentation process.  (a) FIE-MS 

fingerprint of crude potato extract with major ions representing chaconine (m/z 852) 

and solanine (m/z 868) labelled in red. FIE-MS/MS of parent ions, (b) m/z 852 and (c) 

m/z 868. (d and e) FIE-MS/MS
2
 of parent ions m/z 706, and 722.  f) FIE-MS/MS

3
  of 

parent ion m/z 560 showing that both of the original metabolites had solanidine  as the 

core alkaloid unit. 
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Figure 6.8:   Putative annotation of an arginine [M+H]+ ion from an FIE-MS 

fingerprint of a crude potato extract by spectrum matching with known 

standards in the ARMeC database. (a)  FIE-MS fingerprint of a crude potato extract 

with a signal at m/z 175 labelled in red. b) ARMeC predictions for the putative identity 

of m/z 175 in a potato tuber extract.  FIE-MS/MS experiment of m/z 175 yielded 

spectrum c) which matched by database query to the ARMeC FIE-MS/MS spectrum 

d) of the arginine standard m/z 175 ([M+H]
+
 ion). 
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Figure 6.9: Annotation of m/z signals in FIE-MS fingerprints after fragmentation 

and further chromatography to identify isomers.  (a)  A high abundance signal  

(m/z 381 and a lower abundance signal (m/z 215) are shown labelled in red in a  FIE-

MS fingerprint of a crude extract from a potato tuber.  FIE-MS/MS experimentation 

(b) and ARMeC database query (c) identified m/z 215 as chlorognic acid. FIE-MS/MS 

experimentation (d) and ARMeC database query (e) identified m/z 381 as a 

disaccharide [M+K]
+
 ion.  Subsequent GC-MS analysis revealed that m/z 381 was a 

combined representation of sucrose and inulobiose [M+K]
+
. 
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After putative annotations have been assigned, further investigation by FIE-MS/MS
n
 queries 

is required to reduce the number of possible putative annotations (Figure 6.8c & d).  As ion 

trees for particular adducts are unique to the particular structure of a molecule, confirmation 

of the putative metabolite identifications and associated adduct/neutral loss/dimeric states can 

be supported by FIE-MS/MS
n
 experiments (Figure 6.8).  If the case arises where more than 

one dominant metabolite is contributing to the observed m/z signal, confirmation of 

metabolite identity can be achieved by subsequent FIE-MS/MS
n
 experiments on the extract 

spiked with the appropriate metabolite standard and monitoring for increased m/z ion intensity 

of targeted daughter ion fragments. 

 

In the case where putative identifications are shared by molecules of different isomeric states, 

sharing the same molecular weight and structural similarity (i.e. saccharides), FIE-MS/MS
n
 

experiments will only be able to prove the identification of the class of compound and its 

adduct/neutral loss/dimeric association.  Figure 6.9 provides such an example.  Here the 

annotation short list for m/z signal 381 Da is composed of several compounds, the majority of 

which are [M+K]
+
 disaccharide ions.  As the FIE-MS/MS

n
 fragmentation tree for each of 

these ions are identical due to similarity in structure and in turn the molecular weight of the 

resulting fragments, chromatographic profiling of this extract is required to confirm the 

identity of the disaccharide ion.  In the case of Figure 6.9, GCMS profiling demonstrated 

sucrose to be the predominant disaccharide in the potato sample.  However, GCMS results 

also confirmed that inulobiose was present as a minor component and therefore was also 

contributing to the observed 381 m/z signal.   
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Sucrose cluster including unknown ions
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Figure 6.10:  Examination of correlation analysis results, isotopic ratios and 

intensity behavior to discover linked FIE-MS signals.  (a) Shows the results of a 

correlation analysis of m/z signals from positive ion mode FIE-MS with high 

explanatory power to discriminate between Brachypodium leaf tissues at different 

days (1-5) after infection with the rice blast fungus. The dendrogram on the left 

illustrates the hierarchical clustering of m/z signals (shown on the right) using the 

absolute value of signal Pearson correlation coefficient between signals as similarity 

matrix (scale at the base).  Boxed in red are clusters of signals that display 

interpretable patterns. (b)  Grouping of signals representing putative salt adducts 

isotopes, clusters and possible fragmentation products derived from sucrose. (c)  The 

relative intensity of signals 381>382>383>384 suggest that all are isotopes of the 

same molecule which is reflected in the signal intensity levels at each day post-

infection. Similar isotopic behaviour is shown for m/z 160 and 161 (d) and m/z 372 

and 373 (e), among several other examples.  The correlation of m/z signals (372 and 

365) differing by 16 mass units (e) is indicative of Na and K adducts of the same 

molecule.  (f) Non-isotopic behaviour of m/z 751 which is of greater intensity than m/z 

750.  
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Identification of Isotopes by Correlation Analysis 

 

Although m/z signals differing by one nominal mass unit can be present in top ranking, 

discriminatory RF lists, these signals are not necessarily isotopes of the same molecule.  

Correlation analysis performed upon RF lists is a rapid way of distinguishing possible 

isotopic relationships between explanatory m/z signals.  Figure 6. 10a shows a correlation 

analysis of all m/z signals with explanatory power to distinguish between samples 

representing different phases of disease progression in rice blast infected Brachypodium 

leaves.  Many signals clusters appear to contain an isotope series (for example in red boxes 

see 365, 366, 367; 381, 382, 383, 384; 160, 161; 372, 373; 749, 750, 751). With the exception 

of the last group, an examination of the relative abundance of ions in each series shows a 

large drop in signal intensity as the mass increases, reflecting the natural abundance of heavy 

isotopes (Figure 6.10c, d).  In Figure 6.10f the m/z 751 has a higher intensity than both 749 

and 750 and is thus unlikely to represent an isotope.  In addition to isotope ratios the box plots 

in Figure 10c and 10d show that, as expected, each isotope has an identical signal abundance 

pattern in each sample class.   Within the correlation analysis it is common to observe pairs of 

correlated signals in positive ion data differing by 16 mass units which represent Na and K 

adductions of the same metabolite (for example 365 and 381; 366 and 382, 367 and 383; 356 

and 372; 543 and 527).  Similarly, clusters can contain signals differing by 22 mass units that 

may represent protonated and Na addicts of the same metabolite (for example 534 and 556; 

937 and 959). Similar isotope clusters are evident in negative ion data (Figure 11a and 11b).   

Due to natural variation in the isotopic pattern of various metal adducts, results from the 

correlation analysis can be used to distinguish adducts or metabolites containing Cl and S 

atoms.  Figure 11c and Figure 11d show the correlation behaviour and isotopic relationships 

respectively of Cl adducts derived from chlorogenate in a potato extract.   
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Figure 11:  Correlation analysis of explanatory variables discriminatory for 

quality traits in a comparison of five different potato cultivars in negative ion 

mode FIE-MS. The dendrogram on the left illustrates the hierarchical clustering of 

m/z signals (on the right) using the absolute value of signal Pearson correlation 

coefficient between signals as similarity matrix (scale at the base).  Highlighted in box 

(a) is an example of a typical isotopic m/z signal correlation as evidenced by the 

isotopic distribution pattern for [M-H]
-
 ions in box  (b)  (m/z 353 = chlorogenate [M-

H]
-
).  The ion cluster shown in box (c) represents salt adducts of sucrose with the 

isotopic distribution pattern for [M+Cl]
-
 ions (m/z 377 = sucrose [M+Cl]

-
) evident in 

box (d).  
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Putative Annotation of RF Discriminatory Ions 

An important reality that should be recognized regarding nominal mass FIE-MS 

fingerprinting is that the fingerprinting technique is not directly measuring the level of any 

individual metabolite; instead it is providing a summation of „identical‟ signals in the 

analytical system.  When annotating FIE-MS fingerprints following multivariate data mining, 

especially when complex matrices are being evaluated, any particular m/z has the potential to 

relate to more than one metabolite as signals are binned (typically within a 1 Da window (see 

Section 5) when populating data matrices.  This can have a direct impact upon explanatory 

signal interpretation and for this reason we query the database for all potential mathematical 

relationships (i.e. (de)protonated molecular ion, a salt adduct of either Na or K, a neutral loss 

of water, ammonium or formate, the homogeneous dimer ion or a dimer ion pair adduct of Na 

or K) within the list of explanatory variables (m/z) representative for a given signal 

interpretation.  This process is repeated where the previous ion signal assumption is 

substituted for a subsequent interpretation representing the (de)protonated molecular ion, salt 

adduct, neutral loss or dimeric complex so that all possible combinations representative of the 

interpreted signal are queried against the RF list of explanatory variables.  Output of the 

database queries and the mathematical determination of potential signal relationships can then 

be used to generate tables containing putative identifications of explanatory variables.  Further 

investigation of signals highlighted in these tables by FIE-MS/MS
n 

and additional 

chromatographic experiments can be used to confirm the putative database annotations. 

Validation  of these signal annotation protocols has lead to the determination of metabolome 

changes in transgenic experiments involving Solanum tuberosum and Arabidopsis thaliana 

mutants 
3, 7

.  In the context of the G03 programme, this protocol has also been used 

successfully to putatively annotate potato cultivar traits associated with food quality 

characteristics as described in Section 9 and published in Beckmann et al, 2007
19

. 
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G03012 Final Report - Section 7 
Matthieu Vignes/Jim McNicol 
 

 

Dealing with missing values in metabolomics data and 

analysis of ranges of metabolite values and development of 

statistical models of metabolite distributions in 

conventional crops (Tasks 03.03 & 04.01) 

 

 

7.1 BACKGROUND TO EXPERIMENTAL SECTION 

 

A major issue when trying to compare the composition of any food raw material is that 

information from diverse external sources is rarely directly comparable.  A major conclusion 

of Section 2 of the GO3012 Report was that few databases or publications provided the same 

coverage of metabolites and, where there is overlap, the concentration measures vary; in most 

instances the data could not be transformed easily into a common format, thus any 

comparative univariate analysis or correction of missing values was more or less meaningless. 

Partly for this reason it was not deemed appropriate to spend time developing a new 

implementation of ArMet to hold this external data and instead research focused on the 

further development of the pilot database describing information on potato tuber chemical 

content (ARMeC: see Section 6 of the GO3012 Report) to now include provision of links to 

external data describing measurements on specific metabolites.  Univariate analysis, including 

the exploration of data „infilling‟ procedures where there are missing values was therefore 

limited to the 4 large G02 GC-MS data sets (see Section 1 of G03012 Report) whose structure 

are summarised below.   

 

7.2 OVERALL OBJECTIVES  

 

In the present section we introduce the univariate and non-supervised multivariate analyses 

focused on, including specifically a discussion on methods to deal with missing values and 

then go on to describe the different sort of conclusions we were able to reach.  Univariate 

analysis of large metabolomics datasets had clearly been an element in all of the G02 project 
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laboratories contributing data to be analysed in the current G03012 project.  Rather than 

repeat any of these studies, a major objective was to determine what kind of univariate 

approaches had value in the description of the overall trends of metabolite signal behaviour in 

the four major GC-MS datasets.  From this study we can start to make some suggestions of 

what kind of distribution characteristics generally measurable metabolites overall or indeed 

specific metabolites might be expected to show in potato tuber extracts. From this description 

any unusual deviations in the future might be highlighted in new cultivars or GM varieties.  

As part of this study an integral task was to develop statistically robust peak table in-filling 

strategies to deal with missing values and data transformation methods to normalise data 

produced on instruments with different sensitivities. Following this study a validated peak 

table infilling routine was selected and implemented in the R software package developed in 

the G03012 project (see Section 8). 

 

7.2.1 Summary of objectives: 

 Analyse feature signal behaviour in GC-MS data and determine best fit distribution 

pattern. 

 Compare peak table feature content, intensity distributions and effects of experimental 

factors on non-supervised multivariate  behaviour. 

 Analysis of effects of data transformation on univariate behaviour. 

 Analyse missing data distributions. 

 Determine effect on data infilling strategies on peak intensity distributions. 

 

7.3 INTRODUCTION AND DESCRIPTION OF DATA SETS 

 

The basic aim of the project was to develop procedures to describe and compare the natural 

variability of composition encountered across raw food materials derived both within and 

between individual genotypes of the same species. By examining the univariate distribution of 

the variables (metabolites) we hope to determine whether an appropriate distribution can be 

found, i.e. a distribution which describes well the variation in metabolite response. This 

approach will provide, via the distribution parameters, a succinct method of characterising all 

aspects of the metabolite behaviour for a single environment. Another goal was to detect any 

change in response to different environmental or experimental conditions where these are 

evident as „factors‟ (e.g. field plot or harvest year or instrument operator) in the meta-data. 
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Using distributions, such changes are indicated by differences in the distribution parameter 

values which may or may not effect all metabolites in the same way.  This being said it is 

apparent from Section 1 of the G03012 Report that none of the G02 datasets represented the 

same cultivars grown in different geographical regions and so this element of the project will 

be limited. Conventional statistical methods for the study of metabolite content define ranges 

of values e.g. mean+/-standard error or mean+/-3*standard error. As a simpler option, we 

might also consider minimum to maximum intervals; fitted distributions provide a 

comprehensive description rather than a summary. Missing values in metabolomics, just like 

in many high-dimensional datasets regardless of the field, is a common feature in the high-

throughput methods, not to mention yet the merging of data from different sources. As a 

consequence, applying most of statistical tools designed for complete datasets is far from 

straightforward.  

 

Missing values can have a strong effect on the outcome of the analysis. Simply discarding 

samples – case deletion in the statistical jargon – with (too many) missing values could 

exclude a too high percentage of the samples, depriving the analysis of a substantial amount 

of meaningful data and lowering the power of any test carried out. Accounting for 

„missingness‟ specifically increases the level of complexity of the analysis. It is probably a 

necessary burden as it is now recognized that over-simple approaches can lead to spurious 

results. On the other hand, patterns of missing values are difficult to identify reliably and 

computational aspects can be an issue (possibly why this feature is not available yet in many 

statistical analysis packages!). As recommended by several authors (e.g. Heitjan 1997), we 

will first focus on describing missingness in our data: its distribution and its origin. 

Theoretically, when the dependency between variables and the missingness mechanism is 

known, including them in a model allows an easier and more reliable analysis. In practice, we 

will see that it is extremely difficult to decipher these links and to correctly integrate such 

knowledge. 

 

 

7.3.1 Data Sets 

 

Four data sets were used to address the questions in this section: ABER 2001, SCRI 2002, 

GOLM2001 and GOLM2003. Briefly, all four data sets are based on GC-MS spectra and 
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hence describe volatile/semi-volatile compounds. Entering a vacuum region after the 

separation column, compounds are bombarded by high energy electrons that cause 

metabolites to fragment. Fragmentation patterns are dependent on the structure of the 

compound. Fits with a library of known compounds allow the identification of the actual 

detected compounds. Many compounds remain unknown because no match in the library was 

found; either the actual compound is not in the library or the experimental pattern does not 

correspond to the one(s) stored in the library (see G03012 Sections 3 & 4 for description of 

peak detection and annotation). 

 

ABER 2001 

These data are from a field trial, originally with 6 cultivars and 6 GM lines laid out in 4 

blocks with a randomized complete block design.  Only data pertaining to the 6 cultivars were 

used here. From each of the 6x4 target plots 48 tubers were selected and analyzed (note that 

the number of repeated measurements can vary). Day of injection was recorded. Each 

spectrum had 85 measured peaks of which 37 (43.5%) were „known‟ (i.e. are assigned names 

that can match a precise chemical compounds e.g. “Alanine”, “L-lysine_6.533” or “serine-

major” whereas “34U-106”, “5.777”, “cho35” or “y_amine”  aren‟t).  Of the 6x4x48x85 data 

values less than 1% were missing. 

 

SCRI 2002 

These data are from a field trial with 23 cultivars with a randomized design. From each of the 

23 target plots, 4 tubers were selected and analyzed (7 of them have no corresponding 

measures because of instrument malfunction and were consequently deleted from the 

analysis). Day of injection was recorded. Each spectrum has 160 measured peaks of which 36 

(23%) are „known‟. 3.5% (10.7% if empty rows are not omitted) of the data values were 

missing. Other information (e.g. day samples frozen) are also available for quality control. 

 

GOLM2001 and GOLM2003 

GOLM2001 data and GOLM2003 data are two repeats of an experiment which was derived 

from the same series of field trials providing the material for the ABER 2001 project.  Theses 

data are derived from very similar experimental structures originally from a field trial, with 6 

cultivars and 6 GM lines laid out in 4 blocks with a randomized complete block design. 48 
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tubers were selected and analyzed by 2 operators (randomized towards block and line only in 

the GOLM2003 data set). Again, we only used data describing the 6 cultivars. Day of 

injection was recorded, only being randomized towards other factors in the GOLM2003 data 

set. Each spectrum has respectively 252 and 245 measured peaks in GOLM2001 and 

GOLM2003 data sets. Among these, respectively 81 (just above 31%) and 109 (44.5%) are 

„known‟. The proportion of missing values is higher in these data sets and reaches 17 and 

20% respectively.  

 

 

7.4 UNIVARIATE ANALYSIS OF G02 DATA 

 

7.4.1 Data characteristics, structure and transformation 

 

A first step in data analysis is to produce, from the gross machine measurements a matrix 

expressing relative metabolite levels for the sample under consideration. This subject has been 

largely debated in the data pre-processing section (Section 8) of the present research project. 

It is assumed that  a standard quality control and data-pre-processing strategy will have 

already been implemented for example to highlight regular patterns of missing data, sample 

outliers and  any lack of measurement consistency between similar sample classes or 

detection limit issues. Hence we end up with a matrix that provides for each sample a profile 

over the different variables (intensity measures of detected peaks in our case). Samples are 

represented by rows and variables (metabolites) in columns. As determined in Section 9 of the 

G03012 Report, all response values were subject to a log-transformation before any other 

transformation or normalisation procedure. This removes skewness and follows the common 

convention (see van den Berg et al. 2006 and Steinfath et al. 2008 for discussions on data 

transformation but also on data scaling). As we have demonstrated this treatment achieves 

optimum classification results and more stable feature selection. 

 

Figure 7.1 (left) gives an example profile (Asparagine in ABER2001 data set) across samples 

which have been sorted by order of processing. It is clear that comparison between samples 

can be an issue. There is clearly an effect due to day of injection and ideally this should not be 

present as an observed trend in the data. One way of removing such sample effects is to 

express each compound as a fraction of the sum of all compounds for that sample. Although 
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not perfect, this normalisation created better data in terms of trends (see Figure 7.1 right; 

however one could argue that visible trends have only been diminished) and in terms of shape 

of the distribution (see next section). The effect on the same metabolite distribution across 

cultivars can be seen in Figure 7.2. While raw data could have led to the conclusion that 

cultivar Linda might be richer in Asparagine, the transformed and normalised data make it 

clear that no such effect exists. 

 

Greater difficulty arises when the comparison is between measures made on different 

instruments. We decided to use the same transformation/scaling procedure approach. Standard 

procedures to provide a principled comparison of raw food material are needed. We focus 

here on untargeted experiments (i.e. no chemical standard is included in sample to analyse). A 

drawback of this process is that absolute values are not obtainable. An advantage however is 

that a greater variety of compounds (all resolvable peaks whose annotation is far from trivial) 

that need to be characterized can be measured. Since our aim is to observe the biological 

differences in raw food materials, we want to eliminate instrument, laboratory, operator and 

any other effects that can interfere with differences in raw data patterns. 

 

 

 
 

Figure 7.1: Raw asparagine peak across samples (left) and log-transformed and 

normalized data (right) in ABER2001 data set. The colours represent day of injection 

and the 2 lines at the top of the graphs indicate cultivar and field block of the sample. 
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Figure 7.2: Box plot of asparagine value distribution according to the cultivar factor in 

raw data (left) and log-transformed and normalized data (right) in ABER2001 data set. 

 

 

Several other features of the data need to be taken into account: high dimensionality, 

biological treatments and instrument variations. The FSA GO2006 project led to the 

production of powerful machine learning data analysis tools for fingerprinting or profile 

classification/discrimination that can lead to standardised similarity criteria for crop raw 

material comparison based on metabolomics data. Before going onto multivariate analysis, we 

focused on studying individual metabolite distributions in the 4 data sets described above. 

 

 

7.4.2 Fitting a distribution to individual metabolites 

 

The main subject of Milestone 4.1 of the original proposal was to assess the univariate 

distribution of common metabolites. First, we quickly scanned through histograms and 

smoothed histograms (kernel density estimates) of compounds to get an initial assessment of 

how well a „Normal‟ distribution describes metabolite variation. To quantitatively assess how 

well the data approximate a particular distribution, we used a plot of the sorted values against 

the expected values of the ordered statistics for the theoretical distribution. A perfect fit would 

result in a straight line. Traditionally, such representations include Quantile-Quantile (Q-Q) 

plot or Probability-Probability (P-P) plots. We preferred to use a more refined stabilized 

probability plot (Michael 1983) that stabilizes the variance of the plotted points by an arcsine 

transformation. In combination with a powerful goodness-of-fit statistic (maximum deviation 

hence analogous to the statistic used in a Kolmogorov-Smirnov test), we can construct 
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acceptance regions for the compound distributions (Figures 7.3, 7.4 and 7.5 show examples 

with 99% confidence bands). If every point lies within the defined band, the null hypothesis 

that data points are distributed according to the theoretical distribution is accepted. We 

investigated other distributions (log-normal, gamma and exponential) but none performed 

better than the Normal distribution. 

 

 

Figure 7.3: Example of metabolite (Fumaric Acid) for which the test output concludes 

as being Gaussian (ABER2001 data). 

 

 

Figure 7.4: Limit example where normality can be accepted for metabolite 

(Asparagine) distribution, even though fit is not perfect (ABER2001 data). 
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We then tested all metabolite distributions for normality. Three different scenarios were 

encountered. Firstly, an excellent fit of the data to a Gaussian distribution (see Figure 7.3). 

For example, we can conclude that log-normalised fumaric acid has a normal distribution at a 

99% significance level. The second situation arises in the case where data are clearly not 

Gaussian. This is the case for the sucrose peak of Figure 7.5; this very abundant metabolite is 

an example of when under-estimates of peak concentration are possible due to detector 

saturation. The intermediate situation also occurred. For example, from Figure 7.4, we should 

conclude that asparagine distribution is not Normal as a slight effect of skweness is observed. 

Outliers might also be observed in distributions‟ tail(s). When these effects are not too 

important (as it is the case in Figure 7.4), we will accept the approximate Normal distribution 

for such variables. 

 

Figure 7.5: Example of metabolite (Sucrose) distribution that is not Gaussian 

(ABER2001 data). 

 

 

Tables 7.1 and 7.2 summarize our assessment of normality of all metabolites.  

 

 Normal Non normal 

SCRI2002 129 31 

GOLM2001 75 102 

GOLM2003 78 80 

ABER2001 52 33 

 

Table 7.1: Number of metabolites whose distribution is identified as normal (after log-

transformation and normalization) in the 4 data sets, using a level of significance of 99%. 
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Table 7.2 shows that for the ABER2001 data there is not a strong dependency between a 

compound being known and whether it is normally distributed (the p-value for positive 

association is 0.35 according to a Fisher test on proportions).  This observation would tend to 

suggest that peaks have been carefully manually aligned with little evidence of false positive 

or false negative values.  We scanned every metabolite distribution in the 4 data sets and 

essentially (with one or two exceptions such as sucrose) there is not much more that can be 

said about metabolites that do not have a Gaussian distribution.  Based on this observation we 

suggest that measures for deciding whether a sample (e.g. of a given cultivar) has a typical or 

extreme content in one particular compound is only really valid when it is reported to be 

normally distributed. In fact, we can use the central and dispersion values reported in our in-

house compositional database (see report on crop compositional data collected from the 

literature or available food databases in Section 2) to give good estimates of the distribution 

parameters (a central value and a value reflecting the spread of the distribution). In Section 2 

we reported the difficulty of aligning quantitative data relevant to food composition data and 

chose to input derived qualitative concentration estimates in the ARMeC database which was 

only intended to be developed as a pilot and cannot be used to assess metabolite distributions 

in new data. In the future we hope that ARMeC (Aberystwyth Repository of Metabolite 

Characteristics) can be made comprehensive: values in it need to be (i) filled in more 

comprehensively (nearly 300 compounds were reported as present at least once in literature 

describing potato tuber but only about 100 of them have reliable numerical information 

available); (ii) the literature sources quoted in ARMeC need to be checked more thoroughly to 

make sure that the data reflect the average crop and the data converted (if at all possible) to 

represent the same sample extraction and metabolite quantitation descriptors. We have 

already reported that there is room here for further development but that this cannot be 

achieved in this project given the considerable needed amount of time needed from expert 

potato biochemists. The implemented ARMeC will permit the update and future development 

of the database. In the interim we need to assume in the following sections that we would 

have such values at our disposal if metabolomics data is used to compare new potato 

genotypes to the composition of previously described potato tuber raw materials. 
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 Normal Non normal 

Identified 24 13 

Not identified 28 20 

 

Table 7.2: Number of metabolites whose distribution is identified as normal (level of 

significance 99%, after log-transformation and normalization) according to the metabolite 

chemical identification in ABER2001 data set. 

 

 

At the present time we would be able to tell whether the value of a given compound in a new 

sample (from a cultivar to test or a GM variety) is „within range‟ or seems to be extreme. It is 

a different question whether a value is typical or not for a given distribution. An important 

underlying assumption here is that the data we use reflects correctly the biological usual 

background of the crop under study. This could be checked by plotting values from 

metabolomics data vs. values from compositional data in order to confirm that metabolomics 

data are correlated to the actual content of the crop. Again, this is not feasible yet because of 

complexity of the external literature. The major drawback of the solution proposed here is that 

it focuses on metabolites individually. Considering distributions of several variables and their 

joint distribution in deciding whether a given sample differs from another or from predefined 

baseline behaviour can lead to quite different conclusions. We propose to go more deeply into 

this question in the section to follow in which we use a non-supervised multivariate method to 

visualise the similarity of samples representing the same or different cultivars. 

 

7.4.3 Representing sample differences and similarities by non-supervised 

multivariate analysis   

 

The challenge here is to make the best use of all compound distributions simultaneously. We 

propose Principal Coordinate Analysis (PCO) to perform this assessment, an approach based 

on similarities between samples. PCO is a simple case of multidimensional scaling. The basic 

idea of multidimensional scaling is to take the matrix of all pairwise samples distances and to 

seek the best representation of the samples in d dimensions. Ideally, d would be 2 allowing 

simple scatter plot graphs of the samples. An important point is to determine how many PCO 

dimensions should be used. If d is chosen too small, there may be some important information 

in the data not included in the results. On the other hand, if it is chosen too large relative to 

the number of samples, misleading interpretations can arise (Anderson and Willis 2003). We 

started with d =4 and looked at the results for d =7 without noticing additional interesting 

features.  
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Figure 7.6: Plot of PCO scores for SCRI2002 samples. Colours stand for the 23 

different cultivars. Percentage of distance accounted for by the first 4 dimensions are 

21.5, 18.8, 11.6 and 8.  

 

Any new sample (e.g. new cultivar, GM line) can be added to the PCO maps of points created 

from a set of samples considered to represent appropriate genetic background variation. This 

is a more technical procedure than adding a new variable in PCA but procedures have been 

developed to solve the problem (Wilkinson 1970).  

 

We present in Figures 7.6 to 7.9 results obtained from our 4 target data sets. One goal here 

was to identify the most important environmental factor(s) affecting the distribution of the 

data. The situation in the SCRI 2002 data shown in Figure 7.6 is somewhat peculiar. It 

includes only 92 samples spread across 23 levels for the factor “line” (4 replicates per cultivar 

only) and so it would be very difficult to see any groupings. We are indeed interested in 

groupings because PCO score plots reflect a distance between samples. Firstly we want to 

check that samples that are believed to be similar can be distinguished from less similar ones 

on the plots. Secondly, we would want to plot a new sample in the initial PCO plot to check 

whether it is similar according to the distance of known samples or if there is some distinctive 

feature in it. Such assessment provides a useful visualization of compositional differences 

between samples of previously analysed or novel genotypes.  To use effectively in the future 

appropriate genotypes to represent background variation in a gene pool would need to be 
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selected using information on UK potatoes (http://varieties.potato.org.uk) or in the European 

database (http://europotato.org). 

 

In Figure 7.7, there is a well defined cloud of points covering all samples. PCO did not clearly 

separate samples according to the line. However, one can spot some separation among some 

sets gathering different cultivars (see PCO4 vs PCO1, PCO2 and PCO3 for instance). 

 

 

 

Figure 7.7: PCO scores for ABER2001 sample. Colours represent different cultivars. 

Percentage distances accounted for by dimensions 1, 2, 3 and 4 are: 16.1, 9.8, 8.7 and 

6.8.  

 

The GOLM2001 PCO analysis (Figure 7.8) is surprising. Two clearly separated groups, 

unrelated to field block or cultivar are evident in PCO. Further inquiry (Figure 7.8 (C)) 

revealed that this separation was mainly due to the factor relating to the operator handling the 

sample.  A problem of randomization of the sample processing is also present is this data set 

in which no randomization among blocks, lines, operators and days of injection was 

incorporated. This example shows that PCO plots can reveal the influence of factors which 

are part of the experimental procedure as apposed to factors whose effect we wish to estimate 

(„treatments‟). In contrast the PCO analysis of GOLM2003 data (Figure 7.9) reveals only 

cultivar differences, demonstrating clearly the improvement of experimental procedures 

during the G02006 project. 

 

 

http://varieties.potato.org.uk/
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Figure  7.8: PCO scores for GOLM2001 samples. Colours stand for (A) field block 

(4), (B) cultivar (6) and (C) operator (2). Percentage distance accounted for by 

dimensions 1, 2, 3 and 4: 19.5, 9.4, 5.8 and 5.4.  

 

 

 

 

 

Figure 7.9: PCO scores for GOLM2003 samples. Colours stand for (A) cultivar (6), 

(B) field block (4) and (C) operator (2); percentage distance accounted for by 

dimension 1, 2, 3 and 4: 12.6, 11.1, 8.4 and 7.2.  

 

The conclusion so far is somehow mitigated; apart from the GOLM2001 data (see discussion 

above), PCO score plots consist of a single cloud of points. Samples expected to be different 

are not really differentiated from the overall background variation typical of the potato tube 

matrix, although cultivar seems here to be the determining factor that structures the clouds of 

points.  PCO currently seems to be a promising tool for checking similarities between data 

from samples run through GC-MS but the results presented here on real data might be seen as 

a bit disappointing. However, it is important to realise that the two extremes of experimental 
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replication typified by the SCRI 2002 data (4 biological replicates) and Golm/Aber data (192 

replicates from 4 field blocks) have different effects on variance characteristics of the data.  

The former does not offer sufficient replicates for accurate PCO visualisation whereas the 

latter suffers from experimental and environmental factors that compound variance, making it 

difficult to see distinctive clusters of signals representing a single cultivar. In the future it is 

expected that adoption of a pilot study to optimise a replication strategy (e.g. in Section 9 of 

the G03012 Report it was concluded that around 20 replicates will be optimal to classify 

potato cultivars) for a new sample matrix will overcome this problem and allow the use of 

PCO as a quick visualisation tool to compare metabolite distributions in new samples. 

 

7.4.4 Conclusions on feature variance in G02 data 

 

 

We conclude that the intrinsic dependencies in the data hinder their deciphering and conceal 

real sources of variation in these data sets produced several years ago in the G02 programme 

which aimed to develop procedures for metabolomics.   In fact since G02 reported the 

standard of data produced either at SCRI, Golm or Aberystwyth University has been 

incrementally improved by the production of standard operating procedures, such as those 

presented in the series of Nature Protocol articles produced during the G03 project. Thus, 

experimental factors should no longer be major sources of unwanted variation. As far as the 

single compounds are concerned (after log-standardisation), the first remark is that they are 

often normally distributed, though this could vary from data set to data set. We could not find 

any indicator of compounds for which a Normal distribution is not appropriate (nor are other 

classical distributions). The finding of a statistical distribution that fits individual metabolite 

distribution is a useful tool since it can detect whether a new sample is within expected range 

in a new sample or not. In order to analyse all compounds simultaneously, we used PCO plots 

to represent overall sample differences/similarities. New individual samples can be added to 

the plot to see where, in relation to overall variability, they will be placed. This assessment is 

based on visual inspection. PCO plots should also be used to understand partitioning of 

overall variation by colouring sample points according to levels of each known factor (meta-

data).  

 

Suggestions for further work would be to design experiments that expressly account for the 

expected overall variability in a potato (need to define a set of cultivars to use as well as 
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predefined environmental/processing factors, etc.). Moreover, the fusion of different data sets 

from different laboratories, possibly using different techniques to cover different families of 

important metabolites (e.g. Amino Acids and Sugars for GC-MS and Glycoalkaloids for 

LCMS) should be used. This is a prerequisite in order to decipher which area of metabolism is 

covered by metabolomics data sets for example. This would offer a complementary look at 

raw food material and aid in safety and/or quality assessment. 

 

7.5 DEALING WITH MISSING VALUES IN METABOLOMICS DATA TO 
ALLOW COMPARISON OF METABOLITE COMPOSITION. 

7.5.1 Distribution of missing values in datasets: Pattern of missing values 

 

Figure 7.10 represents missing entries (in blue) in four different metabolomics datasets 

available to us. Each row represent a sample that has its own features (line, environmental 

condition…) while each column represents one peak that has been detected by the analysis 

technique (here gas chromatography in all cases) and quantified (using mass spectrometry). 

Samples are considered as our „individuals‟ and peaks as „variables‟ under study from a 

statistical point of view. SCRI 2002 and ABER 2001 datasets do not have a high number of 

missing values, respectively 3.1% (if we exclude 7 samples on which no measurements have 

been made, otherwise 10.7%) and 1.0%. The SCRI dataset is somewhat different since the 

number of sample is fewer (one order of magnitude fewer, ~90 against nearly ~1000 for each 

other dataset). Note that its number of replicates for each cultivar is reduced (only 4 against 

~100 for other datasets) but it is concerned with 22 different cultivars (6 only for the three 

other datasets). Particular care was taken with these data sets at the data-pre-processing stage 

to keep missing entries to a minimum. On the contrary, datasets GOLM 2001 and 2003 can be 

considered to have a high percentage of missing values, respectively at 16.9% and 20.0%. 

Moreover, a structure in this missing pattern is clearly visible (batch/line/column effect). Both 

population and variable structures influence the missing pattern. In this case, data are said to 

be Missing Not At Random2. It is recognised that the MNAR framework is difficult to tackle 

                                                 
2 The key question for analysis with missing data lies in the circumstances that can alter the validity (e.g in terms 

of valid inferences) of answers arising from complete data sets analysis. It depends on the data absence 

mechanism. Data can be Missing Completely At Random (MCAR), Missing At Random (MAR) or Missing Not 

At Random (MNAR), see Little and Rubin 2002. Under MCAR, the probability of an observation being missing 

does not depend on observed or unobserved measurements. An example would be the random drop out of 

measurements without considering measurement values. Under MAR the probability of a value being missing 

will generally depend on observed values -so it does not correspond to the intuitive notion of 'random'. Examples 

include trial subjects removal because not enough predefined information criteria are available or the decision to 
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whatever analysis approach is used, even for low rates (i.e. above 5% of total data absence) of 

missing values. However, no test exists at the moment to determine whether a dataset is 

actually MNAR. 

 

 

Figure 7.10: Missing value distribution in different datasets (rows are samples and 

columns are peaks or variables). 

 

 

7.5.2 Influence of factors on missingness  

We decided in the present report to focus on the relationship between missingness and other 

factors/variables of interest. In other words, how are “holes” in one dataset distributed 

according to some metadata? For example, Figure 7.11 represents the dependencies between 

the number of missing values in one sample and the field block where it was grown in the 

three datasets for which this factor was available. No particular relationship is to be noticed. 

In the same way, Figure 7.12 is a box plot of the number of missing values in the four datasets 

                                                                                                                                                         
make another measurement depending on the recorded value for a variable as regards a predefined criteria. In 

other cases, MNAR framework (probably true mechanism in most cases) needs to be considered; to obtain valid 

inference, the (generally unknown) absence mechanism must be included in the model. Censorship induces 

MNAR data. 
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according to the cultivar of the sample. Again, no dependency is to be noticed. Note that no 

real conclusion can be given for the SCRI 2002 dataset given there are only 4 replicates at 

most for each line. So there is no influence on the sample origin or of its nature on the value 

absence. 

 

 

   

Figure 7.11: Number of missing values in different datasets according to the 

field block. 

 

 

 

 

Figure 7.12: Number of missing values in different datasets according to the 

cultivar. 
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Figure 7.13: Number of missing values in different datasets according to the 

day of injection of the sample. 

 

 

Figure 7.14: Number of missing values in two datasets depending on the 

operator carrying the analysis. 

 

Figure 7.13 plots the number of missing values versus the day of injection of the sample into 

the machine. Again no clear structure between these two factors can be retrieved. So the order 

in which measurements were made does not seem to affect the missingness. We also report in 
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Figure 7.14 the distribution of missing values according to the operator when we had this 

information. Again, there does not seem to be a significant dependency between these two 

variables (though this can be discussed for the operator factor). The only positive dependency 

we were able to retrieve is shown in Figure 7.15. The number of missing values is notably 

larger for unidentified peaks in three datasets (SCRI 2002, GOLM 2001 & 2003), the last one 

(ABER 2001) having been carefully pre-processed as regards missing entries does not show 

this relationship. On one hand, this is rather good news since we will actually be focusing on 

identified variables for the univariate analysis. Relatively few missing values will have to be 

imputed for identified peaks. The choice of the imputation method in this case will not 

influence too much the results of most statistical analysis (especially if we can assume MCAR 

data). On the other hand, imputing missing values for unidentified peaks will become 

necessary for any multivariate analysis of the data.  

 

 

 

Figure 7.15: Number of missing values in different datasets according to the 

identification of the peak on which measures are carried out. 0 indicates that 

the peak isn‟t identified whereas 1 indicates that it is. Identification refers to a 

relatively accurate link to a known chemical but does not include partial 

chemical differentiation (e.g. cho-oligo14, amine30 or y_aliphate). 
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7.5.3 Causes for data absence in metabolomics data 

 

We now briefly discuss possible causes of missing values in a metabolic datasets. Metabolites 

are present in plant tissue extracts in a dynamic concentration range that can differ over 

several orders of magnitude between individual metabolites. Thus many low concentration 

metabolites may fall below the threshold for accurate detection in some runs, depending on 

system sensitivity at the time and absolute concentration in replicate sample (Draper et al. 

2004). We can encounter the case of a false negative: assay values below detection limit (true 

„low‟ value) can point out to a specific class of metabolites. Hence the missingness is 

informative. The absence of an observation might also result in an inconsistency or a 

mismatch, for example when the analytical instrument experienced a malfunction or the 

metabolite was treated as an outlier. A false positive peak could have been generated by the 

peak alignment software in the same retention time window and thus the expected peak is not 

found. Quite often  the automatic deconvolution or the peak detection software can be blamed 

(true negative) when two metabolites cannot be separated (Steinfach et al. 2007). A third 

possibility is that a value can be missing without us actually knowing it is missing (the 

missing value is hidden by another measured peak at the same mass ratio because of artificial 

effects: see the glossary entry for „matrix effect‟ in Birkemeyer et al. 2005). We here refer to 

the (ionization) suppression effect well known in proteomics. 

 

Given the typical volumes of metabolomic data the semi-manual checks performed on the 

ABER 2001 data are obviously too prohibitive in terms of time and money to be carried out 

routinely. Moreover, individual machine set ups might also imply that a different data set 

intensity values cannot be directly compared. All these reasons support the inclusion of 

missing data treatment in the analysis phase. We cannot ignore missing values as soon as the 

dimension of the problem at hand becomes significant. In fact, a simple calculation shows that 

for only 1% absent measurement in an 100*100 array (100 samples and 100 variables), 63% 

of the rows (samples) are affected by a missing value in the case of random value removal. In 

the case of pairwise correlation, the situation is not so adverse since only one or two values 

will be omitted. We will here only consider simple tools to modify data sets with missing 

values, discuss their advantages and drawbacks and comment on the work that can be 

considered to avoid known missing data pitfalls. 
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7.5.4 Missing data in combined data set: Description of the fusion of data 

sets 

 

When data from several datasets are combined, the result is not only the addition of missing 

patterns. Another form of missingness which we describe as structurally missing values 

appears. It occurs because of the highly non-overlapping lists of variables (chemical 

compounds) that are detected in our varied metabolomics datasets. Figure 7.16 illustrates the 

complex pattern that can occur from a combination of such data. Moreover, the percentage of 

missing values is much greater than in individual data sets because the sets of compounds in 

each data set are not identical (see Appendix 3A of G03012 Report). From a purely 

biochemical perspective, a comparison of the metabolite list from each data set is in itself of 

interest. According to the diversity of the considered datasets, it will provide an overview of 

detected compounds in the crop of interest in different or similar conditions by a panel of 

analytical techniques. To this extent, the comparison with an „external‟ source of the crop 

metabolite composition should be fruitful (see Section 2 of the G03012 Report which 

comments on published literature and accessible databases describing compositional analysis 

of crop plants). 

 

The priority is not to estimate the full data matrix. However, comparison across datasets could 

lead to more robust way for estimating missing values of interest. For example, Little 1992 

reviews the possibility of using generalized regression models for this purpose. Multiple 

regression models allow standard errors for estimates on the assumption of normally 

distributed peaks. Building up a list of reference data sets has already been successfully 

applied in transcriptomics (Hu et al. 2006) for missing value imputation. Additionally, this 

would help to determine whether an experiment reflects the actual amount of a chemical 

species in the crop under study and under which conditions. Whatever the approach is, the 

method can only be semi-automatic from our point of view. The knowledge of a biological 

expert is thus needed to decide whether a set of variables found to be correlated to a set of 

variables with missing entries will be relevant, or, to decide which reference datasets to use. 

Hence this is a difficult data analysis area because expertise is needed in the biological 

content of the data as well as in data handling and analysis. 
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7.5.5 Identifying a gold standard complete data set for comparison to aid 

imputation of missing values. 

 

An additional difficulty is the general issue of assessing a method when no gold standard 

dataset exists. Trying to create it would involve estimating missing values as no metabolomic 

data set is complete. There are two general approaches to this problem; either missing values 

can be inferred using other data from databases or statistical procedures can be used to 

generate estimate based on the appropriate set of data to be corrected. A combination of 

procedures is also possible. The choice of the estimating procedure itself is a rather difficult 

issue that is been debated a lot in the transcriptomics literature (see for example Brock et al. 

2008). A first step in this direction was our attempt in Section 2 to compare different GCMS 

metabolomics data sets (ABER 2001, GOLM 2001 & 2003 and SCRI 2002) with external 

compositional data picked from the literature or from databases. The idea is that, in light of 

important information coming from an „expected‟ list of common metabolites in a given crop, 

we can quantify relationships between these common compounds often detected at significant 

levels and less frequent compounds. 

 

 

7.6 EXISTING MISSING VALUE ESTIMATION APPROACHES 

 

7.6.1 Classical in-filling procedures applied previously to transcriptomics 

data 

 

There is an abundant literature on the subject of estimating missing values for transcriptomics 

data.   Troyanskaya et al. (2001) can be considered a pioneering piece of work which used the 

K-Nearest Neighbours approach.  Oba et al. (2003) described a  singular value matrix 

decomposition followed by a Bayesian estimation of the parameters whilst  Bo et al. (2004) 

advocated a least square imputation procedure and Ouyang et al. (2004) made estimations by 

modelling of mixture of distributions. There is no one single preferred method though it is 

acknowledged that different prior imputations can lead to very different results depending on 

data features (Scheel et al. 2005). This being said single imputation methods have two general 

drawbacks: lack of adjustment to errors of the statistics of interest to account for uncertainty 

on the imputed value and systematic bias. The latter is a result of non-random patterns in the 

occurrence of missing values. 
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Figure 7.16  Merging metabolomics datasets causing a curse on missing blocks of data. 

 

 



Page 253 of 370 

 

7.6.2 In-filling procedures in the metabolomic context 

 

Literature in the metabolomics field concerning dealing with missing values is comparatively 

sparse (see Tong et al. 2007). However there is a strong need for approaches that account for 

any particularities of the data at hand. The situation for general principled methods 

implemented in statistical software (see Horton and Kleinman 2007 for the case of regression) 

is not really satisfactory:  complex approaches don‟t seem to bring more reliable results than 

simpler naïve or heuristic approaches. The Multiple Imputation3 (Sinharay et al. 2001 or see 

http://www.multipleimputation.com) approach of the Amelia II software can only deal with 

multivariate time-series. Multiple imputation and likelihood based4 approaches give good 

estimates under „reasonable” assumptions (typically MAR). When MNAR is encountered, 

modelling the absence mechanism can be useful (it theoretically cannot be ignored!) but, as 

we have already pointed out, can be very sensitive to model selection. 

 

7.6.3 Taking a pragmatic approach to dealing with missing values 

 

Given the difficulties outline above, we chose to use a simple approach. For individual 

metabolomics datasets, we will infer missing values using a K-Nearest Neighbours approach 

(intermediary between weighted mean imputation and hot-deck imputation taking an observed 

value from a randomly chosen similar sample). The situation for ABER 2001 and SCRI 2002 

shouldn‟t be too problematic since the total number of missing values is low and there is no 

apparent missingness pattern. GOLM 2001 and 2003 data are more difficult. Hence we 

decided to remove variables with more than 25% of missing values. Many references agree 

that this relatively simple approach leads to acceptable results on simulated data or data where 

the absence mechanism is too simple for our case. Ideally we would have preferred to test 

different approaches and to assess their relative performances but we were not able to find a 

fair scheme and meaningful measures of error to compare them on metabolomics data. This 

                                                 
3 

 “Multiple imputation methods randomly draw observations from a fitted distribution for the covariates and the 

outcome variable. For each imputed data set, the missing data are filled in with values drawn randomly [with 

replacement] from the distribution. Analyses are performed on each data set as though the data had been 

completely observed. The results of these analyses are then pooled to provide point and variance estimates for 

the effect of interest (Faris et al. 2002). 

 

4 
 Likelihood approaches consist in the integration of the probability distribution over all possible values for 

missing variables giving more weight to more plausible ones whereas multiple imputation only consider few 

plausible values. 
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would be possible if we had any complete datasets. Simulating a realistic dataset to 

test/compare different approaches to deal with missing values is not an option as it demands 

too great an understanding of the correlation structures among the compounds. 

 

7.6.4 Missing values in the G03 external literature database 

 

As far as the fusion of different sets of data is concerned, we chose to leave the database of 

external metabolite literature presented in Section 2 as it is; the complex differences between 

these lists of metabolites mean that attempting to calculate missing values cannot be done in 

any principled way as discussed above.  However, although the previous compositional and 

the G02 metabolomics data do shed light in a complementary manner on the biological 

content of a sample. We suggest that in the future it will be valuable to create a reference 

profile data set by quantitative measurements of a list of metabolites that are deemed to be 

measurable in the majority of potato cultivars (see Appendix 3B).  If this is achieved then 

such a database on the chosen crop (potato) could be accessible through ARMeC.   Any future 

strategy to impute missing values will need to be treated with care. Moreover this work needs 

to be carried forward both on the external compositional value retrieval and on the 

metabolomics data integration.  A biological expert will be able to add data and to decide how 

to impute values according to references or with a best use of relationships between existing 

metabolomics data and compositional data. 

 

The ultimate goal of the G03 project is to decipher natural variability as well as protocol 

effects on the metabolomics response of the crop. The present report clarifies some aspects of 

the missing value issue in metabolomics datasets and will help for later work.  The KNN 

imputation method for dealing with missing values has been added to the suite of data pre-

processing software routine developed in the G03 project (see Section 8 of the G03012 

Report). 

 

 

 

 

 

 

 



Page 255 of 370 

 

REFERENCES 

 

Regression with missing X‟s: a review, Little R.J.A., Journal of the American Statistical 

Association, 1992. 

 

Annotation: what can be done about missing data? Approaches to imputation, Heitjan D.F., 

American Journal of Public Health, 1997. 

 

The use of multiple imputation for the analysis of missing data, Sinharay et al., Psychological 

Methods, 2001. 

 

Missing values estimation methods for DNA microarrays, Troyanskaya et al., Bioinformatics, 

2001. 

 

Statistical Analysis with Missing Data, Little and Rubin, Wiley, 2
nd

 edition, 2002. 

 

Multiple imputation versus data enhancement for dealing with missing data in observational 

health care outcome analysis, Faris et al., Journal of Clinical Epidemiology, 2002. 

 

A Bayesian missing value estimation method for gene expression profile data, Oba et al., 

Bioinformatics, 2003. 

 

LSimpute: accurate estimation of missing values in microarray data with least square 

methods, Bo et al.,  Nucleic Acids Research, 2004. 

 

Metabolite Peak Identification and Data Structure in a Multi-Site, Large Scale Metabolomics 

Experiment, Draper et al., Proceedings Pittcon, 2004. 

 

Gaussian mixture clustering and imputation of microarray data, Ouyang et al., Bioinformatics, 

2004. 

 

 

A Q-technique for the calculation of canonical variates, Gower J.C., Biometrika, 1966. 

 

Adding a point to a Principal Coordinates Analysis, Wilkinson C., Systematic Zoology, 1970. 

 

The stabilized probability plot, Michael J.R., Biometrika, 1983. 

 

Canonical analysis of principal coordinates: a useful method of constrained ordination for 

ecology, Anderson M.J. and Willis T.J., Ecology, 2003. 

Centering, scaling and transformations: improving the biological information content of 

metabolomics data, van den Berg R.A. et al, BMC Genomics, 2006. 

 

Metabolite profile analysis: from raw data to regression and classification, Steinfath M. et al, 

Physiologia Plantarum, 2008 

 

Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite 

profiling, Birkemeyer et al., Trends in Biotechnology, 2005. 

 



Page 256 of 370 

 

The influcence of missing value imputation on detection of differentially expressed genes 

from microarray data, Scheel et al., Bioinformatics, 2005. 

 

Integrative missing value estimation for microarray data, Hu et al., BMC Bioinformatics, 

2006. 

 

Much ado about nothing: a comparison of missing data methods and software to fit 

incomplete data regression models, Horton and Kleinman, The American Statistician, 2007. 

 

Metabolite profile analysis: from raw data to regression and classification, Steinfach et al., 

Physiologia Plantarum, 2007. 

 

Investigation of processing and imputation in metabolomics datasets, Tong et al., Proceedings 

of AIChE, 2007. 

 

Which missing value imputation method to use in expression profiles: a comparative study 

and two selection schemes, Brock et al., BMC Bioinformatics, 2008. 

 



Page 257 of 370 

 

GO3012 Final Report - Section 8 
David Enot/Wanchang Lin/John Draper 

 

 

Refinement of standardised multivariate statistical 

methods for both describing and comparing metabolite 

composition of food raw materials (Tasks 04.02 and 04.03) 

 

 

8.1 BACKGROUND TO EXPERIMENTAL SECTION 

 

It is imperative that if the data processing is standardised (as described in Sections 4 & 5) then 

the post-processing (statistics) is also formatted. Preliminary conclusions from the G02 

initiative and observations elsewhere in other GMO related projects strongly emphasised the 

lack of coherence and consistency of what is reported in terms of statistical and modelling 

results relevant to safety assessments. Thus the main emphasis in the present project was to 

achieve high level quality in terms of relevance, accuracy and coherence of the statistical 

analysis by enforcing statistical best practice using robust data mining tools, properly 

validated models and cross comparison between statistical models from different algorithms, 

techniques and commonly used software. Accessibility (including cost of software), 

interpretability and consistency of the statistical information are also important.   One 

important point to make is that the identification of data mining routines for suitability 

to analyse metabolomics data was undertaken previously as part of the G02006 project; 

the aim of the present project was get these routines in a standardised software 

environment and develop a standardised workflow. 

 

Metabolite profiles and fingerprints provide intensities over a large number of compounds.  

This provides a challenge – how to make use of all of these compounds simultaneously to 

provide a baseline against which to assess any novel product, and an opportunity – to provide 

a baseline which itself consists of several criteria, each based on a different combination of 

the compounds, thus offering a range of characterisations against which any new product 

must be assessed. Inherent high dimensionality coupled with both biological and instrument 

variance characteristics in FIE-MS and GC-tof-MS data require use of powerful, multivariate 

data analysis tools for comparison of raw plant material chemical compositional.  To further 
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„mine‟ such data for variables responsible for sample class discrimination demands specific 

supervised „machine learning‟ software routines incorporating some form of data 

dimensionality reduction and requiring support from experienced data analysts.  At the 

inception of this project, to the best of our knowledge, nobody has reviewed or proposed a 

systematic way to analyze and extract meaningful information out of metabolomics data for 

global assessment of food composition. Through the combined experiences of SCRI and 

Aberystwyth in developing models of metabolome profile distributions and on clustering, we 

have developed  standardized statistical analyses of metabolome variability in plants. A major 

deliverable of this part of the GO3 project is the identification of a set of statistical tests which 

we believe offer robust comparative descriptions of the metabolome.  

 

8.2 OVERALL OBJECTIVES OF EXPERIMENTAL SECTION 

 

The metabolomics technology development programme funded by the FSA in the G02006 

project headed by JHD resulted in the identification of several validated, powerful machine 

learning data analysis tools for fingerprint or profile classification/discrimination  that can 

both cope with the intrinsic biological and instrument variance in large scale experiments and 

also highlight specific metabolite signals responsible for discrimination.  Such methods 

continue to be refined as part of the core activity of Aberystwyth researchers as part of the 

BBSRC Plant and Microbial Metabolomics Initiative (MetRO).  This section of the present 

GO3012 project had several major objectives which were carried out in collaboration with the 

MetRO advanced data mining team (Dr David Enot and Dr Chuan Lu).  The software routines 

reported on previously in the G02006 project were supported by a combination of commercial 

statistical packages, web-accessible free ware and in-house algorithms written in several 

different computer languages (e.g. C++ , fortran, „R‟). These routines encompassed both tools 

used for raw data pre-processing (e.g. data integrity detection [batch problems, false 

positives/binning issues, base line correction], data  normalisation, outlier detection) and data 

mining tools for sample classification and feature selection.  A key part of the G03012 project 

has been  to re-write all the software code for a single platform ( „R‟) which is designed 

specifically to support statistical tools.  Once this had been achieved the data analysis tools 

were tested by biologists and analytical chemist who had little experience in data mining and 

who helped to write software tutorials to describe how to use the software.   The tutorials are 

accessible at the following URL (http://users.aber.ac.uk/jhd). 

 

http://users.aber.ac.uk/jhd
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As part of the validation process the parameterisation of the software routines and a 

refinement of the modelling visualisations and reporting formats was undertaken.    As 

outlined in report Section 5 the example data used to test the software came from a variety of 

experiments and a challenging data set (a series of rice blast challenged Brachypodium leaves)  

provided by Dr David Parker on a BBSRC project  was selected for illustration purposes.  

This part of the project was largely the responsibility of Dr Wanchang Lin and is described as 

an example workflow accessible at the following URL (http://users.aber.ac.uk/jhd;) based on 

the pre-processing and mining of FIE-MS data described in Section 5 of the present GO3 

report.   This example workflow and associated software has been published as a Nature 

Protocol by Enot et al., 2008 
70

.   These software and tutorials are now freely-available on an 

Aberystwyth University web site (http://users.aber.ac.uk/jhd) and are updated regularly as any 

reported bugs are resulted or new routines developed.   

 

The present section of the G03 report is additionally concerned with assessing the output 

characteristics of the main modelling tools and describing how the data mining procedures 

were used to provide standardised similarity criteria for making compositional comparisons 

between plant genotypes.   For these purposes we used largely the FIE-MS fingerprint data 

and GC-MS data representing the chemical composition of 5 non-transgenic potato varieties.  

Further „in house‟ data generated on the FSA G02 project describing the chemical 

composition of a range of Arabidopsis genotypes provided a larger genotype collection with 

which to evaluate the reproducibility of the methodology.  These experiments have been 

published in several recent papers by Beckmann et al., 2007 and Enot et al., 2007a, b.    

 

8.2.1 Summary of objectives  

 Introduce multivariate data analysis tools and review recent literature concerned 

with comparing the overall metabolite content of raw food materials based on 

metabolomics fingerprint and profile data.  

 

 Develop a software package containing all appropriate data pre-processing  and 

data mining routines in a single environment designed for statistical analysis („R‟).   

 

 Validate software by training of non-expert users and write a user manual and 

standardized training workflow. Develop web resources with software, training 

manual and example data/workflow. 

 

http://users.aber.ac.uk/jhd
http://users.aber.ac.uk/jhd
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8.3 INTRODUCTION TO CLASSIFICATION MODELLING AND FEATURE 
SELECTION USING MASS SPECTROMETRY FINGERPRINT/PROFILE 
DATA 

By their very nature „omics‟ level datasets are high dimensional and as such can often contain 

too few samples per class replicates to allow adherence to an experimental statistical design 

that can cope easily with the degree of biological and instrument-derived variance 

encountered when data modelling is undertaken 
1-8

.  Although it is possible that „omics‟ level 

experimentation may suddenly become much cheaper or more high throughput in the near 

future, it is exceedingly  optimistic to suppose that it will become more straightforward to  

access much larger numbers of biological replicates. Any data analysis strategy must therefore 

cope with these data characteristics and well validated approaches are required both to 

initially „test‟ and improve the overall raw data structure and subsequently mine the data for 

signals  that are sufficient to explain adequately the differences between individual biological 

samples classes (“explanatory” variables) 
7-15

.   

 

Established technology for measurement  of metabolites in complex biological extracts 

includes high pressure liquid or  gas chromatography (HPLC and GC) linked to a range of 

detectors 
14, 16-23

.
  
Many data tables contain measurements of peaks (sometimes  in excess of 

60%) attributed to commonly encountered, but structurally uncharacterised, metabolite 

signals for which chemical standards are not available to allow positive identification 
14, 20, 

24-26
.  Thus peak finding, peak alignment and peak annotation in complex chromatograms is 

challenging, operator driven,  and dependent on a combination of individual metabolite 

concentration and the levels of resolution and sensitivity of the instrumentation employed 
16, 

23-26
.  A more „global‟ overview of total sample metabolite composition can be obtained 

from metabolite „fingerprinting‟ techniques which do not incorporate a chromatographic 

step 
12, 14, 27-31

.  However, once data pre-processing has been achieved both metabolite 

fingerprint data and metabolite profile data can be analysed using identical classification and 

feature selection tools.   

 

The major features of metabolite profile data are described in Sections 3 and 4 of the present 

GO3 report, while metabolite fingerprint data characteristics are described in Section 5.  

Methodology for data pre-procesing of GC-MS and LC-MS are still heavilly dependent on 

interactions between instrument software and operators as described in Sections 3 and  4 of 

the present report.   In contrast FIE-MS fingerprint data is suitable for automated pre-

processing and data mining by third party software and so is used as an example to 
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demonstrate the main principles of standardised metabolome data modelling in the present 

section of ther G03 report. As mass accuracy capabilities differ between instruments and 

rigorous mass cabibration regimes are required to avoid the effect of instrument 

„measurement drift‟, it is common place in first pass FIE-MS modelling to generate 

„nominal mass‟ data for all signals in the detectable range 
12, 14, 28-29

.  Depending on data 

capture parameterisation nominal mass spectra generated by FIE methods can contain up to 

2000 variables, where each ionisation product is integrated into a nominal mass „bin‟ 

together with other ionisation products that have a similar molecular weight 
12, 14, 28-29

.  The 

scope of this section of the GO3 report is to outline data quality checking methods, 

classification modelling techniques and metrics used to compare metabolomics data sets 

derived from mass spectrometry experiments  (for reviews 
5, 13, 15 -19, 32

 ).  In recent years 

such methods have been applied extensively to analyse metabolite fingerprints of samples 

derived from plants in order to investigate complex quality traits, population genetic 

structures and in investigation of gene function 
12-14, 22, 29, 33-36

.     

8.3.1 Metabolomics data model characteristics and classification metrics 

 

Typical outputs of any modelling process are metrics describing the accuracy of sample 

classification together with „distance‟ measures of relatedness between biological classes and 

ranked lists of potentially explanatory features (i.e. metabolite signals) contributing 

significantly to the model. As part of the software evaluation, using commonly encountered 

model output metrics, we aimed to decide pragmatic statistical significance thresholds in 

relation to both discrimination/classification characteristics and feature ranking in good 

quality models 
1-9, 12, 13, 15, 36, 37

; specifically, we wished to demonstrate general features and 

model metrics in instances where data mining has proved inadequate and alternatively show 

anticipated results in which robust models have been generated that that are suitable for 

deeper interpretation.   

 

For the purpose of illustration the data analysis routine used in the present section will be 

demonstrated using FIE-MS fingerprinting data from Section 5.  A series of quality checks 

are usually applied to the raw FIE-MS data which are linked to predicable characteristics of 

both the analytical approach and standardized experimental statistical design (see Section 5).  

Following these quality assurance procedures a range of data analysis tools may then be 
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applied in a logical order to answer specific questions relating to the biological phenomenon 

under study (Figure 8.1).   

 

A range of data analysis algorithms are available to undertake various elements of these 

common tasks, many of which are adequate for the  job in hand and no particular series of 

routines will always provide an optimal approach.  The aim of the present section of the 

GO3 report is to describe a series of validated software routines which provide easily 

interpretable models with mutually complementary statistical measures relating to 

classification power and feature ranking.   
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Figure 8.1   Typical work flow in FIE-MS data analysis 

 

Data pre-processing 

The ultimate goal for any metabolomics experiment is to find patterns in the fingerprint data 

that can describe the biological outcome 
5, 12, 13, 15

. The initial step is to ensure that the quality 

of the data generated is meeting criteria required for further statistical analysis. This is a 

crucial activity to provide a sound basis for measuring and interpreting biological phenomena. 

Raw data pre-processing (Figure 8.1a) describes the application of one or several routines 

performed on binned data (see Section 5) to prepare them for further statistical analysis. 

Despite the fact that the raw fingerprint data may be directly utilised in a statistical treatment, 

data pre-processing transforms the data into a format that improves data quality and data 

mining accuracy.  However, care should be taken so that new wrong knowledge is not created 

or important information lost during the "data polishing" process. Within this protocol we 

describe the use of various tools that are used to prepare the data including: checking for data 

integrity, linear transformation of the signals, baseline correction, outlier removal and 

fingerprint normalisation. 

 

Data classification 

Class comparison and prediction encompass a majority of the biological questions addressed 

by a metabolomics approach.  Clustering or unsupervised modelling is useful for class 

discovery and provides information on data similarity: groups of observations relate to groups 

of variables and metabolome samples grouping together can be objectively considered to be 

similar 
1-5, 12-15, 38, 39

.  Principal Components Analysis (PCA) is probably the most widely used 

unsupervised approach to metabolomics fingerprints data modeling 
39

. PCA is a multivariate 

technique that transforms the sample data matrix into a coordinate system where each new 

projection (also called Principal Components, PC) is a linear combination of the original 

variables. PCs are orthogonal so that each dimension is related to different data characteristics 

and source of variability in a mathematical sense. Secondly, projections are ordered according 

to the variance explained: the first PC encapsulates the greatest amount of variability, PC2 the 

second greatest, and so on. The success of PCA as a first pass technique relies on these two 

properties to provide initial sample clustering information and subsequent clues regarding 

sample behavior alongside the main directions of variance. However, due to the inherent 
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complexity of FIE-MS fingerprints (50-2000 m/z range), unsupervised techniques, more often 

than not, tend to produce overlapping class groups, which hamper the extraction of 

explanatory signals responsible for class differences.  Although such techniques allow a quick 

inspection of the underlying data structure they fail to provide decision rules for classification 

by objective and unbiased classification metrics 
12, 15, 37

.  In contrast, supervised techniques 

are using essential class information to generate between sample class models 
4, 5, 8, 13-15, 36-47 

and provide an ability to discriminate classes linked to the underlying signal behaviour within 

the fingerprints under comparison. For discrimination tasks, a sample per feature ratio (SFR: 

number of variables measured in each fingerprint compared to the number of samples 

available for each biological class) of around 5-10 is generally recognised as the minimum 

requirement to generate robust classification models.  Unfortunately, SFR in FIE-MS 

fingerprints is always less than 1 which demands extra care during model construction to 

avoid producing over-optimistic models utilizing variance that is unrelated to the problem 

under consideration 
1-4, 8, 11-15

. 

 

Model interpretation and validation 

In very small SFR contexts, it is almost always possible to fit data and derive an input-output 

relation that will adapt to some peculiar structure in the data 
1-5, 8, 11, 36, 37, 43

. As a consequence, 

conclusions regarding model performance cannot be reached from the same observations that 

were used to delineate the model. The classic solution relies on forming an independent set 

(validation or test set) consisting of observations that were not used for the training phase 
1-5, 8, 

15
. Under proper practices, test data are only employed to assess model goodness and not to 

decide which features to use in the final model or the number of components to include for 

further modeling. However, in many situations the sample size rarely allows formation of a 

large enough independent test to achieve adequate statistical significance estimates 
1-5, 7, 8, 10-12 

whilst at  the same time keeping the training set big enough to construct a robust classifier 

(model).  Such data paucity can lead to discrepancies in both interpretation and validation of 

the results.  Thus resampling strategies 
48

, based on a repetitive partitioning of the original 

sample space, must be applied for most metabolomics modeling situations. Amongst these 

strategies, cross validation and bootstrap approaches 
1-4, 49-51 

are widely used in the machine 

learning communities to estimate classifier performance. Preference towards one approach is 

mainly driven by a variance-bias trade-off. Although cross validation is known to be fairly 

unbiased, this strategy suffers from a large variance and can potentially lead to what seems to 
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be significant but which are in fact irreproducible results 
2, 3, 7, 8, 43

. Contrastingly, 

bootstrapping based techniques have a better control of the performance variance but are 

biased toward overestimation of errors 
1-4, 47, 49-51

.  

 

Receiver operating characteristic (ROC) curves are increasingly becoming a systematic 

alternative approach to investigate the predictive behavior of a binary classifier 
5, 9, 37, 50

. ROC 

curves display the relationship between sensitivity (true-positive rate) and specificity (false-

positive rate) across all possible threshold values that define the decision boundary. As a 

performance measure, the Area Under the ROC Curve (AUC) specifies the probability that 

the decision boundary assigns a higher value to a positive sample than a negative one, both 

chosen randomly. AUC takes a value of 0.5 when the samples from both classes are uniformly 

distributed across the decision boundary and a value of 1 when both classes are perfectly 

separated. In addition to accuracy/error estimates or ROC analysis, other statistical measures 

may also be derived from the actual classifier characteristics to achieve an alternative measure 

of model performance. For example in the G02 project we showed that complementary 

measures calculated from the Linear Discriminant Analysis Eigen system 
39, 52, 53 

and the 

average sample margin (model strength) in Random Forest 
54

 model generalizability and 

interpretability potentials extremely well 
12, 36

.  

 

8.3.2 Feature ranking and identification of „explanatory‟ variables 

 

Ultimately the goal of any metabolomics experiment is to identify metabolites responsible for 

differences between experimental treatments (normally sample classes). It is rarely the case 

that one unique signal (or a combination of very few uncorrelated variables) will fully 

describe the property under study. Nominally redundant signals (often showing collinear 

variance) with FIE-MS data may reflect specific aspects of metabolic mechanisms or are 

different charged forms (e.g. adducts or fragments) of a unique compound. The following 

protocol describes an approach to determine an optimal set of features that can adequately 

describe the problem at hand. Unless we are interested in comparing very different sample 

matrices like a strawberry with an egg, a strong assumption associated with most 

metabolomics fingerprinting techniques (not only FIE-MS) is that the number of irrelevant 

signals is always much larger than the number of signals that actually contain meaningful 

information. Despite this statement, finding the optimal number of such features is not a 
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trivial task in machine learning 
2, 11, 34, 43

, as considerable effort is directed towards delineating 

a model that uses a small number of variables (parsimonious models are more likely than 

complex ones). In many experiments it is possible that different sub-sets of variables are 

sufficient to explain a particular biological problem with an acceptable degree of 

mathematical statistical significance, but whether these multiple solutions have any biological 

meaning is difficult to ascertain 
1, 2, 8, 10-12, 15

.  

 

Classic parametric or non-parametric univariate strategies can be employed to test the null 

hypothesis that treatments are not different 
4, 48, 55

. The outcome is the computation of a p-

value describing the likelihood that signal intensity measurements are different under some 

assumptions of the statistical method used 
4, 11, 48, 55

. Feature ranking using univariate 

measures are not always necessarily applicable in a metabolomics context as an assumption is 

made that variables are independent, where the assessment of the discriminatory power of the 

individual variables exclude potentially interesting interactions with other variables. On the 

other hand, multivariate techniques use interactions between variables during feature ranking, 

either explicitly as in decision tree techniques 
12, 55

, or implicitly in the case of non-parametric 

methods like nearest neighbour. Commonly used methods such as Support Vector Machine 
37, 

44 
or Random Forest 

36, 37, 47, 54, 56 
can be used to rank fingerprint signals based on an 

importance score or the frequency of variable selection. Because such methods involve an 

optimization process, selection of a sub group of signals is decided by a heuristic method 

usually requiring extra validation steps. Obtaining a final ranked list remains a complex and 

time consuming task (up to several hours of cpu time for a simple two class problem) and still 

the definition of relevant and irrelevant features is not trivial as it is difficult to prescribe a 

priori a threshold metric for model selection 
1-4, 10-12

. In order to balance computing cost and 

the robustness of the explanatory variables list prior to deeper chemical analysis or database 

searching, we approach the validation of feature ranking by looking at the stability of 

individual features across multiple ranked lists by resampling the original training data 
38, 54, 

56
. Intuitively, ranking of relevant features should be consistent despite perturbing the data, 

whereas the ranking of irrelevant signals fluctuates substantially.   
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8.3.3 Applications of data mining  

 

Metabolite fingerprinting coupled with multivariate data mining has been used to address a 

range of conceptual problems using mainly unfractionated polar extracts of samples derived 

largely from microbes and plants 
14, 28-31, 57-64

.  More structurally targeted metabolite 

fingerprinting approaches have also been reported using mammalian biofluids such as blood 

derivatives and urine to classify individual with metabolic disorders 
19, 61

.   Investigations with 

microbes have included the development of phylogenetic tools („chemical taxonomy‟) to 

assess genetic diversity using unsupervised clustering techniques 
31

.  In other instances 

supervised classification approaches have been shown to have utility to actually identify the 

microbial  species present in mixed populations 
59

.  Studies investigating quantitative traits in 

crosses between two species of tomato have used PCA to detect introgression lines that 

display metabolic phenotypes that differ both from each other and from the parent line 

contributing the majority of the genome 
62

.  Metabolite fingerprinting using mass 

spectrometry coupled with a range of data modelling techniques has provided a first pass tool 

to investigate whether there are fundamental changes in metabolism associated with plant 

responses to either environmental or development signals or biotic stress 
30, 58, 59

. Further 

studies have used FIE-MS combined with a range of machine learning data analysis 

approaches to not only classify or discriminate samples, but also to identify which variables 

were responsible for such differences.  For example metabolite fingerprinting has been used 

to confirm that only the intended biochemical changes in metabolism had occurred in plants 

genetically engineered to exhibit novel enzyme activities 
14, 30

.  Functional genomics studies 

using Arabidopsis mutants has utilised FIE-MS coupled with Random Forest and Linear 

Discriminant Analysis to investigate the phenotypic effects of gene disruption or unscheduled 

expression 
12, 37

.   

 

8.3.4 Considerations regarding choice of the modeling techniques 

 

In a high throughput context, the generation of robust classification models is first required 

before identifying model features related to underlying biological based characteristics within 

the data structure. Although many classification methods can achieve high predictive 

accuracy, the chosen method must produce directly interpretable models rather than 

exceedingly complex models that are opaque to further interpretability 
1, 5, 12, 13, 15

.  From the 

results of the previous G02 project it was decided that the classification methods to be 
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employed as a default are Linear Discriminant Analysis (LDA) 
5, 12, 36, 45, 52, 53 

and Random 

Forest (RF) 
12, 47, 54

.  Both of these methods fulfil the previous objectives and can be applied 

on multi-class problems without special reformulation of the problem. 

 

Linear Discriminant Analysis 

Linear Discriminant Analysis (also known as Discriminant Function Analysis in the 

metabolomics literature), is a supervised classification method that provides discriminant 

functions (or canonical variates) to describe separation between pre-defined groups (classes) 

of samples in „n-1‟ (n = number of classes) dimensional space 
47, 52, 53

. Discriminant function 

(DF) scores can be plotted to visualize the „amount of separation‟ between samples and to 

predict group membership of samples of an unknown class (DFs are orthogonal so that the 

discrimination among groups doesn‟t overlap).  The objective of LDA is to obtain a projection 

that maximises between-class separability (SB) while minimising within-class variability (SW) 

39
. However, due to issues associated with sample paucity (as is often a problem in 

metabolomics experiments), SW is always singular and/or unstable and the inversion of SW 

cannot be possible without a prior reduction of data dimensionality, usually obtained by a 

preceding principal components analysis (PCA) 
52, 53, 65

. To avoid the introduction of bias in 

the estimation of the separability measure used in selecting the number of components, we 

chose to inverse SW as proposed by Thomaz et al. 
52

  Eigenvalues derived from solving the 

eigensystem of (S
-1

W SB) can be used as a measure of similarity of the discriminate function 

where the greater the distance between classes (large between-class scatter, SB) and the more 

compact the classes are (small within-class scatter, SW), the larger the eigenvalue and the 

more resolvable class separation becomes.  

 

Random Forest 

One of the best ways to improve the performance of single Decision Tree based algorithms is 

to grow ensembles of trees 
54, 56

. Random Forest (RF) is a randomized and aggregated version 

of the standard decision tree 
54

. Contrary to the standard decision tree, in RF each tree of the 

forest is built on bootstrapping the initial training dataset; at each node, the best split is chosen 

among a random subset of the initial pool of variables; and each tree is grown large, probably 

overfitting the bootstrap sample.  The main advantage of using RF is that the final model will 

not overfit as the error rate will only reach a certain value no matter how many trees are built. 

Additionally, RF can deal with highly dimensional and correlated datasets without an initial 
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reduction of dimension of the dataset. In the scope of this protocol, two elements can be 

derived from a RF model that assists deeper interpretation:  

 

 As opposed to single decision trees, Random Forest does not produce an explicit 

model of the relationships between variables and the outcome. Instead, Breiman 

described the variable importance in a forest of trees as the measure of how each 

feature contributes to the prediction accuracy in this population. For an individual tree, 

the importance score of a variable is determined by comparing the performance of the 

classifier on the original data and that obtained when the variable is randomized. The 

procedure is repeated for every variable used in a tree and results are aggregated over 

all the trees. 

 

 Class membership assignment in RF corresponds to the class with the largest score 

and a large score means that we can be confident in the class attribution and be certain 

that the example belongs to the actual class. From this property,  sample margin 

(confidence in sample class attribution) is defined as the difference between the score 

for the true class and the largest score of the rest of the classes (i.e. the most probable 

misclassification) 
12, 36, 54, 66

. Hence, a positive margin means that the example is 

correctly classified.  

 

8.3.5 Considerations for overall experimental design 

 

A structure for generating FIE-MS fingerprint raw data is presented in Section 5 of the present 

report. Typically FIE-MS datasets measure from 200 to 2000 variables and describe a 

considerable range of biological variance, which is especially prevalent in real world 

situations, for example when using field grown plants as apposed to organisms developed 

under controlled environment conditions. Given this feature, coupled with the non-targeted 

nature of the signals measured and the lack of any a priori guarantee that any specific 

biological question can be addressed by the proposed experimental approach, an adequate 

sample size is a rather important prerequisite to unequivocally derive relevant knowledge 

from the experiment. Defining adequate sample replication regarding the biological question 

is still under debate in most „omics‟ communities with metabolomics being no exception 
1, 5, 7, 

10, 11
. The choice of sample numbers representing each class is mainly driven by cost, sample 
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availability, technical facilities, machine reliability before instrument measurement drift and 

the need to overcome predictable levels of biological variance rather than strictly 

mathematical considerations. Because the technical variability in FIE-MS fingerprinting is 

usually smaller by comparison with the biological and experimental variability, biological 

replicates should be preferred to technical replicates as multiple measurements from the same 

sample will not make the experiment more effective. The present protocol is designed for 

pilot to medium size experiments. It is assumed that the data has a minimum of a thousand 

variables, and in most instances that between 10 to 50 sample replicates per class have been 

analyzed. We also assume that adequate sample collection and reliable good laboratory 

practices have been implemented not only to reduce variability but also to limit erroneous 

effects confounding biological treatments with irrelevant sampling and technical issues. It is 

assumed that samples have also been properly randomized during collection, storage and 

chemical analysis. Particularly in larger experiments it is crucial to confirm that the user has 

analyzed samples in a randomized order to avoid the embedding of structured variance in the 

data relating to injection order or any other experimental factors as described in metadata in 

Section 5.  In situations where fewer samples are available, methods for model validation and 

feature mining can be rather limited (e.g. „leave-one-out‟ cross validation) and criteria for 

definitive conclusions become highly severe. When larger numbers of samples are available, 

alternative validation strategies can be employed to assess model predictive abilities.    

 

8.3.6 Outline of model data used to illustrate data pre-processing and data 

mining 

 

Although the data pre-processing routines are described in the context of FIE-MS data, some 

data pre-processing routines, classification, feature ranking and validation tools have all been 

used successfully with NMR fingerprints 
19, 27

 and with metabolome profiling data generated 

using hyphenated mass spectrometry, for example GC-MS 
12, 14, 17, 22, 25, 59

  or LC-MS 
23, 26

.  

The core elements of methodology develop in GO3 are illustrated using a FIE-MS data matrix 

developed from analysis of samples representing a time course of pathogen attack in a model 

plant species (Brachypodium distachyon) as outlined in a Nature Protocol by Parker et al. 
35

. 

The data was developed in a single batch with all samples randomised using a Thermo LTQ 

linear ion trap as outlined in Section 5 and published as a  Nature Protocol by Beckmann et al. 

33
.  As synchronous development of disease symptoms is difficult to control in any host-

pathogen interaction this data provides a relatively challenging level of biological variance in 



Page 271 of 370 

 

a sample matrix that is changing rapidly as the fungus colonises the plant.  Anticipated 

Results illustrating some of the optional steps are demonstrated in the context of other large 

data sets as indicated.    

 

The protocol is designed to work with the R 
67

 package FIEmspro that includes specific 

routines for analysing FIE-MS fingerprints (http://users.aber.ac.uk/jhd). It is aimed at 

supporting data analysis for researchers who already have some basic experience of R 

command-line usage.  The package developed in conjunction with researchers on the BBSRC 

MetRo programme, is updated regularly with regard to bug fixing, code improvement and 

new functions based on current research findings. For Windows and MacOS X platforms, 

straightforward installing can be realised via the binary packages available from the website. 

For any other platforms, source code can be downloaded and compiled appropriately. The 

reference manual supplies  details on how to use the functions provided by the package, 

including a simple example for each function. A typical workflow that produces the results 

illustrating this protocol is also available on the package webpage as well as an extended 

document based on this workflow which is provided for both R beginners and advanced users. 

In the protocol below, italic text indicates the appropriate function name in R or in the 

FIEmspro package when specified.  Data can be imported in R using the read.table command 

if they are in ASCII format such as those produced by Excel. Once loaded into R, it is more 

convenient to save them all as *.RData or *.rda format. For later usage, the function load 

allows to import them back.  In the rest of the protocol, X designates the fingerprint matrix of 

dimensions (num. of samples x num. of signals), each data point corresponding to measured 

intensity. Y corresponds to the matrix of metadata including experimental factors namely 

class information, injection order, fingerprint file names and date of analysis for example (see 

Table 8.1b). 

 

 

 

 

 

 

 

 

 

http://users.aber.ac.uk/jhd
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Table 8.1:    FIE-MS data matrix organisation for analysis in the R environment  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)  X-Data file: consisting of binned signal intensities (positive ionization mode) 

from nominal mass m/z 110 to 119 for 25 samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Sample 

number

P110 P111 P112 P113 P114 P115 P116 P117 P118 P119 " "

1 1.52 11.53 0.51 29.62 6.08 2.57 6.30 8.55 3672.78 156.03

2 4.91 8.00 0.00 19.05 8.92 9.83 7.10 0.00 5660.17 215.98

3 7.50 5.91 0.00 194.02 0.00 115.49 5.23 8.78 2742.41 476.44

4 18.38 5.68 0.51 19.90 4.42 22.26 82.92 13.38 10098.91 672.24

5 0.50 3.68 0.41 46.69 3.71 5.34 4.37 0.00 4932.41 165.17

6 15.90 4.78 4.06 31.63 3.30 12.73 107.77 4.51 5713.53 268.47

7 6.02 1.06 0.00 26.45 0.89 6.94 2.88 0.35 5992.55 241.26

8 6.83 1.62 16.97 7.14 3.42 22.53 11.18 2.68 6904.46 365.81

9 10.32 4.63 5.10 24.41 3.46 5.09 35.14 0.73 7361.00 383.49

10 14.97 4.77 4.14 17.20 9.07 2.13 130.65 0.66 6770.98 342.83

11 2.83 6.36 3.74 26.30 10.30 15.99 20.99 7.19 8641.96 434.61

12 11.11 5.65 22.70 32.74 12.51 49.34 62.88 4.58 9040.92 454.75

13 6.40 2.33 12.26 47.66 7.27 11.62 35.71 0.76 11241.93 621.49

14 6.99 3.87 0.00 26.97 10.97 2.00 9.52 0.16 6840.72 297.68

15 39.97 2.61 0.00 13.25 1.99 6.26 84.59 1.05 7685.99 404.12

16 54.31 4.07 29.70 17.90 3.45 32.33 1525.89 18.20 10032.82 603.81

17 4.31 1.98 7.78 15.93 4.49 4.21 57.96 12.84 5543.85 266.34

18 2.89 2.53 0.17 13.11 4.70 1.38 32.19 4.37 5461.45 259.08

19 1.74 6.67 0.44 11.90 0.42 4.00 7.27 1.01 5400.78 217.89

20 10.21 6.04 0.92 18.58 0.97 4.54 82.46 14.80 8412.83 418.31

21 0.73 2.45 1.79 26.47 0.47 10.17 41.19 5.70 4517.02 217.32

22 0.36 1.86 1.14 14.50 0.55 16.98 33.42 0.00 6049.36 235.20

23 26.72 8.64 21.76 51.70 12.84 16.82 177.57 1.63 10211.82 550.66

24 7.08 2.68 10.91 14.17 0.62 16.42 26.66 1.54 7489.76 403.95

25 57.46 3.34 0.00 48.70 1.00 18.47 165.01 21.25 7236.41 378.80

"

"

"

Measured Variables (positive ion m/z )
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(b)  Y-Data file: containing columns of meta-data attached to the same 25 samples in 

(A) relating to experimental factors 

 

 

* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*  Experimental factors:  „injorder‟, sample injection order; „pathcdf‟, reference to 

instrument raw data file [including processing software, instrument, date stamp, 

experiment label, file type]; „filecdf‟, unique label for each converted fingerprint file; 

„remark‟, general observation of individual fingerprint quality; „name.org‟, original 

name with experimental details [in this case the first digit is a reference to plant 

genotype (ABR1), the second digit is a reference to growth location (tray number) and 

the finall digit refers to treatment]; „day‟, treatment detail (used for plots as often 

visually more informative than class labels); „class‟,  class label. 

 

 

 

 

 

 

 

Sample 

Number injorder pathcdf filecdf remark name.org day class

1 1 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 01.cdf ok 12_2 2 2

2 2 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 02.cdf ok 13_3 3 3

3 3 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 03.cdf ok 15_4 4 4

4 4 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 04.cdf ok 12_1 1 1

5 5 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 05.cdf ok 12_2 2 2

6 6 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 06.cdf ok 11_1 1 1

7 7 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 07.cdf ok 14_2 2 2

8 8 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 08.cdf ok 11_4 4 4

9 9 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 09.cdf ok 13_H H 6

10 10 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 10.cdf ok 15_H H 6

11 11 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 11.cdf ok 14_4 4 4

12 12 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 12.cdf ok 14_5 5 5

13 13 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 13.cdf ok 12_1 1 1

14 14 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 14.cdf ok 15_2 2 2

15 15 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 15.cdf ok 13_H H 6

16 16 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 16.cdf ok 11_5 5 5

17 17 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 17.cdf ok 14_3 3 3

18 18 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 18.cdf ok 11_3 3 3

19 19 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 19.cdf ok 13_2 2 2

20 20 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 20.cdf ok 12_H H 6

21 21 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 21.cdf ok 11_4 4 4

22 22 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 22.cdf ok 15_3 3 3

23 23 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 23.cdf ok 13_5 5 5

24 24 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 24.cdf ok 12_4 4 4

25 25 C:/Xcalibur/ANDI-LTQ/050509-Abr1/cdf 25.cdf ok 12_H H 6

"

"

"

Experimental Factors
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8.3.7 Sources of variability in metabolomics data and importance of 

exploring metedata 

 

FIE-MS data structure will always reflect its origin (e.g. instrumentation and its local 

parameterisation, operator preferences and experience) and it is essential to obtain as much 

meta-data (ie.  Y-data in Table 8.1b) as possible related to the generation of the dataset before 

initiating pre-processing.   The analysis of high throughput FIE-MS data has an underlying 

assumption that the only source of variability is reflected in the class label and thus reflects 

the biological question under investigation.  However, metabolomics experiments involve 

many steps, some of which may by the cause of unwanted variability.  As a standard practice, 

a data analyst does not seek to obtain as much meta-data as possible in order to check that the 

experimental design is robust; however, it might help to better understand statistical output.  

Common assumptions made when examining large data sets include: 

 

 the experimental protocol has been followed accurately for each sample and the 

efficiency of metabolite extraction is identical for each sample; 

 all samples have been labelled correctly; 

 mass calibration, instrument ionisation, mass resolution and detector sensitivity is 

identical for each sample. 
 

A simple check that samples have been adequately randomised whenever possible (i.e. auto-

sampler loading order from Y-data matrix) can help to counteract any variability resulting 

from gradual instrument drift.  Apart from this a preliminary data analysis (e.g. PCA) may 

reveal the presence of potential outliers, or shows sub-clustering of samples which really 

should be in the same biological class.  From a data analysis point of view, the benefits of 

checking meta-data can be summarised as follows: 

 

 Relate outlying samples to experimental conditions. 

 Relate group of samples behaviour to experimental conditions (including batch or sub-

population). 

 Moderate the use of some signals if they could be affected by changes during the whole 

process leading to data generation. 

 Moderate the interpretation of the models if unplanned factors have been noticed. 

 Adjust the experimental design including sample removal or creation of a new 

experimental factor. 
 

The list in italics below provides some examples of metadata that are commonly associated 

with sources of experimental variability and worth investigating prior to deeper analysis. 
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Injection order and date of analysis: 

On the basis of the common assumptions outlined above, machine performance represents a 

main factor over which we have the most control.  In fact re-analysing a batch of samples is 

often more convenient than reproducing the whole experiment.  Implicitly given by the 

sample order in the X data matrix (e.g. Table 8.1a) or explicitly as a separate Y factor, 

injection order and date of analysis related effects (Table 8.1b)can be outlined during the data 

analysis process by several means: 

 effect of analysis date on average TIC of samples – e.g. alterations in machine 

settings by a new operator or a maintenance event;  

 presence of isolated outliers in PCA analysis – e.g. insufficiently or otherwise unusual 

extracted sample;   

 injection order related confounding effects –  e.g. lack of proper randomisation 

combined with unanticipated instrument drift; 

 typical „horse shoe‟ shaped grouping of samples in PCA often reflects continuous 

gradual changes occurring in samples –  e.g. samples underwent gradual 

compositional (chemical) changes in an autosampler at ambient temperature.  

 

Sample tag and analytical sample file name: 

As opposed to the sample ID in the data matrix, sample tag and/or instrument file name 

relating to each sample have normally detailed information attached to it which can be 

investigated for variants in the protocol.  In addition to obvious traceability issues, these 

sources of information are primarily related to: 

 machine calibration and tuning as well as maintenance events - e.g. a different 

experiment has been analysed between two batches of samples resulting in alterations 

of the machine performance;  

 changes in extraction process – e.g. use of different batch of solvent, glass ware,  

 identification of potential environmental contamination – e.g. some m/z signals may 

characterize changes in laboratory environment like malfunction of air conditioning 

or serviced water purification system.   

 

Technical staff and research facilities involved: 

Individuals may inadvertently introduce variability even when adhering to a standard 

protocol: 

 examine extraction date/time – e.g.  confounding effects like sampling or extraction 

related to different researchers; 

 metadata related to provenance of group of samples – e.g. block effects, where growth 

or sample collection site could reveal unforeseen sample behaviour or clustering 

requiring new experimental factors;  

 individual sample characteristic in a single location –  e.g. mislabelling, outliers 
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Observational information regarding specific samples/batches:  

Experimentalists probably know more about the question addressed than any other person.  

Their comments, even if subjective, are valuable to help explain unexpected sample 

variability. The list of observational information is context dependant and includes, non-

exhaustively, features such as: 

 “This batch of plants looks discoloured.”  

 “The samples were lost in post. “ 

 “The tubers got chilled.”  

 

 

8.4 PROTOCOL DESCRIBING PRE-PROCESSING, CLASSIFICATION 
MODELLING AND FEATURE SELECTION USING FIE-MS)METABOLITE 
FINGERPRINT DATA 

 

8.4.1 Equipment  

 

 Alternative specifications of computers used: 

o PC (Microsoft Windows 2000 or XP) 

 Pentium 4 1.70 GHz, 1.50 Gb Ram 

 Pentium 4 Dual Core 3.60 GHz, 1.00 Gb Ram 

o Mac G5 (Dual 1.8 GHz PowerPC G5, 2.00 Gb Ram) 

 

 R, the latest release (2007-07-03) R-2.6.0.; download at http://cran.r-project.org/ 

 R-Packages required: 

o download following the link „Software‟/„Packages‟ at http://cran.r-project.org/ 

by clicking the appropriate „Available Bundles and Packages‟: 

 Package e1071    

 Package randomForest   

 Package MASS    

 Package ncdf     

 Package impute    

 Package KernSmooth   

 R-package FIEmspro and related documents: 

o download at http://users.aber.ac.uk/jhd 

http://cran.r-project.org/
http://cran.r-project.org/
http://users.aber.ac.uk/jhd
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 Alternative Editors for computer platforms: 

o Windows (e.g. „Tinn-R‟; download at http://www.sciviews.org/Tinn-R/  

o MacOS X (e.g. „TextWrangler‟; download at 

http://www.barebones.com/products/textwrangler/) 

 Spread-sheet program (e.g. MS Excel) 

 

Choice of software packages  

A wide choice of commercial data analysis software packages are available, most of which 

can perform adequately the majority of the analytical procedures outlined in the present 

protocol. The present protocol specifically provides guidance on the use of software tools that 

we have found particularly useful for the analysis of high dimensional metabolite fingerprint 

and profile data. A metabolomics data analysis package FIEmspro (http://users.aber.ac.uk/jhd) 

programmed in the R environment 
67

 has been developed to assist in the pre-processing of the 

raw FIE-MS fingerprints from the mass spectrometry instrument, data checking, model 

robustness evaluation and explanatory features mining.  An web-based resource 

(http://www.armec.org/MetaboliteLibrary/index.html) described in Section 6 of the present 

G03 report and published as a Nature Protocol by Overy et al. 2008 
34

 is available for the 

interrogation of signals of interest against a database of chemical standards. R is a free, open 

source, well documented and multi-platform environment for statistical computing. It is 

therefore possible to read and understand the code provided and individual users can adapt, 

evolve or improve the current implementation to their needs. The set of proposed methods can 

easily be extended with already available statistical and machine learning routines 

(http://cran.r-project.org/src/contrib/Views) available on the R project website (http://cran.r-

Project.org/src/contrib/PACKAGES.html) and its genomic specific sister project 

Bioconductor (http://www.bioconductor.org).  

 

The functions for metabolomics data processing in the FIEmspro package specifically include 

data matrix structure checking, baseline correction, imputation of low or missing values, 

outlier detection, sample classification/discrimination, feature ranking and validation of 

multiple classifiers. The current package is targeted to a general user who can benefit from 

already implemented routines for ranking features or existing classification techniques as long 

as their implementation satisfies general R standards for predictive modelling (readers are 

referred to consult the help pages of  fs.techniques and accest). Several feature ranking 

http://www.sciviews.org/Tinn-R/
http://www.barebones.com/products/textwrangler/
http://users.aber.ac.uk/jhd
http://www.armec.org/MetaboliteLibrary/index.html
http://cran.r-project.org/src/contrib/Views
http://cran.r-project.org/src/contrib/PACKAGES.html
http://cran.r-project.org/src/contrib/PACKAGES.html
http://www.bioconductor.org/
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methods are provided (e.g. t-test, Random Forest, AUC, mutual information) and different 

classifiers (e.g. RF, SVM, LDA) can be applied directly. FIEmspro can also be utilised by 

more advanced R users wanting to customise both feature ranking and discrimination methods 

or integrate unconventional code. Incorporation of parallelised code for few functions can 

relieve long processing times if access to supercomputing facilities is available. The 

validation mechanism has been designed in a way that classifiers can be strictly compared to 

each other and that resampling-based feature ranking can be performed with an identical data 

partitioning as for discrimination studies. Several feature ranking methods are provided such 

as ANOVA, Welch test, random forest, area under receiver operating curve (AUC) and 

mutual information. To obtain a stable feature ranking list, these methods can be validated by 

cross-validation or bootstrap. Users additionally can use their own feature ranking methods 

and validate them using the methods implemented in the package. The validation mechanism 

can also applied to discrimination using different classifiers, for example, RF, SVM and LDA.  

 

 

 

 

8.4.2 PROCEDURE 

 

The workflow described below represents the minimal procedure that is normally applied  to a 

good quality data set which contains  little influence from sample or method-related variance.  

Optional procedures (e.g. baseline correction, data infilling, normalisation)  to improve data 

pre-processing  to cope with specific commonly encountered sources of variability  in larger 

data sets are indicated through the procedure and are addressed in section 8.5.   Anticipated 

results with a sample workflow are shown in section 8.6. 

 

Steps 1 to 10 relate to the checking of data integrity prior to pre-processing  

 

CAUTION     FIE-MS data structure will always reflect its origin (e.g. instrumentation and 

its local parameterisation, operator preferences and experience) and it is essential to obtain as 

much meta-data as possible related to the generation of the dataset before initiating pre-

processing.   
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1. Load data into R either by reading data directly using R function read.table or load the 

saved R data format (.RData, .rda) using R function load. Ideally metabolomics data 

should be supplied via a curated database such as ArMet (http://www.armet.org/) which 

adheres to internationally agreed standards (e.g. http://www.smrsgroup.org/) to ensure 

data integrity and meta-data completeness.   

 

Steps 2 to 6:  Preliminary data assessment 

 

2. Check that both FIE-MS (X) and experimental factor (Y) matrices (see Table 8.1) 

contain the same number of rows and correct with user if they do not. This can be 

performed easily using R function dim. 

3. Check that variable names in X have labels corresponding to the actual nominal mass. 

4. Check the number of zero values in each variable in X and remove the variable if 

exceeding a predefined limit.  In the present example, if 80 or more values of an 

individual variable are missing across the set of 120 samples then the variable might be 

considered for removal.  

 

CAUTION    Before removing any variables from the data used for analysis it is important to 

check whether the patterns of missing values are random or potentially related to specific 

classes.  If the latter seems apparent then it may be prudent to retain such variables or 

important data could be removed from the matrix. 

 

5. Check that rows in both the X and Y matrices are in the same sample order. 

6. Examine meta-data and assess if there might be unplanned interactions between 

experimental factors, injection order and analytical batches. Common examples may be 

poor (or no) randomisation of samples in terms of injection order or alterations to 

instrument set up within a batch. If potential problems are suspected then the impact of 

such factors should be investigated to determine whether they might prove confounding 

while carrying out steps 7-17 below. 

 

Steps 7-10:   Check data intensity measurements by calculating the sample Total Ion Count 

 

http://www.smrsgroup.org/
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7. For each sample, calculate the Total Ion Count (TIC) by summing up all signal 

intensities. Plot sample TIC (y-axis) against sample identifier in order of injection (x-

axis). 

8. Build a robust regression to model the effect of the injection order on the sample TIC by 

using the function ticstats in package FIEmspro. Investigate samples for which the 

residuals is 3 times higher that the median absolute deviation (MAD) of all residuals. If 

these samples prove to show abnormal behaviour, remove the corresponding row in both 

X and Y datasets (see Figure 8.2 in Anticipated Results).  

9. Assess for underlying structure within the data relating to injection order (see Figure 8.3 

in Anticipated Results). 

10.  Create a new experimental factor column in Y if an injection order related structure (e.g. 

batch effect) is identified.  

CAUTION    Unless samples indicated as outlying at this stage present an abnormal profile, 

their exceptionally high/low intensities may be blurred after normalization. 

 

The following OPTIONS and Steps 11 to 17 relate to the pre-processing of data to 

counteract any experimental-related regular variance both within individual fingerprints 

and across the whole data set. See Section 8.5 for details. 

 

11. Optional: Perform baseline correction and/or imputation of low/zero values following 

the instructions in Section 8.5.1 and 8.5.2.  Please note that baseline correction of binned 

raw data (see Figure 8.4 in Anticipated Results) does not necessarily improve 

significantly data structure and, therefore, classification and feature ranking results.  

Baseline correction requires option „imputation of low/zero values‟.  Also note that zero 

or low values (see Table 8.2 and Figure 8.5 in Anticipated Results) are mainly a problem 

when data undergo log transformation as it leads to missing data that, in turn, is not well 

handled by most statistical/machine learning algorithms. 

12. Perform log transformation using R function log directly (see Figure 8.6 for anticipated 

results) or set method=”log” in function preproc in FIEmspro.  

13. Optional: Perform sample normalisation as described in Section 8.5.3 (and see Figure 

8.7 for Anticipated Results). Please note that while normalisation of each fingerprint to 

their TIC separately is the preferred option, it does not necessarily improve data 

structure significantly in every case. 
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CAUTION Normalisation to sample TIC may lead to dramatic effects when the TIC intensity 

is correlated to the class of interest. 

 

Steps 14 to 17:  Outlier detection. 

14. Perform Principal Components Analysis (PCA) for each sample class individually using 

function prcomp with the pre-processed data resulting from steps 11-13. 

15. Perform outlier detection on the first 2 principal components using the FIEmspro 

function outl.det, (see Figure 8.8).  

16. Investigate samples identified as potential outliers at a given threshold (p=0.975 is 

adequate for most problems) and eventually remove these samples from X and Y 

datasets. The outliers will normally lie in the area above the distance cut-off line and 

outside the confidence ellipse.  

17. Repeat the outlier detection procedure (steps 14 – 16) on each of the different sample 

sub-groups corresponding to any experimental factors that are commonly found to be 

major sources of variance.  

 

CAUTION   Any outlying samples identified in PCA (or LDA, see step 18) should be 

investigated for potential mislabelling or typographical errors in for example run sequence 

lists.  Any remaining samples thought to be significant outliers can be removed from the data 

matrix to be used for classification or feature selection tasks with the caveat that sufficient 

numbers of class replicates are retained to maintain a data set structure as close as possible to 

the original experimental design. 

 

Steps 18 to 29:  Unsupervised clustering or a supervised classification task with pre-

processed data.   

 

Steps 18 to 19: Perform unsupervised multivariate modelling.  

18. Load appropriately pre-processed data (i.e. at minimum the outlying samples should be 

removed and the data log transformed) and perform Principal Components Analysis 

(PCA) using all selected sample classes using R function prcomp.  A clustering or 

classification task can be performed using all the data available or can be carried out 

using samples corresponding to a predefined-selection of classes to address a specific 

biological question. This step can apply to multiple and two class problems. 
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19. Produce a PCA scores plot of the first two principal components (or more depending on 

the experimental design complexity) to investigate the origin of the main sources of 

variability (see Figure 8.9 in Anticipated Results). 

20. Optional: Examination of PC loading plots can provide potential indications at the 

signal level if the natural clustering of samples cannot be explained by any of the meta-

data available.  

 

Steps 21 to 24:  Supervised multivariate discrimination on the overall data. 

 

21. Perform Linear Discriminant Analysis (LDA) using FIEmspro function nlda.  

22. Check the results of LDA by printing out the confusion matrix and statistics, plotting the 

LDA scores on the first two or more dimensions and plotting the hierarchical clustering 

of the group centres in the LDA space if the problem comprises more than two classes 

(see Figure 8.10 in Anticipated Results).  

23. Perform Random Forest (RF) classification using function randomForest, implemented 

in the random Forest package. 

24. Check the results of RF classification by printing out the confusion matrix and plotting 

sample margin from the RF model (see Figure 8.11 in Anticipated Results). 

 

Steps 25 to 30:  Assessment of multivariate discrimination robustness. 

 

25. Choose one of the re-sampling strategies, including leave-one-out cross-validation, 

cross-validation, randomised validation (holdout) and bootstrap by using the FIEmspro 

function valipars. Please note that leave-one-out cross-validation should only be used if 

there are insufficient class replicates to generate suitable independent training and test 

data sets. Randomised validation and bootstrap have been found to be particularly 

reliable with FIE-MS data containing a minimum of 10-18 class replicate fingerprints 

each containing up to 2000 variables. Please note that as data paucity is often a problem 

it is not always possible to construct independent test and training data sets to carry out 

optimal model validation. 

 

CRITICAL Steps 25 to 31 must be repeated several times to estimate the classifier variance 

by setting a sufficient number of iterations while calling accest (usually 10-20). 
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26. Generate the vector (indices) of samples used for model training associated with the 

chosen resampling method using FIEmspro function trainind.  

27. Perform RF and LDA analysis with the chosen resampling strategies to assess model 

performance by using accest.  

28. Check results such as error rate and the confusion matrix (see Figure 8.12 in anticipated 

results). 

29. Check average margins calculated on the left out samples (RF only) and, if a two class 

problem, AUC values (for any method).  Please note that for two class problems an 

average RF margin around 0.2 is an indication that the classifier might lie on a threshold 

for robust interpretation, whilst models with a margin above 0.4 are generally considered 

good candidates for adequate generalizability and can be used with reasonable 

confidence for informative feature selection 
12, 37

. Models with lower margins are not 

often robust and are likely to present difficulties for feature ranking and lack 

generalizability.   Similarly, an AUC value > 0.9 is normally an indication of a robust 

(adequate) classifier 
12, 37

.  

30. Optional: Assessment of discrimination results significance metrics and of experimental 

factors (see Section 8.3.7) on discrimination abilities of classification model can be 

performed by following the advice given in Section 8.7.  

 

Steps 31 to 34:  Applying feature ranking. 

 

31. Perform feature ranking with all training sample replicates using several feature 

selection methods implemented in package FIEmspro, such as Random Forest (fs.rf), 

ANOVA (fs.anova) and AUC (fs.auc). Please note that feature ranking aims to 

determine which variables are significantly explanatory of biological differences 

between sample classes.  The most generalizable models are produced and the most 

accurate feature rankings are obtained when the overall biological question is broken 

down into relevant pair-wise (binary) comparisons of classes. 

32. Perform feature ranking based on re-sampling procedure by using FIEmspro function 

feat.rank.re (see Table 8.3 and Table 8.4).  

33. Compute rank stability for each feature in each method by using FIEmspro function 

fs.mrpval. 

34. Summarize the results by FIEmspro function fs.summary (see Table 8.4). Please note 

that in binary comparisons using Random Forest we have shown that selected features 
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with an Importance Score of greater than 0.0025-0.003 are likely to have significant 

explanatory power 
12, 37

.  Similarly, variables with AUC values > 0.9 or FDR corrected p 

value (from any classical univariate statistical test) lower than 10
-4

 can be considered 

discriminatory in pair-wise comparisons as a first estimate 
12, 37

.   

 

 

8.5 OPTIONS and TROUBLE SHOOTING    

 

The optional steps included in the protocol relate firstly to situations where signal intensity 

values, particularly in large data sets, are suspected to contain elements of regular variance 

that do not relate to the biological questions under consideration and can effectively confound 

data mining.  Such factors are discussed in detail in Section 5and can commonly include: 

signal baseline „drift‟ within individual fingerprints (often more of a problem in negative ion 

data); gradual signal intensity shifts between fingerprints resulting from changes for example 

in ionization or detector efficiency; occasional large TIC divergence from mean in 

fingerprints resulting from, for example, changes in extraction efficiency of individual 

samples.   With sufficiently large data sets such regular variance may not be an important 

issue, but as data paucity  is often a problem it is commonplace to perform data 

„normalisations‟ and/or transformations to counteract such features in the data during pre-

processing.  

 

A second group of options relate to performing significance tests on the initial classification 

models generated using default parameterisations. In high dimensional data containing 

elements of often subtle variance it is important to be aware that powerful multivariate 

modelling techniques will always strive to drive discrimination between classes and try to 

achieve high accuracy.   Purely mathematical significance or accuracy measurements may be 

misleading if it cannot be certain that the model is highlighting features that are directly 

related to the biological questions under consideration.    To develop confidence in the data 

therefore it is important to perform appropriate cross-validation tests to determine whether 

classification models are robust.   There are no „hard and fast‟ rules for appropriate 

significance metrics but, as described previously 
12, 37

 we suggest that the best policy is to 

assess model significance in relation to the biological significance of the outcome in any new 

type of experiment with a novel matrix  
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8.5.1 Baseline correction  

 Select one of a few representative samples. 

 Run the baseline correction algorithm onebc in package FIEmspro with various 

different window sizes and lower quantile values to evaluate the most adequate set of 

parameters (wsize=50 and qtl=0.1 are adequate starting points).  

 Apply the baseline correction procedure on the overall data by using FIEmspro 

function multibc for the selected parameters of wsize and qtl. (see Figure 8.4 for 

example results). 

 

8.5.2 Imputation of low/zero values  

Perform imputation of low values if data shows high numbers of zero or very low values.  

 This can be achieved either by increasing all signals to a pre-determine threshold. 

 

CAUTION   If baseline correction has been applied previously then it is possible that some 

variables will have negative values and so thresholding could cause problems 

 

 Alternatively, an imputation method can be used based on a simple k-nearest 

neighbour (k-NN) algorithm implemented in FIEmspro function koptimp. This 

function assists in the determination of an optimum number of nearest samples to be 

considered to interpolate missing data by comparing the imputation root mean squared 

error (RMSE) for different values of k . To get a better RMSE estimate, this procedure 

is repeated several times. RMSE distributions at each k is plotted in form of a box plot. 

The characteristics of the graph „elbow‟ (i.e. position where curve starts to level off 

rapidly; see Table 8.2 and Figure 8.5 in Anticipated Results)  is the most convenient 

way to determine the optimum k (i.e. trade-off between under- and over-fitting). 

 

8.5.3 Sample normalisation 

 Plot the sample TIC against experimental factors of interest such as information 

relating to sampling day and replicates by using functions sum and boxplot.  

 Perform sample normalisation corrected with the chosen experimental factor if the 

TIC shows significant class-dependence by using FIEmspro function preproc with 

method of TIC and a factor (y) specifying the experimental factor, otherwise perform 
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TIC normalisation by preproc without specifying the experimental factor (see Figure 

8.7 for Anticipated Results). 

 

8.5.4 Assessing effect of experimental factors on discrimination abilities of 

classification model 

 Assess LDA and RF performances with one constrained cross validation strategy 

where the experimental factor under scrutiny is used to form the folds (for e.g. 

samples from the first analytical batch are in fold one and samples from the second 

analytical batch in fold 2 etc…)   

 Assess LDA and RF performances with cross validation with similar stratification of 

the classes as above but with random split. Repeat this step 20-50 times with different 

random partitioning.  

 Test the null hypothesis that the accuracies obtained by the constrained CV procedure 

do come from the same distribution of the accuracies calculated on the random data 

partitioning.   

 

8.5.5 Trouble shooting in „R‟ environment 

Most classification algorithms implemented in the R environment treat the measured values of 

data variables and sample class information differently. The data type for the variables must 

be in a matrix or data frame and the class information represented as a vector or factor. If an 

error is encountered, the error information is prompted in the R console and it is indicated 

what kind of error has happened. The most likely errors relate to data format or inconsistent 

length in the list of variables or class information, or un-identified arguments passed into the 

functions.  
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8.6 ANTICIPATED RESULTS WITH MODEL DATA 

 

To provide a context, most of the examples shown as anticipated results relate to the 

processing and analysis of FIE-MS data representing a time course (5 sampling points plus a 

healthy control) of Brachypodium distachyon (a model grass species) responding to attack by 

the fungal pathogen Magnaporthae grisae.  Biological variance is relatively high in this data 

set and it is expected that the majority of sample classes should display significant differences 

in metabolome, especially after lesions become visible and fungal biomass increases. 

Anticipated results illustrating some of the optional steps are demonstrated in the context of 

other large G02 data sets either developed on a different mass spectrometry instrument where 

baseline drift was a problem or where class differences in metabolome were likely to be much 

more subtle.   All the data shown was generated using FIEmspro using a sample workflow 

available at the following URL (http://users.aber.ac.uk/jhd).  

 

8.6.1 Data loading 

The data set used for analysis should be provided in two separate ASCII files (spaced .txt or 

column .csv separated as produced by Excel). The first file (X-data) consists of the measured 

values of each variable and the second one (Y-data) is the experimental factors or response 

vectors, including information such as injection order, class label and batch (see Table 8.1).   

The Y-file also contains information used for converting raw data *.cdf files into the X matrix 

using function fiems_ltq_main in FIEmspro (columns „pathcdf‟ and „filecdf‟).  The two files 

loaded into R should be in the format of a matrix or data frame. The columns in the first file 

should consist of the m/z (variables) and their measured intensity values, whilst the rows 

represent the samples. The columns of the second file contain the experimental factor 

information labels (or values) while the rows correspond to the same sample indices as in the 

X-data file. During data analysis each individual Y-data column is extracted and converted 

into an R factor and then passed to the analytical algorithm along with the X-data matrix (or 

data frame). For example, to undertake a discrimination process, we need to extract the Y-

column information labelled „class‟. After loading the data into R, the consistency of data 

dimensions in the two data sets should be checked, for example, the number of rows in the 

two data sets must be the same, and otherwise the data analysis procedure will generate an 

error message.    

 

http://users.aber.ac.uk/jhd
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8.6.2 Preliminary data assessment 

When performing data analyses upon instrument raw data output it is important that the data 

analyst has a good understanding of the methods used to generate samples and machine runs, 

as well as having an understanding of key features in the experimental design (for example 

the number of classes within the dataset, number of replicates and any relationship between 

runs/samples).  This is especially relevant if the data analyst was not the person who 

performed the experiment, which is often the case. To do this, the data analyst must 

thoroughly assess the accuracy of the data matrix against the metadata to determine the 

number of meta-classes present within the matrix, to make sure that all the variable names are 

correct and avoid confusion when interpreting feature ranking lists. Another source of 

confusion may come from the fact that the metadata information has been spuriously loaded 

in a different order to the fingerprint matrix. Finally, the data analyst must be aware of 

potential interactions between planned or unplanned experimental factors. Typically, initial 

experimental design and any changes to the original plan occurring during the overall data 

collection phase must be clearly stated before starting the data analysis process. One must also 

ensure that each treatment (including sample class) is fairly well randomised across the 

dataset, regardless of analytical batches or order of injection.  In the present example this is 

achieved by examining the columns „name.org‟ and „injorder‟ in Table 8.1b in which it is 

obvious that samples from different growth trays and treatments have been injected in a 

random order. 

 

8.6.3 Data intensity checking using sample Total Ion Count (TIC) 

By definition the total ion count of a spectrum is the sum of all the m/z signal intensities. As 

an easy diagnostic measure, the TIC can provide an estimation of factors that may affect the 

overall intensity of the run such as gradual instrument drift (e.g. resulting from loss of 

sensitivity of the ion source), or step changes in instrument characteristics after maintenance.  

Also, an examination of the TIC can reveal suspicious samples where unusually low or 

especially high signal intensities in some runs may be due to contamination or poorly 

extracted samples.  
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Figure 8.2   TIC checking for potential outlying samples in FIE-MS data using 

FIEmspro function ticstats.  Plot of total ion count against order of injection of 

samples in FIE-MS data representing a time course of Brachypodium distachyon 

infected with the rice blast fungus.  The red line indicates the fitted regression model.  

Potential outlying samples are indicated as red numbers based on a TIC outside of an 

acceptable range of +/-3 median absolute deviation of the residuals from the fitted 

model (MAD).  

 

A robust regression can be built to model the effect of the injection order on the TIC of each 

sample as shown in Figure 8.2 by using FIEmspro function ticstats. As a conservative rule, 

any sample for which the residual deviates more than 2 to 3 times from the median absolute 

deviation (MAD) of the residuals (e.g. sample 6 in Figure 8.2) must be examined manually to 

identify the origin of the different intensity behaviour and then potentially removed before 

further statistical analysis if corrective measures do not improve the individual fingerprint. 

Further assessment of outlying samples is discussed later. In any case where a linear 

relationship (i.e. gradually changing TIC in sample set) is observed between the injection 

order and sample TIC, this dependency will be removed by TIC normalisation.  If other 

structure related to the order of injection is noticed, for example an “analytical batch” effect 

(i.e. a step change in TIC at beginning or in middle of an injection series as shown in Figure 

8.3), the user must identify its potential origin (e.g. changes in machine calibration,operator or 

mobile phase) and finally create a new experimental factor (batch) where each step change in 

level corresponds to the start of a new batch.  
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Figure 8.3   TIC checking for potential batch effects in FIE-MS data using 

FIEmspro function ticstats.  Plot of total ion count against order of injection of 

samples in FIE-MS data representing 5 different potato cultivars from the G02  2001 

FIE-MS data set analysed in 4 batches over a period of 6 months.  The red line 

indicates the fitted regression model.  Blue dotted lines indicate positions in injection 

sequence where experimental batch variance is evident.  Potential outlying samples 

are indicated as red numbers based on a TIC outside of an acceptable range of +/-3 

median absolute deviation of the residuals from the fitted model (MAD).   

 

 

8.6.4 Baseline correction 

Despite preliminary efforts in fingerprint pre-processing (i.e. removing sample background 

and residual electronic noise), a post hoc baseline correction may be necessary to remove 

systematic and m/z-dependent artefacts caused by „chemical noise‟. Chemical noise is matrix 

dependant and attributable to clusters of ionized matrix molecules hitting the detector during 

early portions of the FIE-MS infusion and/or detector overload from large molecules.  Typical 

examples displaying baseline problems include samples dominated by large molecules such as 

soluble long chain carbohydrates or high molecular weight complex lipids.  One possible 

consequence of baseline drift includes the possibility that the baseline may become 

discriminatory if it appears to be characteristic of specific classes or subgroups of samples 

from the same class.  A second possibility is that important information may be obscured in 

areas affected by baseline problems. Rapid diagnostics for initial evaluation of baseline bias 

include the examination of the PCA loading plots and simple non-parametric testing using the 

raw data to check whether the related statistics are also m/z dependent.  
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As in other contexts (e.g. proteomics), there is not a general and adequate solution accepted to 

solve a baseline problem and more research is required to understand baseline behaviour. A 

simple consensual approach consists in fitting a monotone local minimum curve to each 

fingerprint by using FIEmspro functions onebc and multibc. Basically, the fingerprint is 

divided into equally spaced m/z intervals and a local minimum intensity value is returned as 

the baseline estimate for this region. Finally, the whole fingerprint baseline is computed by 

linear interpolation based on pairs made of the centre of the interval and its corresponding 

local minima (Figure 8.4). Intervals are in the order of 30-70 amu as a trade off between the 

removal of relevant chemical (small interval) or under-estimation bias when using larger 

intervals. Rather than using the minimum value of an interval, it is also judicious to use the 

value corresponding to a low quantile (typically probability of 0.1) to avoid any spurious 

estimates due to zeros or abnormally low signals. Baseline corrected fingerprints can be 

examined visually to determine the effect of this corrective procedure (green plot in Figure 

8.4) and the improvement of the data quality assessed by plotting the AUC of the original raw 

data against the baseline corrected AUC to determine the quality of fit characteristics at 

higher intensities. Due to the inherent nature of FIE-MS profiles, earlier and later parts of the 

fingerprint may be excluded to avoid any downward bias of the baseline estimation because 

of many consecutive zeros.  
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Figure 8.4    Use of baseline correction to improve FIE-MS fingerprint data 

representing pathogen challenged Brachypodium distachyon plants. The different 

colours indicate signals before (blue) and after (green) baseline correction using the 

FIEmspro function multibc. The original baseline is coloured red.  

 

 

8.6.5 Imputation of low and negative intensity signals  

Some variables may exhibit zero values (or even negative values after baseline correction is 

applied, see Figure 8.4); this effect is often predominant in the early and later phases of an 

individual infusion profile (see Figure 5.1 in Section 5).  In most instances, variables that 

exhibit a majority (e.g. 70%) of zero values across the whole data set should be removed 

before further analysis. For the remaining signals in FIE-MS data, zero values should 

typically concern no more than a maximum of roughly 3% of the total number of cells in the 

matrix (Table 8.2a).  
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Table 8.2  Dealing with zero values and low intensity signals in FIE-MS data 

 

A conservative strategy to improve data quality consists of calculating an intensity value 

representing a "limit of detection" signal to „in fill‟ cells with missing values to avoid the 

effect of zero values skewing further data analysis (Table 8.2b). This being said, quite often 

imputation of very small values is more of a computational convenience (very few 

multivariate techniques can intrinsically accommodate missing data points) than a significant 

contribution to the improvement of model predictive abilities. Obviously it is important that 

this treatment of the data should also not remove nor create any new spurious knowledge. A 

value of 1 could be judicious to use at it is a rough estimate of the lowest "machine error"; 

 

Sample Positive ion m/z signal intensity

Number
P110 P111 P112 P113 P114 P115 P116 P117 P118 P119

1 1.52 11.53 0.51 29.62 6.08 2.57 6.30 8.55 3672.78 156.03

2 4.91 8.00 0.00 19.05 8.92 9.83 7.10 0.00 5660.17 215.98

3 7.50 5.91 0.00 194.02 0.00 115.49 5.23 8.78 2742.41 476.44

4 18.38 5.68 0.51 19.90 4.42 22.26 82.92 13.38 10098.91 672.24

5 0.50 3.68 0.41 46.69 3.71 5.34 4.37 0.00 4932.41 165.17

6 15.90 4.78 4.06 31.63 3.30 12.73 107.77 4.51 5713.53 268.47

7 6.02 1.06 0.00 26.45 0.89 6.94 2.88 0.35 5992.55 241.26

8 6.83 1.62 16.97 7.14 3.42 22.53 11.18 2.68 6904.46 365.81

9 10.32 4.63 5.10 24.41 3.46 5.09 35.14 0.73 7361.00 383.49

10 14.97 4.77 4.14 17.20 9.07 2.13 130.65 0.66 6770.98 342.83

Sample Positive ion m/z signal intensity

Number
P110 P111 P112 P113 P114 P115 P116 P117 P118 P119

1 1.52 11.53 1.00 29.62 6.08 2.57 6.30 8.55 3672.78 156.03

2 4.91 8.00 1.00 19.05 8.92 9.83 7.10 1.00 5660.17 215.98

3 7.50 5.91 1.00 194.02 1.00 115.49 5.23 8.78 2742.41 476.44

4 18.38 5.68 1.00 19.90 4.42 22.26 82.92 13.38 10098.91 672.24

5 1.00 3.68 1.00 46.69 3.71 5.34 4.37 1.00 4932.41 165.17

6 15.90 4.78 4.06 31.63 3.30 12.73 107.77 4.51 5713.53 268.47

7 6.02 1.06 1.00 26.45 1.00 6.94 2.88 1.00 5992.55 241.26

8 6.83 1.62 16.97 7.14 3.42 22.53 11.18 2.68 6904.46 365.81

9 10.32 4.63 5.10 24.41 3.46 5.09 35.14 1.00 7361.00 383.49

10 14.97 4.77 4.14 17.20 9.07 2.13 130.65 1.00 6770.98 342.83

Sample Positive ion m/z signal intensity

Number
P110 P111 P112 P113 P114 P115 P116 P117 P118 P119

1 1.52 11.53 7.94 29.62 6.08 2.57 6.30 8.55 3672.78 156.03

2 4.91 8.00 5.58 19.05 8.92 9.83 7.10 5.72 5660.17 215.98

3 7.50 5.91 30.99 194.02 4.60 115.49 5.23 8.78 2742.41 476.44

4 18.38 5.68 9.59 19.90 4.42 22.26 82.92 13.38 10098.91 672.24

5 13.73 3.68 4.44 46.69 3.71 5.34 4.37 3.86 4932.41 165.17

6 15.90 4.78 4.06 31.63 3.30 12.73 107.77 4.51 5713.53 268.47

7 6.02 1.06 3.06 26.45 2.62 6.94 2.88 2.08 5992.55 241.26

8 6.83 1.62 16.97 7.14 3.42 22.53 11.18 2.68 6904.46 365.81

9 10.32 4.63 5.10 24.41 3.46 5.09 35.14 5.12 7361.00 383.49

10 14.97 4.77 4.14 17.20 9.07 2.13 130.65 5.67 6770.98 342.83

Original raw X-data

Data after applying intensity  threshold
(b)

Data after applying infilling values below threshold(c)

(a)
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however this will also bound further log transformation to 0. Further increasingly elaborate 

techniques can be applied to treat the missing value problem in a more formal way. It is often 

the case that the mechanism underlying an  

apparently random pattern of missing values cannot be identified clearly and could be caused 

by a combination of technical reasons (detection threshold or sample preparation) and 

inherent properties of metabolomic profiling (molecular complexity, dynamism of metabolic 

networks and other experimental variations). Several techniques have been proposed in the 

literature to handle this issue which consider the presence of empty cells  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5. Evaluation of an optimum number of k with the FIEmspro function 

koptimp. Box plot depicting the imputation error (RMSE) at various number of (k) 

neighbors used for the imputation for several random attributions of missing values. The 

RMSE corresponds to difference between the imputed value and the true intensity of 

data points selected randomly. Characteristics of the graph „elbow‟ is the most 

convenient way to determine an optimum number of (k) neighbors (i.e. trade-off 

between under and overfitting). In this case the adequate number of k is 6. 

 

to be caused by data "missing at random" (MAR), which is probably the case in most 

situations. In the present protocol, we have adopted a non-parametric k-nearest neighbours 

based technique to impute low/missing information. The imputation relies on interpolating a 

missing data point xij (sample i, variable j) from the the k nearest samples to sample i that do 

not contained any missing information in their column j.  To determine the efficiency of the 
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method to obtain reasonable solutions, one can evaluate the error between imputed values 

obtained by artificially assigning random missing cells in the matrix and their original true 

values (Figure 8.5).  

 

The FIEmspro function koptimp is a wrapper function to determine this error for several 

values of k and several random assignment. As shown in Figure 8.5, we vary the number of 

the nearest neighbors from 1 to 10 and each k is executed 10 times. From the results of the 

root mean squared errors (RMSEs) presented we can determine the optimal number of nearest 

neighbors to be 6 in the present case. This neighbour values is applied to the final imputation 

of missing or low values in FIE-MS data.  Recently, a comprehensive R package pcaMethods 

(http://bioconductor.org/packages/2.0/bioc/html/pcaMethods.html) has been released to cover 

various PCA-based algorithms for imputing missing data in transcriptomics data and can 

optionally be applied with similar performance. 

 

 

8.6.6 Logarithmic transformation of data 

Metabolites are present at a huge dynamic range of concentrations in samples and thus FIE-

MS data reflects this situation by the fact that signal variance appears apparently much greater 

for m/z  typically exhibiting higher intensities when all signals are measured on the same scale 

in the raw data (Figure 8.6a). For purposes of statistical analysis, the logarithmic 

transformation of signal intensity can be made in order to alleviate the dependency of the 

variance with the intensity. This family of transformations seems to be a consensus step in 

many reported mass spectrometry and metabolomics applications despite a lack of 

background proof that it is always helpful in every case. Essentially, log transformation 

converts multiplicative errors into additive errors so that, ideally, variance becomes more 

constant across the range of signal intensity on the logarithm scale and thus variance is 

stabilised (Figure 8.6b). 

 

 

 

 

 

 

http://bioconductor.org/packages/2.0/bioc/html/pcaMethods.html
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Figure 8.6.    Effect of log transformation on the signal variance to signal 

intensity dependency within FIE fingerprints representing the metabolome of 

Brachypodium distachyon challenged with the rice blast fungus.  (a) Plot of rank of 

the interquartile range versus the rank of the median of each m/z signals shows a clear 

dependency between signal intensity and degree of variance.  (b) Prior data log-

transformation partially removes this dependency. 

 

 

Additional variance stabilisation models can be used such as generalised log transformation, 

however they require parameter optimisation. One drawback of log transformation is that it 

makes the visualisation difficult and harder to differentiate noise from background. For some 
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statistical techniques such as PCA, there is a basic choice as to whether one uses the data as 

they come or whether to reduce each signal to unit variance. The former strategy somewhat 

over-weights the influence of the major signals, while the latter is prone to giving excessive 

influence to variables that contribute a lot of (or mainly) noise. Log transformation of the 

variables can therefore be an optimal strategy between the two: our default approach is to first 

take the logarithm of the signals and not reduce to unit variance further. 

 

 

8.6.7 Data normalisation between samples 

Purpose of normalisation is to remove inter-spectrum sources of variability that come mainly 

from different sample concentration, loss of sensitivity of the detector over time or 

degradation of certain samples. One common way to normalise metabolomics profile data is 

the use of one or more internal standards of "known" concentration, which is not possible in 

FIE-MS fingerprints and so the most widely used solution consists of a so called global 

normalisation by rescaling each measurement within a spectrum by a constant factor, such as 

the sum of all the spectra intensities (Total Ion Count) as shown in Figure 8.7 (a) and (b). This 

method of TIC normalisation is often systematically used in a blind way and probably 

adequate to achieve a more or less substantial improvement of model quality in most 

situations. However, by nature, TIC normalisation also has an impact on non-parametric 

statistical strategies in contrast to commonly used monotonous transformations such as log 

transformation or range scaling that will only affect parametric techniques. An assumption 

behind such normalization approaches is that the overall intensity captures a sort of average of 

both up and down changes in concentration related to biological treatment and assumes that 

these potentially informative changes are negligible regarding to the overall experimental 

variability (so that the TIC is dominated by the "stable" features). In addition to introducing 

relationships between variables that do not normally exist, the default use of TIC 

normalisation can lead to the generation of spurious knowledge (false positives) if the overall 

sample intensity is class/factor dependent; this treatment can therefore sometime consequently 

bias discrimination abilities in data modelling. In such a situation, compensation for TIC class 

dependency can be performed by removing the difference between the average TIC of the 

corresponding class and the average TIC calculated from every samples. Figure 8.7 (c) and 

(d) illustrate a better concordance of raw data AUC with class corrected normalised data and 

the effects on TIC range. 
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Figure 8.7.  Effect of TIC normalisation on fingerprint data representing 

Brachypodium distachyon leaves after either 3 or 4 days infection with rice blast 

fungus.  (a) Plot of m/z signal AUC calculated using the raw data and AUC calculated 

with the TIC normalised data. (b) TIC distributions in both classes. (c) Plot of m/z 

signal AUC calculated from the raw data and AUC calculated with the class corrected 

TIC normalised data. (d) Distributions of sample sum of the intensities in both classes 

after class corrected TIC normalisation. (c) and (d) illustrate that the information 

resulting from 4 days of infection is kept in the overall intensity and that no spurious 

knowledge is created as opposed to the global TIC normalisation shown in (a). 
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8.6.8 Sample outlier detection 

Despite an initial inspection of distribution of sample TIC, subsequent outliers may not be 

detected unless they exhibit gross intensity differences from the mean. To our knowledge 

outlier detection in a metabolomics context is mentioned in various proposed data analysis 

workflows but no explicit studies have been described in detail because both detection and 

interpretation of outliers in high dimensional space is a rather difficult and ill-defined 

problem. Due to inherent constraints associated with the dual problems of small sample size 

and dimensionality, metabolomics data becomes so sparse so that every sample can be 

considered as outlying under some circumstances.  

 

Application of conventional univariate techniques to detect outliers is not realistic as we end 

up removing most of the samples. More importantly, outliers can also encapsulate important 

information related to instrument artefacts, substructures in the data, important biological 

behaviour or simply mislabelling. In such circumstances it is thus useful to have access to 

metadata so that possible reasons for deviating from a "normal" behaviour can be assessed as 

well as corrected for if possible.  Rather than concentrating on individual variables that could 

potentially lead to the rejection of all the samples, outlier detection can be approached from a 

different angle that consists of looking at the homogeneity of the samples in the main 

directions of variance. Standard methods are based on calculating (robust) Mahalanobis 

distances between each sample and the data centre in a given reduced space such as that 

derived from Principal Component Analysis (PCA). PCA produce fewer directions of 

uncorrelated dimensions (called Principal Components) with decreasing variance so that each 

PC will explain different dimensions in the data that could be related to a different source of 

variability. Due to the inherent difficulties in defining outliers, inclusion of the first few 

dimensions only is almost always sufficient to compute Mahalanobis distances. However in 

more complex designs implicating various factors and/or multiple levels, different 

contributions to the overall variation modelled by PCA may be confounded in such a reduced 

space. In such situation, the initial dataset must be decomposed into smaller problems to 

analyse potential reasons for outlier behaviour. Finally, when an outlier sample is suspected, a 

rapid examination of the loadings must be performed to help to explain the underlying origin 

of the deviant behaviour.  In our experience in such samples are often highlighted in a series 

of correlated signals corresponding to sample contamination (e.g. „splash over‟ from other 

sample classes during vacuum drying or contamination from laboratory chemicals or 

plasticware).  
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In order to avoid removal of important biological information and sample size reduction, a 

loose significance threshold or confidence level (normally 0.975 or 0.99) is employed to 

determine a cut-off value of the Mahalanobis distances. Any samples whose Mahalanobis 

distances are larger than the cut-off are identified as the outliers. As an example shown in 

Figure 8.8, the fingerprint data of Brachypodium distachyon samples in class 3 are analysed 

by a PCA and the first two principal components are used for outlier detection using 

FIEmspro outl.det.  In this instance sample 14 is identified as potential outliers under the 

confidence level of 0.975.  The same sample is also highlighted in the right panel of Figure 

8.8, where the outlier is located outside of the 2-dimension tolerance ellipse plot whilst all 

other samples sit inside the ellipse.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.8.    Outlier detection in FIE-MS fingerprint data representing 

Brachypodium distachyon leaves after 3 days infection with rice blast fungus 

using Principal Components Analysis (pccomp) and FIEmspro function outl.det.  
(a)  Scatter plot of sample Mahalanobis distances and (b) scores plot of the first two 

Principal Components including tolerance ellipse used to evaluate outlying samples. 

Outliers, such as sample 14 (in blue) are explicitly highlighted in both graphs. 

Mahalanobis distances encapsulate both distance to the centre of first two main 

directions of variability and the dispersion of this reduced space. Assuming that 

Mahalanobis distances follows a Chi-squared distribution, the ellipse of confidence 

and distance threshold can be determined (drawn in red). 
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8.6.9 Assessment of the natural relationships between sample classes in 

multivariate space  

Unsupervised modelling procedures, such as Principal Components Analysis, are often 

referred to generically as clustering methods and allow a quick inspection of the underlying 

total data structure in an experiment according to the main directions of variation.  As a result 

of both inherent complexity of FIE-MS fingerprints (50-2000 Da range) and sophisticated 

and/or multifactorial experimental designs, unsupervised techniques will produce overlapping 

class ‟groups‟ from which the distinction of explanatory signals responsible for class 

differences is rather difficult.  However, techniques like PCA may outline specific sample 

similarity relationships in situations where sample class labels do not necessarily relate to 

metabolomic phenotype and are thus useful for class discovery; any samples grouping 

together can be objectively considered to be similar.  In Figure 8.9, the first two scores plots 

derived from a Principal Components Analysis illustrates that sample grouping is related to 

the infection time course of Brachypodium distachyon challenged with the rice blast fungus. 

In general each class grouping is relatively fuzzy, reflecting the large degree of biological 

variance in the experiment. Samples representing healthy leaves and samples taken 24hours 

after infection overlap considerably. The PC1 dimension reflects disease progression with 

samples representing the later time points in the experiment lying increasingly to the left of 

the plot. 
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Figure 8.9   Principal Components Analysis (PCA) of FIE-MS fingerprints 

representing a time course of Brachypodium distachyon infected with the rice 

blast fungus. All the samples are mapped on the first 2 major dimensions of 

variability (PC1 and PC2).  H = healthy leaves and the numbers 1-5 relate to days 

post-infection. The variability encapsulated in each direction is respectively 21 and 6 

%. 

 

 

 

 

 

8.6.10  Multivariate discrimination of sample classes 

In typical metabolomics studies involving designated case and control subjects, a 

discrimination task is often a binary classification problem, whereas those involving more 

than two classes, such as an analysis of many plant genotypes or an examination of different 

phases of disease progression are known as multi-class problems in the machine learning 

literature. Despite the fact that the machine learning techniques used in this protocol can cope 

with multi-class problems, decomposition of the general problem into a series of pairwise 

(binary) classifiers may have advantages in many situations. The construction of multi-class 

models usually requires optimisation of complex decision boundaries that may become 

difficult to interpret and necessitate powerful algorithms to avoid inefficiency associated with 
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a large number of output classes. Generally, such classifiers do not exploit natural groupings 

of classes at the price of classifier robustness and transferability. In addition to generating 

more understandable conclusions using common two class algorithms, the decision 

boundaries are usually simpler to interpret in binary problems. As opposed to a global feature 

selection performed using all groups together, local feature selection discriminating two 

classes can result in selection of more explanatory variables and a better association between 

features and class groupings. From a biological point of view, the decomposition of a 

complex experiment into pairwise problems may be more expressive and sensible than 

considering all class together (for example one may be interested in comparing a control 

group against each case subtype, rather than differences between case subtypes). 

Identification of meaningful grouping from a multi-class problem can simply be approached 

by looking at the confusion matrix obtained by cross-validation for example or by 

investigating the way group centres are organised in LDA space. At a certain cost, 

computation of all possible binary classifiers will highlight pairs of groups that are closely 

related. For example, combination of binary models margin and non-linear mapping has been 

successfully applied to summarize genotypic relatedness in a large functional genomics 

problem 
12, 37

.  

 

 Figure 8.10 illustrates the multivariate discrimination of Brachypodium distachyon infection 

time course data using the FIEmspro function nlda for linear discriminant analysis (LDA). 

Figure 8.10(a) shows a plot of the LDA scores of the all six classes in  
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Figure 8.10.    Linear Discriminant Analysis (LDA) and Hierarchical Cluster 

Analysis (HCA) of FIE-MS representing disease progression in Brachypodium 

distachyon plants infected with the rice blast fungus.  (a) Mapping of the samples 

on the two main axis of between group variation (Discriminant Function, DF). (b)  

LDA model statistics for the 5 DFs (Eig, eigenvalue; Perceig, percentage of explained 

between group variance; Cancor, canonical correlation.  (c) HCA using complete 

aggregation of the class centers in the LDA space. 

 

the first two linear discriminant functions (DFs). The classes 2, 3, 4, and 5 have a wide 

discriminant boundary while classes 1 and H are overlapping. Statistical measures derived 
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from the LDA model such as eigenvalues, percentage of variance explained and canonical 

correlations for each discriminant function are given in Figure 8.10 (b). In such analyses 

Eigen values greater than 2 (equivalent to canonical correlation greater than 0.8) in any 

discriminant dimension are generally associated with adequate separability. This illustration 

also shows that the first two DFs dominate the analysis carried out by the LDA. Figure 

8.10(c) illustrates a hierarchical cluster analysis (HCA) based on group means of the projected 

data in the LDA space. It clearly provides insight into group relatedness, all six classes can be 

classified as two sub-groups, one of which is divided into further two sub-sub-groups. 

 

Figure 8.11(a) is a confusion matrix giving the results of a classification analysis using the 

Random Forest (RF) algorithm in which 20 samples of each sample class were provided and 

analysed using method randomForest.  The number of correct class predictions (highlighted 

in yellow) show that classification accuracy is very high with major confusion occurring only 

between healthy leaves (class H) and infected leaves prior to symptom formation 24 hours 

(class 1) after challenge with pathogen.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  8.11.    Examples of Random Forest statistics derived from classification 

of FIE-MS fingerprint data representing Brachypodium distachyon plants during 

a time course of infection with rice blast.  (a) Confusion matrix representing the 

predicted class according to the actual class of a set of samples. Numbers in the matrix 

diagonal (highlighted in yellow) correspond to the number correct predictions for each 

class.  (b) Typical RF margin results in three pair-wise (binary) comparisons. 

 

Classification accuracy is the most generic way to approach model generalizability but is not 

always adapted to examine the prospects for efficient mining of explanatory variables.  In 

essence, a high accuracy can be obtained at one extreme with very simple classifiers 

(a) RF Confusion Matrix
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containing only 4 or 5 significant variables, but it is possible that an equally accurate 

prediction can be made where classifiers are extremely complex and rather opaque to further 

interpretation.  The average sample margin computed from the votes of the left out samples 

(later described as margin solely) value is defined as the difference between the score for the 

true class and the largest score of the rest of the classes (i.e. the most probable 

misclassification).  The margin values are thus a better indication of how robust and 

potentially generalizable any classifier might be.  Figure 8.11(b) illustrates margin values for 

3 binary comparisons of Brachypodium data and as expected the margins between healthy 

leaves and the 24h post-infection time point are < 0.2, whereas other comparisons have much 

higher values.   Classifiers with margins above 0.3-0.4 are generally adequate for accurate 

feature selection in most binary comparisons using a similar experimental design (~ 2000 m/z, 

10-15 replicates). 

 

Whenever possible it is important to validate the classification results by use of a training and 

test set where there are sufficient numbers of sample replicates.  To obtain an unbiased 

accuracy estimation, a stratified 5-fold cross-validation can be applied and the process repeat 

10 times.  Figure 8.12 (a) illustrates an aggregated summary of Random Forest confusion 

matrices after cross validation with just 10 repetitions (more may be required in other 

experimental situations).   In our experience the statistical output of several classification 

algorithms (typically RF, LDA and SVM) should be checked for concordance and to reinforce 

our confidence in concluding about the validity of the experiment and technology to answer 

the biological question. As a minimum default we would usually inspect accuracies and AUC 

statistics for at least RF and LDA that generally show good correspondence (Figure 8.12b). 
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Figure 8.12.   Validation of discrimination models using FIE-MS fingerprint data 

that describe disease progression in Brachypodium distachyon infected with the 

rice blast fungus.  (a) Aggregated summary of the Random Forest (RF) confusion 

matrix following stratified 5x cross validation, repeated 10 times. This shows that 

errors are mainly made between classes H and 1 as well as between infected leaves 2 

and 3 days post-inoculation. (b) Comparative overview of the average accuracies 

(Acc.) and AUCs in RF and LDA models when discriminating samples from 3 and 4 

days post-inoculation.  
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8.6.11  Assessing discrimination results 

Deciding on the effectiveness of the model to describe the biological problem at hand 

deserves careful consideration. Firstly, accuracies and related performance measures obtained 

on various and different classifiers must converge to similar conclusions. Secondly, the 

observed error rate can be variable in data sets with only a small number of sample replicates 

and so the extent of the classifier performance variability is also important to assess in order 

to derive adequate conclusions regarding model generalizability. Commonly, a definition of 

model significance is formulated by comparing the statistics under consideration to a null 

hypothesis stating that this measure is not relevant to the problem under investigation.  Unless 

perfect classifiers are sought for predictive purposes, the highest performances must be 

obtained and discussed in parallel with the biological relevance of the findings. A significance 

‟threshold‟ statistic can be evaluated by comparing two sample classes that are known 

biologically to display no significant difference at the level of the metabolome.
12

  This is not a 

feature of the present data derived from an analysis of disease progression in infected 

Brachypodium leaves where sample classes are generally well discriminated.  Thus principles 

relating to the assessment of significance threshold are examining in Section 8.7 below with 

different data sets. 

 

Assessing results of experiments involving field-grown crops is expected to be more difficult 

than assessing well-controlled experiments involving clear metabolic differences. Empirically 

for a two class problem, accuracies and AUC greater than 0.9, margins above 0.3 and LDA 

eigenvalues greater than 2 may be sufficient to accept a model. For models that do not fulfil 

these criteria further computations are necessary to investigate model properties at lower 

thresholds. It is crucial to assess the potential influence of experimental factors other than the 

class of interest, on the classifier performance. As an example in a typical case-control 

experiment, the design may also include additional metadata information such as field plot or 

experimental conditions such as the lab origin. It is therefore of interest to check whether one 

of those factors could affect the characteristics of the model describing the initial outcome 

under study: can I correctly predict genotype class of one subpopulation (e.g. potato tubers 

grown in one season) from a model that uses the rest of the population (e.g. potato tubers 

grown in a different growing season)? This can be answered by constraining the cross 

validation in such a way so that every sample coming from the same sub-population are 

gathered together in the same fold (leave-one-class-out cross validation [LOCO-CV] as 

opposed to random leave-several-samples-out cross validation). Inspection of the confusion 
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matrix can reveal sub-groups badly described by the model. Additional random partitioning is 

performed with identical data stratification to test whether the accuracy calculated with 

constrained LOCO-CV falls within the limits of a random cross validation.  

 

8.6.12  Feature ranking 

The goal of many metabolomics experiments is to identify metabolite signals responsible for 

differences between experimental treatments or between classes (explanatory variables).  This 

can be a rather difficult task and obviously requires the use of data analysis methods that 

explicitly display variables in the final model.  This can be as contrasted with so called „black 

box‟ techniques that could excel in predictive tasks but fail to let the user know which 

features are being used for class discrimination 
2, 11, 51

. In addition, FIE-MS data tend to 

display significant variance and if only small replicate numbers are available then it is 

difficult to be certain that any variables highlighted by a specific feature ranking method have 

significant explanatory power.  A pragmatic solution to this problem is to use several feature 

ranking methods that use rather different algorithms and then derive a consensus ranking of 

all variables.   Following this the validation of any feature ranking can be undertaken by 

looking at the stability of individual features across multiple ranked lists by resampling the 

original training data.   

 

Table 8.3 displays the feature ranking results (using feature feat.rank.re in FIEmspro) in 

comparisons of leaf samples from Brachypodium distachyon taken either 3 or 4 days after 

infection with rice blast.   Potentially explanatory variables (m/z) are listed in rank order after 

Random Forest, AUC or ANOVA analyses.   Colour coding of individual variables reveals 

that, although the rank order of potentially explanatory variables is not identical, it is clear 

that the list of top 20-30 variables selected by each test are the same.  The RF Importance 

Scores in this analysis are plotted against variable rank and compared with those derived from 

two further binary comparisons in Figure 8.13.   
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Table 8.3   Feature ranking in binary comparisons using RF Importance Scores, 

AUC and ANOVA. Signals ranks are calculated with Random Forest, AUC and 

ANOVA strategies from leaf samples taken either 3 or 4 days after infection of 

Brachypodium distachyon with rice blast.   Potentially explanatory variables (m/z) are 

shown in rank order together with statistics after analysis with. The top 20 variables in 

each list are colour coded and cross referenced to other lists to allow visualisation of 

ranking by different techniques. 

 

Feature RF-Importance AUC value ANOVA

Rank m/z Score (mean) m/z (mean) m/z F-value (mean)

1 P749 0.00727 P749 1.00000 P366 79.60337

2 P162 0.00569 P541 0.99739 P203 69.28016

3 P541 0.00563 P355 0.99480 P213 66.74535

4 P911 0.00553 P162 0.99421 P749 65.88820

5 P750 0.00489 P750 0.99182 P367 64.85521

6 P395 0.00453 P911 0.99165 P162 59.19472

7 P877 0.00436 P395 0.99137 P365 57.99994

8 P367 0.00411 P403 0.98681 P403 57.87106

9 P366 0.00404 P366 0.98366 P215 53.50559

10 P403 0.00393 P751 0.98202 P750 53.35232

11 P355 0.00366 P203 0.98149 P538 52.87783

12 P213 0.00350 P213 0.98141 P537 52.75824

13 P193 0.00345 P338 0.98060 P541 50.90727

14 P203 0.00337 P877 0.97980 P949 45.93575

15 P716 0.00327 P385 0.97945 P525 44.90099

16 P219 0.00324 P591 0.97825 P338 43.87574

17 P538 0.00322 P538 0.97801 P911 42.35207

18 P591 0.00321 P367 0.97690 P591 41.47723

19 P338 0.00313 P193 0.97670 P354 41.42447

20 P215 0.00307 P537 0.97509 P395 40.85095

21 P933 0.00302 P707 0.97239 P355 40.69740

22 P751 0.00288 P716 0.97200 P219 39.60786

23 P365 0.00285 P354 0.96824 P707 37.81833

24 P1823 0.00272 P1701 0.96693 P699 37.31595

25 P537 0.00261 P1735 0.96623 P385 35.66861

26 P385 0.00260 P219 0.96312 P716 35.63186

27 P1701 0.00235 P949 0.96225 P878 34.93570

28 P588 0.00210 P365 0.96157 P877 33.47345

29 P949 0.00206 P895 0.96103 P356 33.20625

30 P356 0.00196 P215 0.95938 P185 32.88024

31 P699 0.00193 P525 0.95662 P384 32.39959

32 P1688 0.00191 P699 0.95492 P178 32.31093

33 P354 0.00187 P356 0.95434 P1701 31.32736

34 P1686 0.00179 P161 0.95354 P373 31.30342

35 P525 0.00176 P1700 0.95283 P895 31.27754

36 P161 0.00175 P588 0.95160 P540 30.92370

37 P931 0.00171 P946 0.95061 P942 30.84320

38 P384 0.00169 P1702 0.94821 P715 30.07023

39 P909 0.00165 P185 0.94641 P193 29.94777

40 P1702 0.00163 P627 0.94511 P1729 29.85122

(….)

270 P381 0.00014 P233 0.84535 P397 12.56789

271 P708 0.00014 P901 0.84527 P923 12.54686

272 P698 0.00014 P1744 0.84519 P423 12.53922

273 P555 0.00014 P1707 0.84448 P1711 12.45882

274 P676 0.00014 P443 0.84422 P1697 12.45676

275 P1925 0.00014 P827 0.84407 P1537 12.43650

(….)

Random Forest Analysis of VarienceArea under Curve
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Figure 8.13.    Relationship between Random Forest Importance Score and 

variable ranking for explanatory value in binary comparisons of Brachypodium 

distachyon leaves taken at different times after infection with the rice blast 

fungus.      ST = a significance threshold for explanatory variables. The shaded box 

below ST indicates a range of variables that still may have potentially significant 

explanatory value (with decreasing likelihood) and which may also be worth deeper 

investigation. Inset shows an extended ranking demonstrating that values fall to near 

zero in all cases.    

 

 

These data indicate clearly that healthy leaves display few (< 5) detectable differences in 

metabolome compared to leaves 24h post-inoculation (H_1).  Comparing leaves just before 

and after the appearance of visible symptoms (3_4) reveals a much larger number of 

potentially explanatory variables (~ 25-40), whilst an extreme comparison of heavily diseased 

leaves with a pre-symptomatic phase of pathogen establishment (2_5) highlighted a large 

number (~ 60) of potentially explanatory metabolome signals.   In such models comparing 

samples with extremely different metabolomes it is not unusual for a large number of 

variables to „compete‟ for high ranking, which tends to reduce the maximum mean 

importance scores. A significance threshold for explanatory variables is difficult to discern 

without further validation and the shaded box indicates an importance score range of signals 

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

1 50 99 148 197 246 295

3_4

2_5

1_H

R
F

 I
m

p
o

rt
a
n

c
e
 S

c
o

re

Variable Rank

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

1 10 19 28 37 46 55

1_H

2_5

3_4

ST



Page 312 of 370 

 

that still may have potentially significant explanatory value (with decreasing likelihood as 

shading become darker) and which may also be worth deeper investigation. One should be 

aware that lowering such thresholds would not only increase substantially the number of 

putative compounds but also augment significantly the possibility of false positive signal to 

enter subsequent interpretation. The inset shows an extended ranking demonstrating that 

values fall to near zero in all cases.    

 

 

8.6.13  Validation of feature ranking results 

The process of deriving a ranked list of potentially explanatory variables from FIE-MS data 

must be treated with extra care for several reasons. In the context of FIE-MS fingerprints, 

appropriate corrections must be implemented to take into account that up to a couple of 

thousand hypotheses are being tested. Amongst other approaches, the False Discovery Rate 

(FDR) 
68, 69 

approach appears to be a suitable practice in our context to correct p-values. By 

definition, the FDR of a set of prognosis represents the expected proportion of false 

predictions in this set. An updated quantity, q-value, is directly computed from the original p-

value, obtained by a classic statistical test, to describe the "expected proportion of false 

positives incurred when calling that feature significant" 
68, 69

. For example, if the statistical 

test returns 20 signals at a q-value of 0.1, 18 m/z variables are expected to be correct. Both 

underlying behaviour of metabolic systems and FIE-MS fingerprints are quite complex, 

variable and essentially poorly understood and the SFR produces mathematical models with 

many free parameters so that no statistical method can be effective under all circumstances. It 

is thus recommended to derive conclusions using several techniques preferably differing by 

their mechanism and underlying assumptions. 
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Table 8.4     Assessing the significance of feature ranking by re-sampling using a 

Welch t-test with bootstrap analysis  

 

Table 8.4 gives the results of a feature ranking validation analysis using a Welch t-test 

including a bootstrap re-sampling method (using features fs.mrpval.and fs.summary in 

FIEmspro). In this example the features were ranked for explanatory value for the problem of 

discriminating healthy leaves from infected leaves 24 hours after challenge of Brachypodium 

distachyon with the rice blast pathogen. The first three columns are the Welch t-values, p-

values and adjusted p-values by FDR for each variable using all data sets. The last columns 

are the resampling-based results of the average feature rank, standard derivation of feature 

rank and modified r-test p-values (mrpval)
 40

. The curve shown in Figure 8.13 (H_1) 

demonstrates that the RF Importance Scores dropped extremely, leaving rapidly only the top 

five variables above the previously suggested nominal significance boundary of 0.0025-0.003 

12
.   The data in Table 8.4  concur with these observations and suggest that a threshold value 

of mrpval of around 0.001 may provide an adequate guide for variable significance in this 

instance. 

 
Potentially

Explanatory

Variables

fs.welch pval pval.ad AvgRk SdevRk mrpval

P236 5.691427 0.000002 0.003731 11.80 32.1986 0.000249

P1812 4.890290 0.000025 0.009203 13.29 16.3363 0.000322

P141 5.073186 0.000011 0.006429 18.08 30.0275 0.000564

P274 5.282550 0.000006 0.005019 21.28 36.8511 0.000776

P257 4.890105 0.000020 0.009056 25.12 39.2522 0.001083

P371 4.358766 0.000096 0.029163 30.92 43.4194 0.001449

P232 4.451570 0.000128 0.033324 33.39 46.5090 0.001698

P615 4.129826 0.000222 0.050568 49.22 57.9107 0.003419

P305 4.177756 0.000255 0.051641 57.74 98.4975 0.004378

P210 3.837525 0.000499 0.075716 71.80 90.7021 0.006266

P187 3.740230 0.000700 0.090997 74.26 92.8030 0.006676

P1930 3.972184 0.000309 0.054765 75.73 83.4347 0.006896

P489 3.642667 0.001198 0.121218 84.10 84.1333 0.008455

P717 3.952605 0.000331 0.054765 86.95 109.9155 0.008843

P712 3.778591 0.000563 0.078823 90.46 111.7649 0.009627

P1008 3.646543 0.000806 0.097855 97.09 123.5465 0.011032

P633 3.653903 0.000996 0.113384 99.79 139.5846 0.011398

P1642 3.215622 0.002786 0.174955 128.25 147.3454 0.017870

P1039 3.488691 0.001566 0.142549 132.02 204.4971 0.018785

P536 3.265035 0.002327 0.165567 138.13 158.1812 0.020227

P438 3.321025 0.001990 0.156919 140.84 179.7139 0.020783

P685 3.394884 0.001696 0.147095 142.90 181.8547 0.021274

P472 3.512672 0.001163 0.121218 143.99 204.4315 0.021501

P166 3.184337 0.003587 0.187629 145.80 211.5667 0.021999

Statistics from Welch t-test with 100 bootstraps
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G03012 Final Report - Section 9 

John Draper/David Enot/Wanchang Lin 
 

Understanding the output of standardised multivariate 

methods to analyse metabolomics data from the G02 

programme (part of Task 04/03) 

 

9.0 INTRODUCTION  

 

A major aspect of the G03012 project was to develop standardized metabolomics data mining 

tools in a single software platform.  Applying multivariate data mining algorithms to any data 

set will obviously produce models, but as with any type of statistical testing there is the 

problem of deciding whether the modelling conclusions are of significance in the context of 

the biological problem being addressed.  The data in the G02 programme was collected  in 

order to compare GM and non-GM crop genotypes or compare Arabidopsis mutants with 

different biochemical lesions in which the nature of the expected compositional difference 

was  known beforehand (i.e. the transgene or mutation target was usually a defined enzyme).  

Thus differences between genotypes were expected to be both discrete (possibly quite large) 

and interpretable (i.e. related to the biochemical alteration).  In the context of the G03 project 

effectively interest was focused on the GO2 data relating to „control‟ genotypes consisting of 

traditionally bred potato cultivars as the objective was to develop a standardised methodology 

to compare the global chemical composition of food raw materials.   In this context there is no 

previous literature providing guidance on how compositionally „similar‟ potato cultivars 

might be and so a first major issue was to develop methodology to assess both the biological 

significance and mathematical reliability of the classification results along with the relevance 

of the ranked list of selected explanatory signals.  A decision was made early on in the 

programme that these problems are best contextualised by designing experiments with the 

limited G02 data to answer a series of questions that would be of interest to any regulatory 

authority: 

 

 Test software with dataset from different sources (ESI-MS and GC-MS) Do we 

have to parameterize for different data sets? 
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 What kind of approach to data pre-processing is appropriate  to cope with 

variability and scale of data representing field grown crops?  How can we 

demonstrate that data alignment methods are appropriate for the characteristics 

of a large scale data set?  

 

 Is the sample replication strategy adequate for the problem at hand?  How  can 

we be certain that we have enough samples replicates?  

 

 What kind of similarity measures derived from multivariate modelling prove to be 

the most robust when comparing food raw materials?   Thus, can we define 

threshold values below which it is likely there are effectively no significant 

compositional differences between food raw materials? 

 

 Can we demonstrate that our feature selection tools are generating models with 

greatest biological as well as statistical significance?  In other words do the 

compositional differences between different cultivars make biological sense?  

 

 Can we develop a protocol with potential for the large scale comparison of the 

chemical composition of related genotypes?  Is there scope for using a 

metabolomics database to compare food raw material compositions in the future?  

 

 

These questions have been addressed in the G03 programme by examining the output of the 

standardized data mining tools described in Section 8 of the report mainly when used to 

analyse the G02 data relating to traditional potato cultivars.  In some instances the 

experimental conclusions were validated using further G02 data sets representing a collection 

of Arabidopsis genotypes analyzed in Aberystwyth.   The majority of these questions are 

considered in a series of publications using the data produced by the G02 programme which 

can be consulted for detail (Enot and Draper, 2007;  Enot, Beckmann and Draper, 2007; 

Beckmann et al., 2007). 
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9.1 Assessing a data alignment strategy in a large scale, multi-batch 
analysis of field-grown potato cultivars experiment  

 

Data pre-processing including data normalisation and re-scaling methods have a large 

influence on metabolomics data analysis. When a simple, high throughput sampling technique 

is used which does not easily take into account for example sample weight (e.g potato tuber 

slices were used in many G02 experiments), water content or metabolite extraction efficiency  

then it is to be expected that some samples will be more dilute than others and so data requires 

normalisation within a batch.  Similarly, in a large scale or long term experiment in which 

data is generated in different temporal batches it is crucial that any differences in instrument 

sensitivities experiment are normalised. However the choice of the most appropriate method 

is not a trivial process. The widely used methods including: range scaling, Pareto scaling, auto 

scaling and logarithmic transformation 
71, 72, 73.

  The utmost goal of the data pre-processing is 

to minimise the „technical and environmental‟ variation and to maximise meaningful 

„biological‟ differences 
73

.    In the context of the G03 programme it was important to decide 

how to assess the effectiveness of any approach to data normalisation.  Previous researchers 

have approached this issue by using the fact that the biological variance is responsible for any 

significant discrimination between different categorical groups of samples (classes) and 

looking for improvements in classification following different pre-processing methods.  A 

common practise has been to carry out a range of different data-pre-processing methods and 

then to visualise the data for improvements in either sample clustering or sample 

discrimination in scores plots derived from multivariate modelling  techniques such as PCA or 

LDA. Different researchers in the area of metabolomics appear to have different preferences 

for data pre-processing methods according to the context of their own research. 

Unfortunately, these finding are not always consistent between projects and sometimes appear 

in conflict. For example, the effects of several data pre-processing methods, such as centering, 

auto-scaling, log transformation and range scaling for the metabolomics data analysis have 

been investigated previously 
72

 and it was concluded that the range scaling and auto scaling 

performed better than the other methods. Other studies 
71 

compared the performance of so-

called variance stabling techniques, generalised logarithmic transformation (glog), auto 

scaling and Pareto scaling based on NMR metabolomics data. The results showed that glog 

method had higher classification accuracies compared to the unscaled, auto-scaled and Pareto 

scaled data. Yet other researchers 
73

 preferred methods based on unit variance and unit vector 
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normalisation for metabolomics data pre-processing and based on the visualisation of data by 

PCA, the latter is better than the former. 

 

In the context of developing a standardised methodology for metabolomics data analysis we 

consider data normalisation do be an optional part of the process (see Section 8.??) based on 

an empirical experimental demonstration that the data quality is actually improved.   Different 

data pre-processing approaches have different impacts on the data set and each method has its 

advantage and disadvantage. Hence the selection of suitable data pre-processing should be 

tested on the practical data set being analysed and the appropriate one can be determined 

based on some criteria or performance measurements. The R package FIEmspro developed 

for the G03 programme implements eleven data pre-processing methods, ie. Centering, auto 

scaling, range scaling, Pareto scaling, vast scaling, level scaling, log transformation, log 10 

transformation, square root transformation (sqrt), Inverse hyperbolic sine transformation 

(asinh) and TIC normalisation. A strategy to select appropriate approaches based on 

performance evaluation is described below using three large scale G02 data sets representing 

the compositional analysis of 6 field-grown conventional potato tubers Agria (Ag), Desiree_1 

(De1) , Desiree_2 (De2) , Linda (Li), Granola (Gr), Solara (So).  The data sets chosen 

included: 

 

A) Aber2001-sub:   a GC-MS analysis of tubers from a harvest in 2001 generated on an 

Agilent GC-MS quadropole instrument which measured 86? peaks  in chromatographic 

data from data from analysis of 96 replicates of 6 cultivars. 

 

B) ESI2001_pos1:  positive ion mode  nominal mass data (m/z 50-1000) of  a FIE-MS 

analysis of tubers from a harvest in 2001 generated on Micromass LCT instrument which 

measured approximately 950 signals in data from analysis of 96 replicates of 6 cultivars. 

 

C)  ESI2001_neg1:  negative ion mode  nominal mass data (m/z 50-1000) of  a FIE-MS 

analysis of tubers from a harvest in 2001 generated on Micromass LCT instrument which 

measured approximately 950 signals in data from analysis of 96 replicates of 6 cultivars. 

 

Data normalisation was carried out using the eleven methods outlined above and model output 

are shown and compared to the original data (raw data). The evaluation criteria included 

visualisation of sample natural grouping data by PCA, sample class separation in 
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discrimination  tests using PC-LDA and  classification accuracies based on data re-sampling 

procedures. It should be noted that the visual inspection approaches are only ever qualitative 

and may have value only in situation where obvious clustering is expected.  

 

9.1.1 Effect of normalisation on feature variance 

 

Fig.9.1 shows the data variance structure after different data pre-processing approaches are 

applied to a single sample of GC-MS data. The sub-figure raw indicates that some peaks in 

the raw data are very dominant in terms of peak area. Scaling by log, log10 and asinh displays 

similar patterns in which the strong peaks have been scaled down,l while some weak peaks 

are scaled up. The center method shifts the variable by removing the variable mean and has 

very limit effects of stabilising feature variance. The TICnorm results from the normalisation 

of each peak in the data against the intensity of the total ion current (TIC) and has no effects 

on variable variance. As such TIC normalisation can be performed after the transformation by 

one of variance scaling such as log, log10 and asinh.  
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Aber2001-sub: data pre-processing of one sample
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Fig. 9.1 Data structure of one sample after data pre-processing on Aber2001-sub data 

set 

 

 

Application of the different normalisation approaches to FIE-MS data (Figure 9.2 and Figure 

9.3) shows that scaling by log, log10 and asinh all result in similar patterns: the strong peaks 

have been scaled down while some weak peak scaled up. The behaviour of sqrt is also close 

to them. TICnorm and raw data are very similar to each other.  
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ESI2001_pos1: data pre-processing of one sample
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Fig. 9.2: Data structure of one sample after data pre-processing on ESI2001 

positive mode 
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ESI2001_neg1: data pre-processing of one sample
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Figure. 9.3: Data structure of one sample after data pre-processing on ESI2001 

negative mode 
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Application of the different normalisation approaches to FIE-MS data (Fig. 9.2 and Figure 

9.3) shows that scaling by log, log10 and asinh all result in similar patterns: the strong peaks 

have been scaled down while some weak peaks scaled up. The behaviour of sqrt is also close 

to them. TICnorm and raw data are very similar to each other.  

 

9.1.2 Effect of normalisation process on sample clustering in PC 
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Figure. 9.4:  PCA plot (PC1 vs PC2) on Aber2001-sub 
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Fig.9.4 illustrates the effects of PCA using different data pre-processing methods in GC-MS 

data. Inspecting the results of normalisation by log, log10 and asinh, it can be seen that there 

is some clustering around cultivars Gr, Li and So, although some overlap still exists among 

the three cultivars. No obvious class clusters were found in the output of other methods.   

 

 Inspection of the PCA scores plots from both ESI-MS positive and negative ion data 

subjected to different normalisation routines (Fig.9.5 shows positive ion data) indicated that it 

is difficult to assess the effects of data pre-processing using PCA. 
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 Fig. 9.5:  PCA plot (PC1 vs PC2) on ESI2001 positive mode 
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9.1.3 Effect of normalisation method on sample discrimination in LDA  

 

Fig.9.6 shows the PC-LDA scores (DF1 vs DF2) when GC-MS data is modelled using LDA. 

The effects of log, log10 and asinh outperform other data pre-processing methods by the 

visualisation in which Ag, Gr and So separate well between them and between any other 

single cultivar.  
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Figure. 9.6: LDA plot (DF1 vs Df2) of Aber2001_sub GC-MS data. 

 

Fig.9.7 shows the PC-LDA scores (DF1 vs DF2) when ESI-MS data has been subjected to 

different pre-processing regimes. The pattern of log, log10 and asinh are broadly the same. 

The effect of sqrt is similar to log, log10 and asinh, all of which exhibit  good  separation 
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between cultivars Gr, Li and So.   The normalisation methods had a similar effect on sample 

discrimination in negative ion mode data. 
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Fig. 9.7: PC-LDA plot (DF1 vs DF2) on ESI2001 positive ion mode data 
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9.1.4 Assessing normalisation method by performance of data mining 

algorithms  

 

Sample classification was performed using LDA and Random Forest and the classification 

accuracy was calculated after cross validation with result presented as the accurate rate (1.0 = 

100% correct classification of all samples). 
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Figure 9.8: Classification on Aber2001-sub GC-MS data 

 

 

Figs. 9.8 -9.10 illustrate the effects of different data pre-processing methods in this 

quantitative way.  Fig. 9.8 indicates that three methods, log, log10 and asinh are competitive 

when applied to GC-MD data and perform better than other approaches by the classifier nlda. 

Note especially the rather poor performance using just the raw data indicating the importance 

of scaling pre-processing. These results are consistent with visual inspection of PCA and PC-

LDA. It is interesting that randomForest is insensitive to different methods, although their 

classification accuracies are lower than log, log10 and asinh by nlda, roughly by 10%.  
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ESI2001_pos1: Classification with cross-validation
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Figure 9.9: Classification on ESI2001 positive mode data 
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ESI2001_neg1: Classification with cross-validation
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Figure 9.10: Classification on ESI2001 negative mode data 
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Fig. 9.9 and 9.10 shows that asinh, log10 and log outperform others with respect to 

classification of ESI-MS data by nlda. The performance of sqrt is also close to log, log10 and 

asinh. Again the results of Random Forest modelling show that it is quite robust to the data 

pre-processing method although normalisation of TICnorm is slightly better than others.    

 

9.1.5 Conclusions relating to assessment of data pre-processing approach  

 

The validation based on modelling of three different large data sets are that in general data 

scaling by logarithmic transformation (log or log10) and inverse hyperbolic sine 

transformation (asinh) are very competitive. However, since TICnorm is a normalisation 

approach operating on each individual sample, it can be used independently after the 

transformation by one of log, log10 and asinh.  Apart from classification accuracies other 

indicators of algorithm performance can be used to reveal any improvement /detriment of data 

pre-processing choice to the classification process.  Classification „distance measures‟ such as 

eigenvalues and modelling „sensitivity‟ measures such as margins  and „area under curve‟ 

(AUC)  have been shown to be particularly valuable  and are described in detail in the next 

section. 

 

One interesting output from this section of the project was a demonstration of the relative 

insensitivity of Random Forest modelling to the data pre-processing method.  This is probably 

a function of the fact that Random Forest builds thousands of decision trees using random 

combinations of only a small number of variables each time, and hence any highly intensity or 

highly variable signals will only effect a very small proportion of the total ensemble of 

decisions trees used to generate the final model. Associated with this behaviour is also the fact 

that Random Forest analysis is much less likely to result in „over-fit‟ models which is  an 

important reason why classification accuracy and sensitivity measures derived from this 

technique are particularly valuable (see section 9.2).  
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9.2 Assessment of discrimination results significance metrics 

 

Testing for similarity between plant genotypes usually refers to the application of statistical 

routines that aim to show whether there are, somehow, significant differences.  The 

conclusions drawn from statistical results (for example deciding an appropriate confidence 

level) can be somewhat arbitrary and context-dependent as different experts may give 

different interpretations of the degree of significance. Importantly, there can also be a gap 

between the mathematical significance and the biological relevance of the effect detected. In 

the context of food raw material analysis a major conclusion of the G02 project was that only 

data analysis methods in which individual variables are explicitly highlighted in multivariate 

models should be used in order to judge whether such „explanatory‟ features are associated 

with changes to predicted areas of biochemistry. Only with such approaches could the 

„biological significance‟ of any differences be tested.  In the G02 project we described the use 

of several data analysis methods (Linear Discriminant Analysis, Support Vector Machine and 

Random Forest) to classify plant and food raw material samples.  

 

A range of supervised data modelling methods will achieve high classification accuracies.  

However, he characteristics of the underlying probability distribution of the data and more 

precisely, an examination of class complexity in the original input space must also be 

considered in conjunction to the overall predictive power of any model. For most supervised 

learning techniques applied to high dimensional problems, the decision boundary properties 

cannot directly be used because it usually involves an optimisation process that tends to 

„overfit‟ the training data (hence it is necessary to use external samples to assess robustness of 

the model rather than the resubstitution error). When using projection based techniques such 

as PLS-DA or PC-LDA, additional estimation of the number of components to be used in the 

modelling process has to be carried out, which might affect discrimination. For these reasons, 

we propose different approaches to test the similarly of plant raw materials  in the original 

multivariate space (i.e. without prior feature selection), with an optimal use of the available 

information under realistic data paucity constraints and which can provide general and 

meaningful metrics for future comparisons.  Several approaches are outlined below. 

 

Classifier error estimation 

Estimation of classifier accuracy has received considerable interest in the bioinformatics 
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community and particularly in the omics literature. Strategies recommended for 

transcriptomics experiments can be directly applied in a metabolomics context as both data 

structures share similar characteristics. In problems related to small sample size, validation 

approaches are based on repetitive sub-sampling of the original training data to build the 

model and then use some averaging of the left-out examples to estimate the classifier error. 

Amongst different resampling techniques, bootstrap based techniques are known to offer an 

adequate trade off between bias and variance of the error estimation 
47, 49

  The general idea is 

that the variance of an estimate based on the left-out samples is a good approximation of the 

true variance of the original population. Although bootstrap is widely used to assess statistical 

accuracy in data mining and machine learning experiments it will often display a bias towards 

upward accuracy 
49

. To minimize this problem of overfitting, a „0.632+‟ estimator has been 

proposed which is  designed to be a less-biased compromise between upward and downward 

accuracy estimation.  B632, utilizes a resubsitution error (i.e fitting the training data) which is 

added to correct the bias inherent to the error computed by weighted average of the left out 

samples (bootstrap zero estimator). Despite its computational cost, bootstrap error provides a 

less variable estimate than an error counting only techniques (e.g. cross validation) where 

possible misclassification changes are increments corresponding to the inverse of total 

number of samples.  

 

Receiver operating characteristic 

Receiver operating characteristic (ROC) curves can be used as an alternative measure of the 

predictive abilities of any binary classifier 
9, 50, 51

.  ROC curves display the relationship 

between sensitivity (true-positive rate) and specificity (false-positive rate) across all possible 

threshold values that define the decision boundary. The most common way to summarize the 

ROC curve is to compute the area under the curve (AUC). As a single value measure, the 

AUC specifies the probability that the decision boundary assigns a higher value to a positive 

sample than a negative one, both chosen randomly. AUC takes a value of 0.5 when the 

samples from both classes are uniformly distributed across the decision boundary and a value 

of 1 when the decision boundary can incontestably discriminate both groups. One advantage 

of both accuracy and AUC is that they can be calculated regardless of the algorithm used for 

data analysis. 
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Eigenvalues  

Linear Discriminant Analysis (LDA; also known as Discriminant Function Analysis in the 

metabolomics literature) is a supervised method that computes new directions (canonical 

variates or discriminant functions) in which the groups are best separated 
39

. The aim of LDA 

is to find discriminant functions that maximise  between-class separability (SB) and minimise 

within-class variability (SW). The eigenvalue of the eigensystem of (S
-1

W SB) can be used to 

measure similarity of both sample replicates, and, more importantly, different classes: the 

greater the distance between classes (large SB) and the more compact the classes are (small 

SW), the better the classes are separable. However, due to sample size problems (as are 

common in metabolomics), SW is always singular and/or unstable and the inversion of SW 

cannot be possible without initial data dimensionality reduction using for example Principal 

Components Analysis 
53

 .  To avoid bias in the eigenvalue estimation introduced by the 

selection of the number of components, we chose the two step procedure proposed by 
52

 . 

 

Margin concept in ensemble methods 

As opposed to a single model that aims to find the best hypothesis, ensemble methods are 

techniques that generate multiple models by running a base algorithm many times 
56, 66

. One 

example is Random Forest (RF) that uses the standard decision tree algorithms as the base 

learner 
54

. Prediction of new samples is done commonly by determining the winner class from 

the votes on the overall ensemble of models. Therefore, confidence in attributing a sample to 

a designated class can be deduced from the difference between the score (averaged number of 

votes) for the true class and the largest score of the rest of the classes. This is defined as the 

sample margin and measures the extent to which the average number of votes for the right 

class exceeds the average vote for any other class (i.e. the most probable misclassification). 

The larger the margin, the higher is the confidence that an example belongs to the actual class. 

In the G03 project, the margin of a classifier is presented as the mean of all of margins 

calculated used training data in the ensemble of RF models comparing classes. 

 

9.2.1 Assessment of similarity measures  

To illustrate the behaviour of the statistical measures outlined above (i.e. 0.632 bootstrap 

accuracy, eigenvalue, AUC and margin), an initial validation was conducted on a G02 data set 

consisting of a heterogeneous set of 27 Arabidopsis genotypes providing wide coverage of 

modelling situations ranging from comparisons with no/little metabolic differences, single 
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gene mutation/insertion effects on isolated biochemical pathways to huge ecotype divergences 

12
. To simulate a situation with a realistic sample size, each measure was calculated on a 

training set comprising 18 plant replicates per genotype whereas 12 different plant replicates 

were left out of the training data to provide a validation set. Features of different statistical 

similarity measures are illustrated in Figure 9.11 using all possible 351 pairwise comparisons 

between the 27 Arabidopsis genotypes. Both Random Forest (RF) margins and LDA 

eigenvalues calculated on the training data provide sufficient information regarding the 

generalisability and the sensitivity/specificity relationships of the models (Figures 9.11a and 

9.11b). In the light of these results, several remarks can be made. Although LDA and RF 

algorithms differ by the principles by which they operate, voting confidence in RF is higher 

when the between-class/within-class ratio is maximised (Figure 9.11c). One of the claims 

regarding the fact that RF does not overfit is apparent in Figure 9.11d where there is a direct 

correlation between the confidence in the prediction votes calculated on the training and those 

of the unseen data. It is thus concluded that RF margin calculations and eigenvalues are able 

to distinguish between models for which both bootstrap accuracy and AUC are reaching their 

maximal value of 1. This property is of particular interest in studies where meaningful relative 

distances between genotypes are sought.  

 

9.2.2 Developing a baseline for model significance (biological versus 

permutation) 

 

Most supervised classification/discrimination methods will achieve high accuracy, but it is not 

always apparent how robust or generalizable any specific model might be.   

Thus, the decision whether to accept a supervised multivariate model for feature selection and 

further investigation of a biological phenomenon is an important step in a data mining 

workflow.  Essentially, due to the feature dimensionality and sample sparsity issues 

associated with data containing substantial sources of variance, a  
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Figure 9.11:   Relationships between various statistical measures computed from 351 

binary classifiers: a) average margin of the training samples versus the 0.632+ 

bootstrap accuracy in Random Forest (RF) models; (b) eigenvalue versus area under 

curve of the LDA model; (c) eigenvalue of the LDA classifier versus average RF 

margin of the training samples; (d) average RF margin of the training samples versus 

average RF margin of the unseen samples. 

 

 

threshold metric for determining model acceptance must be developed alongside the simple 

presentation of modelling accuracy 
1-4, 12, 36, 37, 54

.  This is even more important when the 

statistics of interest result values are somewhere between what is expected of a purely random 

distribution and a near perfect value. Classical tests for assessing the significance of model 

properties are rather limited unless the quantity under study is known to satisfy a particular 

statistical distribution and has also an adequate sample size.  

We consider that a  significance ‟threshold‟ statistic can be evaluated by comparing two 

sample classes that are known to display no biologically significant difference at the level of 

the metabolome 
12, 36

.  Thus in the G03 project we have explored the possibility of developing  
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a meaningful significant difference threshold for model classification metrics or feature 

selection by defining distance measures or sensitivity metrics (e.g. „margins‟, AUC values, 

Importance Scores) in comparisons were there is effectively no phenotypic difference 

between genotypes.  These results could then be compared with model characteristics in 

comparisons between increasingly different genotypes.  The G02 data contained two types of 

sample classes which allowed us to compare either a wild type organism to mutant lines with 

no metabolic phenotype (Arabidopsis), or examining replicate plots of the same plant 

genotypes grown in the same field (potato Desiree genotypes) which were used to define a 

meaningful baseline for model significance. One advantage of this approach to develop a 

„biologically significant baseline‟ is that it is data driven, encapsulating sample size effects, 

poor knowledge about the fingerprint characteristics and experimental variance. As with any 

other approaches, this cannot avoid confounding effects that may inadvertently highlight 

features that have no biological significance as a result of unplanned experimental factors 

(e.g. sample contamination or instrument measurement drift) which contribute artifactual 

regular variance characteristics in the data. When such data driven null hypothesis 

information is not available, permutation tests can be used to determine the impact of the 

chosen statistic by computing all its possible values by permutation of the sample labels (or 

several 1000s random rearrangements if processing time is prohibitive) 
4, 48

. In permutation 

testing, p-value is defined as the fraction of times one obtains a value as extreme as the 

original statistical quantity calculated from the un-permuted data.  

 

To illustrate these points comparisons have been made (using Random Forest and SVM 

modeling) between four Arabidopsis thaliana mutants: pgm1 (deficient in the isozyme 

phosphoglucomutase required for starch synthesis), fah1-2 (mutation of ferulate-5-

hydroxylase, an enzyme functioning in cell wall metabolism), vtc1 (mutation of GDP-

mannose pyrophosphorylase in the ascorbate synthesis pathway) and amt14 (ammonium 

transporter defective mutant) and their progenitor line Columbia (Col2) are extracted from the 

overall data. In a previous study 
12

 we had already demonstrated that amt14 did not have any 

appreciable phenotypic differences when compared to the wild types line, presumably as this 

particular mutation is compensated for by other functional ammonium transporters.  Thus any 

statistical measures derived from classifiers attempting to discriminate the two lines will 

represent a threshold for significance. In contrast pgm-1 had large, pleotrophic phenotypic 

alterations, whilst fah1-2 and vtc-1 displayed distinctive, but more contained, metabolic 

differences from the progenitor ecotype. 
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Figure 9.12:  Receiver operator characteristics curve (ROC) for a selected number of 

linear Support Vector Machines (SVM) models. Area under the curve is given 

alongside the genotype name. The diagonal line is the ROC curve equivalent to 

random guesses. 

 

 

ROC curves derived from resampling the SVM models of the four comparisons are gathered 

in Figure 9.12. Whilst, the RF model margins of each comparison are given alongside the 

distribution of the null hypothesis obtained by a permutation test in Figure 9.13. It can be seen 

in both figures that the model statistical measures are ordered according to the perturbation 

level expected in the biological outcome: thus the pgm1-Col2 comparison exhibits logically 

the highest „dissimilarity‟ statistics as this mutant is effectively starch deficient and 

transcriptomic studies have highlighted  

 

 

 

 

 

pgm1 (0.99)

fah (0.87)
vtc (0.88)

amt1-4 (0.64)

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te



Page 340 of 370 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.13: Illustration of significance testing of the RF margin by class label 

permutation.  

 

 

expression increases in over 4000 genes. Vtc1 or fah1-2 represent mutations in two discrete 

secondary metabolic pathways and as such relatively fewer metabolome differences are 

detectable by metabolome fingerprinting, resulting in slightly weaker, but none the less 

significant, modeling statistics. In all three of these comparisons, the statistical measures are 

higher than the null hypothesis comparison between Col-2 and amt1-4 in which the 

ammonium salt transporter mutation did not affect the measured metabolome. In the 

comparison of Col-2 and amtl-4 the RF model margins overlap significantly the reference 

distribution (labeled random in Figure 9.13) obtained by permuting the class labels and the 

area under the ROC curve (AUC=0.64) is below  the accepted limit of 0.8 for defining a good 

model. In addition, to relate to models in a more meaningful manner, this simple example 

demonstrates that the statistical “zero difference” (i.e. AUC≈0.5, margin≈0) regardless of 

sample size can be reformulated within a biological context without major mathematical 

redefinition of the problem under study . 
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9.2.3 Conclusions 

 

Although a range of metabolomics level analytical chemistry tools for assessing 

compositional differences between any food raw materials exist, there have been few attempts 

to explore what kinds of statistical metrics are suitable to quantify compositional similarity. 

The effect of data dimensionality, often combined with sample paucity, can generate 

problems for model validation; classifier accuracy alone can be misleading unless validated 

by sufficient resampling of the available data and AUC assessments. We do not advocate that 

“one data mining technique fits all” because of the variety of applications and biological 

questions addressed by a metabolomics approach. A range of significance metrics are 

important to evaluate in order to decide whether a model is worth pursuing and in the future 

there is a need for standardised metrics so that everyone can compare results. Currently we 

suggest that margin measures and scatter matrices eigenvalues in conjunction with estimates 

of classification accuracy and model sensitivity provide complimentary and appropriate 

metrics in any specific compositional comparisons.  
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9.3 Testing model „biological‟ significance by interpretation of selected 
explanatory features. 

 

 

As indicated in section 9.2 with the analysis of a large number of Arabidopsis genotypes it is 

possible to use specific modelling outputs to evaluate the degree of similarity between any 

number of different crop varieties in the same species.  As mentioned earlier, with previous 

work on GM and mutant plants there is a strong expectation that these will exhibit diverse and 

substantial compositional difference. Clearly new crop cultivars/varieties are registered 

traditionally following the demonstration that they have new, or unique combinations of, 

botanical characteristics.  Many food raw material quality characteristics associated with 

flavour, aroma and food-processing properties for example are a function of global 

composition.  However, in the context of a crops such as potato tubers there were no previous 

studies which analysed global quantitative or qualitative compositional differences between  

individual cultivars.  A major goal of the G03 programme was firstly to refine a technology 

base which would allow the global composition of raw food material to be meaningfully 

compared.  A second important objective was to determine whether such differences had 

biological significance and if possible, whether they could be linked to quality parameters.  In 

the present section we demonstrate how  the modelling methods described above can be use to 

interpret the compositional differences between 6 traditional potato using the pre-processed 

(log10 transformed and TIC normalised)  FIE-MS and GC-MS data described in Section 9.  

 

 

9.3.1 Potato Cultivar Classification by FIE-MS Fingerprinting  

 

The G02 programme produced a large data set comprising FIE-MS fingerprints representative of  

tuber extracts of field-grown the potato cultivars Agria, Désirée, Granola, Linda and Solara.  Two 

closely related populations of Désirée, that were independently propagated (De1 and De2) were 

included in the sample set; comparison of these two genotypes (which were considered 

compositionally equivalent) would provide a baseline metrics for both cultivar discrimination and 

feature selection. With considerable environmental variability (4 different field plots) as well as 
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technical variability (6 analysis batches) the ESI-MS 2001 FIE-MS data already contains significant 

levels of variance.  We have already demonstrated that Random Forest (RF) was insensitive to data 

pre-processing and overfitting and thus is was chosen as the most robust method for both 

classification and feature selection.   RF margin values were used as an indication of model 

;‟sensitivity‟ robustness and the RF Importance Score was used to rank features for significance in 

the modelling process. An initial pair-wise comparison of the positive ion FIE-MS fingerprints, 

representing each cultivar, generated models with high classification accuracy and high sensitivity 

(Table 9.1).  These data suggested that surprisingly large differences in composition exist between 

tubers of individual cultivars.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9.1:   Model statistics in pair wise comparison of potato cultivars 

 

 

*The model margin is presented as a  
measure of Sensitivity 

0.58 100 Li_So 

0.74 100 Gr_So 

0.59 100 Gr_Li 

0.68 100 De1_So 

0.42 100 De1_Li 

0.66 100 De1_Gr 

0.64 100 Ag_So 

0.44 97 Ag_Li 

0.61 97 Ag_Gr 

0.62 100 Ag_De1 

margin accuracy (%) comparison 

Model  Classification  Pair - wise  

0.58 100 Li_So 

0.74 100 Gr_So 

0.59 100 Gr_Li 

0.68 100 De1_So 

0.42 100 De1_Li 

0.66 100 De1_Gr 

0.64 100 Ag_So 

0.44 97 Ag_Li 

0.61 97 Ag_Gr 

0.62 100 Ag_De1 

margin accuracy (%) comparison 

Model  Classification  Pair - wise  
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9.3.2 Identifying important features that discriminate between cultivars  

Feature selection was performed using Random Forest modelling and all ESI-MS signals were ranked 

by Importance Score.    Figure 9.14 shows a plot of  Importance Score against Feature Rank in a 

binary comparison of the two Desiree cultivars.  From this initial  

 

 

 

 

 

 

 

 

 

 

 

Figure 9.14:     Plot of  RF Importance Score against Feature Rank in a binary comparison of 

the two Desiree cultivars. 

  

comparison it is concluded that a Random Forest Importance Score value of around 0.004 was likely 

to be an adequate threshold for feature significance. Random Forest Importance Scores in all pair-

wise comparisons levelled off before variable 30 in the ranked lists, with anywhere between 8-24 m/z 

signals having a value greater than the significance threshold of around 0.004 (Figure 9.15).  

Permutation testing revealed that out of 1000 signals, only a small number of variables had 

significant discriminatory potential (Figure 9.16).  Analysis of negative ion data yielded comparable 

results (data not shown).  
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Figure 9.15:  Relationship between RF importance sore and feature rank in all pairwise 

comparisons of potato cultivars 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.16:  Significance of signals highlighted by Random Forest in pair-wise 

comparison of potato cultivars after data permutation.  A p-value of around 0.002 is 

considered to be a reasonable threshold for significance as above this level p-values 

increased dramatically with RF rank. 
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9.3.3 Interpretation of metabolome differences detected by FIE-MS (+ ve 

ion data) in potato cultivars.    

 

For each cultivar combination, the behaviour of the top 24 variables selected by Random 

Forest was examined in detail.  The top 24 variables for discrimination of all cultivars (left 

panel, Figure 9.17) included many that were potentially related (e.g. 104/105 and 296/297 

could represent isotopes). In the pair-wise comparisons these putatively linked (colour coded) 

signals clustered and were even more highly ranked (centre panel, Figure 9.17).  Each pair-

wise model contained specific combinations of such groupings and, importantly, further 

signals potentially linked to the same metabolites were additionally highly ranked, 

strengthening the possibility that they were derived from the same metabolite.  Furthermore, a 

range of  potentially related ions not present in the top 24 signals discriminating all cultivars 

were evident in specific subsets of the pair-wise comparisons (right panel, Figure 9.17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.17:  The top 24 m/z ranked by Importance Score in different RF models. The 

left panel is a combined model involving all cultivars and m/z considered to be related 

are color coded.  The middle panel shows the  m/z ranked by Random Forest in pair-

wise comparisons of potato cultivars; all signals previously selected in the combined 

model are similarly color coded.  The right panel illustrates new sets of potentially 

related ions found only in pair-wise comparisons. 

 

 

Rank m/z Ag_De Ag_Gr Ag_Li Ag_So De_Gr De_Li De_So Gr_Li Gr_So Li_So Ag_De Ag_Gr Ag_Li Ag_So De_Gr De_Li De_So Gr_Li Gr_So Li_So

1 146 543 146 146 146 280 146 280 124 237 297 543 48 146 146 280 146 280 124 237 297

2 136 120 86 166 324 146 121 120 280 296 448 120 86 166 324 146 121 120 280 296 448

3 121 166 124 324 142 124 136 146 190 324 280 166 124 324 142 124 136 146 190 324 280

4 105 544 120 120 123 121 543 297 201 215 237 544 120 120 123 121 543 297 201 215 237

5 268 182 280 86 280 332 184 142 237 280 296 182 280 86 280 332 184 142 237 280 296

6 119 105 237 513 448 706 393 543 362 298 160 105 237 513 448 706 393 543 362 298 160

7 166 104 298 121 160 646 431 237 297 124 298 104 298 121 160 646 431 237 297 124 298

8 188 188 119 607 297 165 545 296 205 297 142 188 119 607 297 165 545 296 205 297 142
9 87 165 296 205 258 699 544 544 245 281 437 165 296 205 258 699 544 544 245 281 437

10 324 545 297 188 376 690 122 160 215 127 121 545 297 188 376 690 122 160 215 127 121

11 280 136 166 145 237 123 394 298 296 123 258 136 166 145 237 123 394 298 296 123 258

12 182 119 121 498 104 673 189 448 246 258 143 119 121 498 104 673 189 448 246 258 143

13 237 184 617 119 139 659 400 166 221 245 324 184 617 119 139 659 400 166 221 245 324

14 297 126 256 515 617 161 105 136 281 274 188 126 256 515 617 161 105 136 281 274 188

15 165 649 118 189 127 182 104 268 127 259 120 649 118 189 127 182 104 268 127 259 120

16 296 129 84 265 145 637 362 188 192 142 166 129 84 265 145 637 362 188 192 142 166

17 104 123 129 182 125 366 675 182 425 273 124 123 129 182 125 366 675 182 425 273 124

18 220 86 294 514 286 105 301 286 497 264 453 86 294 514 286 105 301 286 497 264 453

19 654 95 147 484 296 675 126 121 145 425 481 95 147 484 296 675 126 121 145 425 481

20 184 675 156 497 260 719 699 126 513 190 123 675 156 497 260 719 699 126 513 190 123

21 123 690 188 190 511 137 704 324 259 201 125 690 188 190 511 137 704 324 259 201 125

22 120 131 110 619 486 674 711 545 324 120 259 131 110 619 486 674 711 545 324 120 259

23 86 687 111 284 298 365 580 125 216 207 469 687 111 284 298 365 580 125 216 207 469
24 448 655 215 256 259 298 799 272 514 362 161 655 215 256 259 298 799 272 514 362 161

All Pairwise comparison of cultivars High ranking correlated positive ions only
cultivars (+ ve  ion data) evident in pair-wise comparisons
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A correlation analysis performed using variables with p-values < 0.02 similarly identified 

clusters of signals typical of individual cultivar comparisons (Figure 9.18).  Essentially the 

same behaviour was identified in negative ion data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.18:   Correlation analysis of signals (positive ion data) using a subset of 

significant (P <= 0.01) variables selected by a Random Forest model comparing all 

of the five cultivars.  A „heatmap‟ representation is shown where each variable is 

colour coded according to significance in model.    
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Interpretation of the correlated FIE-MS with ARMec FIE-MS data annotation tool developed 

in the G03 project using the relationship between Désirée and other cultivars as an example, it 

is evident (Figure 9.19) that many of such groups of signals potentially represent isotopes, salt 

adducts and fragments of known metabolites. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.19:    Section of a correlation analysis in a comparison of Desiree with all 

other cultivars.  Signals thought to be related to the same metabolite (adducts and 

isotopes) are colour coded as in Figure 9.18 and potential annotations from the 

ARMeC database are included. 

 

Some metabolites were highlighted in both ionisation modes (e.g. raffinose and tyrosine), 

whilst others were found only in negative or positive ion data (e.g. aspartate, gluconate, 

leucine/isoleucine, GABA, quinate and chlorogenate).  In all instances the related m/z were 

found in the top 20-30 variables ranked by RF suggesting that an Importance Score threshold 

of 0.004 was adequate.  

 

The GC-MS metabolite profiling data relating to the same set of potato cultivars was used for 

Random Forest analysis.  Pair-wise comparison of the GC-MS cultivar data generated higher 

importance scores in comparison to the much more highly dimensional FIE-MS data, with 

values levelling off between rank 8-15 (Figure 9.20). 
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Figure 9.20:  Relationship between Importance Score and variable rank in Random 

Forest analysis of GC-MS data representing pair-wise comparisons of 5 potato 

cultivars     

 

 

All models representing pair-wise comparisons of GC-MS profiles had a high classification 

accuracy (>92%) and variables with p-values > 0.001 were only evident below rank 17 in all 

models.  Where peak identity was known, the highlighted GC-MS variables were matched 

against the list of explanatory metabolites predicted by high throughput FIE-MS analysis 

(Figure 9.21A). Using compositional comparisons with Désirée as an example, it can be seen 

that explanatory peaks (colour-coded) corresponding to tyrosine, raffinose, phenylalanine, 

GABA, gluconate, isoleucine, leucine, methionine and aspartate were generally all highly 

ranked in the same cultivar-specific pattern in the FIE-MS data (Figure 9.21B).   
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Figure 9.21:   Confirmation of FIE-MS fingerprint models by GC-MS.  (A)  Random 

forest ranking of GC-MS metabolite peaks used to discriminate between different 

potato  cultivars. (B)  Nominal mass m/z are colour coded as in  (A) revealing  ARMec 

annotations of highly ranked FIE-MS signals in pair-wise comparisons of potato 

cultivars 

 

 

Rank De_Ag De_Gr De_Li De_So

1 Tyrosine-2 U0014 Quinic acid Tyrosine-2

2 Raffinose Raffinose U049 Isoleucine

3 L-Phenylalanine Quinic acid Gluconic acid U-082

4 U-130 U019 U-130 Quinic acid

5 U-088 L-Aspartic-acid U0014 L-Phenylalanine

6 Glucose-2 U-088 U055 U-094

7 Tyrosine-1 Phosphate U-129 Lysine

8 GABA Leucine Inositol Leucine

9 Gluconic acid U-130 U-128 L-Threonine

10 U-124 Gluconic acid U-073 U-130

11 Lysine Inositol U-091 U055

12 Isoleucine Glucose-2 Tyrosine-2 Gluconic acid

13 Methionine U-108 Methionine Raffinose

14 U-094 Tryptophan U-093 L-Serine-1

15 Inositol GABA U016 Tryptophan

A 

Rank

neg. pos. neg. pos. neg. pos. neg. pos.

1 180 543 377 280 195 146 130 280

2 360 120 317 146 176 121 180 120

3 164 166 379 124 353 136 181 146

4 195 544 318 121 165 543 163 297

5 503 182 378 332 354 184 164 142

6 223 105 353 706 533 393 360 543

7 163 104 354 646 355 431 353 237

8 404 188 319 165 98 545 118 296

9 148 165 88 699 477 544 354 544

10 567 545 215 690 135 122 477 160

11 147 136 191 123 621 394 539 298

12 159 119 101 673 279 189 243 448

13 354 184 380 659 148 400 176 166

14 353 126 179 161 96 105 503 136

15 129 649 242 182 163 104 443 268

16 609 129 192 637 503 362 212 188

17 539 123 218 366 391 675 417 182

18 377 86 120 105 158 301 147 286

19 378 95 533 675 534 126 470 121

20 636 675 132 719 111 699 116 126

21 635 690 122 137 267 704 448 324

22 522 131 130 674 189 711 405 545

23 116 687 189 365 443 580 203 125

24 130 655 144 298 173 799 218 272

De_Gr De_Li De_SoDe_Ag

B 
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9.3.4 Relationship between metabolite content and potato cultivar 

characteristics.   

 

A good correspondence was evident between high RF ranking and the relative concentrations of the 

selected metabolites in individual cultivars (Figure 9.22). For example, tyrosine was present at a 

considerably higher concentration in a Désirée background than in either Solara or Agria and was the 

most highly ranked metabolite signal for discrimination between these cultivars.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.22.  Box plots of the concentration (relative ratios) measured by GC-MS of 

selected explanatory metabolites in 5 potato cultivars.    

 

Many of the identified metabolites that contributed significantly to compositional differences 

between the potato cultivars are linked closely to quality traits in potato tubers (Figure 9.23A).  

Isoleucine, leucine, tyrosine and phenylalanine are all known to contribute to flavour and aroma 

properties of cooked potatoes 
74, 75

 .   For example isoleucine/leucine and tyrosine  
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Figure 9.23: Relationship between explanatory metabolites and potato quality traits 

 

 major substrates for Strecker reactions (Figure 9.23B) that produce volatile aldehydes 

(methylbutanals and benzaldehyde respectively) which contribute „almond‟ and „toasted/sweet‟ 

aromas to boiled potatoes.  Free tyrosine, is also a major substrate for polyphenoloxidases 
76

 which 

are responsible for undesirable melanin biosynthesis in mechanically damaged potatoes (Figure 

9.23C).  Tyrosine is relatively low in cultivars such as Solara and Agria which are suitable for slicing 

and frying, and high in Désirée and Granola which are unsuitable (Figure 9.22).  Similarly, 

chlorogenic acid (and by implication its precursors phenylalanine, quinate and caffeate) is linked to 

 Agria Desiree Granola Linda Solara 

After cooking  None-Trace Trace-Little Trace-Little N/D None-Trace 

blackening 

Taste Good-Excellent Moderate-Good Moderate-Good Good Good 

French fry  Good-V. Good Moderate-Good Poor-Moderate N/D N/D 

suitability 

Frying colour Pale Medium N/D N/D N/D 

 

Melanin pigments in  
bruised or cut tubers 

Ferric  dicholorogenic acid in  
post - cooking blackening  
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non-enzymatic reactions associated with post-cooking blacking 
77

  in cultivars such as Granola and 

Désirée (Figure 9.23C).  

 

9.4 Optimising the replication strategy in large scale metabolomics 
experiments 

 

 

It is well known that the number of replicates has a major impact on the outcome of any 

multivariate data mining experiments.  The number of replicates required to generate robust 

classification models essentially is a function of the degree of compositional differences 

between sample classes and the level of biological and technical variance. Hence the more 

similar the biological classes are, or the more variance contained in the data, the greater the 

number of replicates will be needed to develop robust models. Despite this obvious fact it is 

not at all common to find published data in which a replication strategy was validated prior to 

sampling; in many published experiments biological variability is represented by only 3 or 4 

replicate samples.   In order to investigate the behaviour of statistics with a different sample 

size, the potato cultivar data from the G02 project, ESI2001, was used to generate artificial 

data. To conduct experiments on the sample size effect our strategy consisted of  generating a 

very large number of pseudo samples to 1) avoid bias introduced by reusing the identical 

original samples many times and 2) look at model characteristics when a number of replicates 

larger than the number at hand (in this case 48). The R code used to generate 2000 pseudo 

samples per class is shown below: 

 

 

>artif3 <- function(mat, cl, nd = 1000, cutoff = 0.99, 

+ noise = 1.05) { 

+ nlev = nlevels(cl) 

+ newmat <- newcl <- NULL 

+ for (k in 1:nlev) { 

+ omat = mat[cl == levels(cl)[k], ] 

+ pc = prcomp(omat) 

+ lpc = which(cumsum(pc$sdev^2/sum(pc$sdev^2)) >= 

+ cutoff)[1] 

+ meg = apply(pc$x[, 1:lpc], 2, mean) 

+ seg = apply(pc$x[, 1:lpc], 2, sd) 

+ tmp = matrix(rnorm(n = nd * lpc, mean = meg, 

+ sd = seg * noise), ncol = lpc, byrow = T) 

+ newm = sweep(t(pc$rotation[, 1:lpc] %*% 

+ t(tmp)), 2, -pc$center) 

+ newmat = rbind(newmat, newm) 
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+ newcl = c(newcl, rep(levels(cl)[k], nd)) 

+ } 

+ newcl = factor(newcl) 

+ return(list(mat = newmat, cl = newcl)) 

+ } 

 

 

Additionally, the original dataset is used as an independent test set to calculate accuracies and 

average sample margin in an unbiased way. Note that as the approach of generating artificial 

data is expected to give slightly optimistic results  the variance has been inflated slightly (by 

5%).   

 
Figure 9. 24:  Independent test set accuracies for NLDA and RF models built 

with different number of replicates in the training data. 
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9.4.1 Replication strategy in a multiple class context 

 

For different number of replicates (num. Replicates = 4, 6, 8, 10, 12, 15, 20, 25, 30, 50 and 

100) per class, 100 models discriminating the 6 potato cultivar classes were generated using 

Linear Discriminat Analysis (nlda) and  Random Forest (RF, ntree =1000) as described in 

Section 8 of the GO3 report. The classification accuracies on the independent test set (i.e. 

original ESI dataset), the eigenvalue of the first DF alongside its percentage of variance 

explained and the average sample margins calculated on the actual training data and the 

external test are summarised in the Figure 9.24 – 9. 26.  
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Figure 9.25: Eigenvalue and percentage of variance explained in the first DF 

when different number of replicates are used in the training data 

 

 

As expected, classification accuracies on the independent test set are improved when more 

replicates are used to build the classifiers (Figure 9.24). Eigenvalues on the first DF also 

increase as the number of replicates increases (Figure 9.25). Interestingly, the percentage of 

variance explained by the first DF is highly variable when only a few samples are used to 

train the classifier (Figure 9.25). The error associated with the accuracy estimation is also 

reduced with larger training sets. This is also translated by greater test sample margins (Figure 

9.26). In this particular case, a suitable number of replicates giving robust models is 

somewhere around 15 to 20 samples. In terms of the model characteristics such as Eigenvalue 

or average training sample margin, the associated statistical measure are significantly 

improved with greater sample size. These date illustrate that one can be more confident 

regarding the predictive abilities of the model based solely on the information available from 

the training data.  
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Figure 9.26: Average sample margin in the training set and independent set 

when different number of replicates are used in the training data  

 

 

 

9.4.2 Replication strategy in a two class context 

 

Using the same pseudo data as before, 5 pairwise comparisons involving Desiree1 and the 

other cultivars (Agria, Linda, Granola, Solara and Desiree2) were examined to evaluate the 

impact of the number of replicates on the model characteristics in a two class context. Note 

that the comparison between De1 and De2 is not ”biologically meaningful” as differences 

observed are encapsulating experimental variability rather than true genotypical biological 

information (see Section 9.3). 
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As the number of replicates is increased in a two class problem, the evolution of the 

independent test set accuracies (RF and NLDA), eigenvalue on the DF and average sample 

margin is given in the plots below (Figure 9.27-9.29): 

 
 

 

 

Figure 9.27: Independent test set accuracies for NLDA pairwise models built 

with different number of replicates in the training data 
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Figure 9.28   Average sample margin in the training set for various pair-wise 

comparisons when different number of replicates are used in the training data 

 

 

 
 

Figure 9.29  Eigenvalue for various pair-wise comparisons when different 

number of replicates are used in the training data. 

 

 The number of times a given statistics (respectively LDA eigenvalue and average sample 

margin) is greater or equal to the one observed for the De1-De2 comparison for different 

number of training samples is given in Table 9.2. 
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Table 9.2  Effect of replication on detecting biologically significant differences  

 

 

   LDA Eigenvalues 
 

 
 

   RF margins 
 

 

 
 

Without a great deal of significance testing, Table  9.2  illustrates that the risk of rejecting a 

valid comparison (such as De1-Li) using one ”null hypothesis” when the number of training 

sample is small. This effect is even more pronounced when the average training sample 

margin is used as a comparator. This naive approach can be used to determine the adequate 

number of replicates. 

 

 

9.4.3 Conclusions regarding optimization of sample size  

 

Using a restricted number of samples the results from supervised multivariate analysis 

must be treated with extra care unless biological classes with expected massive differences are 

studied. In most situations, tools and associated statistics in use routinely (margin and 

eigenvalue) are not suitable to give a robust answer for a  scenario when only 4 

replicates/class have been analysed as the risk of accepting/rejecting a model under those 

conditions is quite high considering the actual value of the statistics and the error associated 



Page 361 of 370 

 

with its estimation. In the context of the G03 project this precludes any multivariate modelling 

of the LC-MS, GC-MS and ESI-MS data from the 24 potato cultivars from the NOVRISK 

project which contain only 4 sample replicates (2 from each of 2 harvest years).   

 

From the experiments described above, a suitable number of replicates must exceed 15-20 

representatives. This study shows that model significance metrics are not only sample size (in 

the sense of num. of features versus num. of sample) dependent but also algorithm dependent 

illustrating that alternative approaches may tackle more efficiently this problem. Although the 

use of margin/eigenvalue could be seen as rather exotic approaches to estimate class 

separability, estimates of classification accuracy absolutely do not give reliable answers in a 

small sample size setting. 

 

Analysis of the learning curves (i.e. evolution of the accuracy with regard to training data 

sample size) reveal some interesting aspects.  The shape of the curve can help to determine a 

reasonable number of replicates to obtain satisfactory significance thresholds. It also 

illustrates that there is no need to collect more samples once optimal learning has been 

achieved, thus preventing larger amounts of variability associated with technical issues 

entering the analysis. This is particularly evident with the large GC-MS G02 data sets 

generated in Aberystwyth and Golm in which batch problems effect modelling efficiency.  

However, a major drawback with this approach to determine a correct sample size is that the 

dataset at hand must be large enough in the first place to allow a realistic modelling of the 

relation between N and the statistics under study so that generated data are as close as 

possible to what we might expect from a true experimental sampling. Thus with a new sample 

matrix we would advocate performing a pilot run with a few genotypes/classes with large 

replication in order to perform this type of analysis before designing larger experiments with a 

reduced number of replicates. 

 

9.5 A proposed database strategy for the comparison of cultivar global 
composition based on a ranked list of explanatory variables  

 

To provide a more useful framework for compositional comparisons between larger numbers of plant 

genotypes and to provide possibilities for data integration between laboratories a single metabolome 

representation will be required as a comparator. Clearly if only one genotype is used as a comparator 

then any genotypes that are compositionally similar will generate very poor models in pair-wise 
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comparisons and vice versa any very different cultivars will form very strong models. We considered 

that an artificial population of samples that captured the compositional variability representative of all 

5 cultivars (ie. „mastermix‟ ) would provide a common comparator for all genotypes and produce 

models of similar robustness.   

 

9.5.1 Validating the method used to generate a Mastermix sample 

population 

 

In pilot experiments an electronic „mastermix‟ population of FIE-MS fingerprints was generated as 

outlined below. The applied term "electronic mastermix" essentially represents a new class of potato 

within the cultivar matrix.  This technique is known in the microarray community as "pooling", 

where individual samples are combined either "in vitro" or "in silico" to reduce inherent subject-to-

subject variability.  In this manner, changes observed in the pooled samples are more representative 

of population changes.  In microarray experiments, samples with the same outcome of interest (i.e. 

same class) are pooled to explain differences between treatments rather than delineating conclusions 

from the global population itself.  In our case, the objective was to form a virtual new potato class; 

wherein, the new comparator encapsulated the overall metabolic diversity of the potato cultivar 

population.  Our strategy centred on randomly pooling a single FIE-MS fingerprint from each class 

where the median intensity, at all m/z of the selected fingerprints, was used to create a virtual 

comparator sample.  In order to restrict the inevitable reduction in variance, a sample was used only 

once when generating the electronic mastermix. 

 

To assess the validity of the approach, we conducted experiments in which the mastermix was 

formed on training data generated by: (1) a single random selection of 32 samples from each 

class, or, (2) by bootstrapping of the original data so that classes may have been unbalanced.  

Test data were used to assess the predictive power and both simulations were repeated 100 

times.  Out-of-bag samples accuracies and classifier margins were used to compute statistics 

relative to the training set.  Samples not used to form the mastermix were then used to assess 

the predictive power of each pair-wise classifier.  A modified version of the Kendall 

concordance test was applied to compare the lists of the top k ranked features. In this study, 

we used k=10 and k=20 as they corresponded roughly to the "expected" number of significant 

features.  Statistics for each pair-wise (i.e. mastermix vs. cultivar X comparison) Random 

Forest model  are summarized in Table 9.3 (1) .  As expected, the averaged statistics were 
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slightly lower when more perturbation was induced into the training data (Table 9.3 (2). 

However, accuracies on unseen data were more satisfactory in all cases, illustrating that the 

combination of multiple samples originating from diverse cultivars did not degrade the 

predictive power of the RF models.  Confidence in attributing the test sample was fairly high, 

corresponding to that expected from the training set with a good degree of concordance 

between the top 10 and 20 ranked features. 

 

 

Table 9.2  Performance of Random Forest models using an electronic “mastermix” in 

binary comparisons with potato cultivars 
 

(1)  Training data generated by a single random selection of 32 samples from each class. 

 

 

(2) Training data generated by bootstrapping of the original data so that classes may have 

been unbalanced 

 

 

 

 

 

 

 

 

Mean SD Mean SD k Mean SD

Train 95.67 1.77 0.493 0.019 10 0.797 0.043

Test 100.00 0.00 0.582 0.021 20 0.724 0.034

Train 92.56 1.90 0.448 0.023 10 0.705 0.051

Test 99.69 1.37 0.524 0.028 20 0.672 0.037

Train 95.14 2.22 0.431 0.022 10 0.745 0.053

Test 100.00 0.00 0.428 0.025 20 0.709 0.036

Train 95.39 1.18 0.637 0.015 10 0.753 0.057

Test 100.00 0.00 0.584 0.015 20 0.738 0.035

Train 91.06 2.36 0.485 0.018 10 0.701 0.062

Test 87.50 1.26 0.410 0.019 20 0.714 0.042

Train 99.83 0.49 0.663 0.014 10 0.818 0.061

Test 100.00 0.00 0.639 0.014 20 0.821 0.030

Accuracy Margin Concordance

Agr

De1

De2

Gra

Lin

Sol

 

Mean SD Mean SD k Mean SD

Train 95.90 1.84 0.515 0.031 10 0.757 0.050

Test 95.49 4.77 0.508 0.068 20 0.686 0.033

Train 90.26 3.18 0.437 0.032 10 0.639 0.046

Test 90.89 9.68 0.416 0.079 20 0.602 0.034

Train 94.14 3.23 0.396 0.033 10 0.699 0.051

Test 98.13 3.82 0.413 0.063 20 0.656 0.038

Train 97.33 1.40 0.627 0.027 10 0.690 0.070

Test 96.36 4.70 0.637 0.071 20 0.708 0.045

Train 90.70 3.26 0.447 0.032 10 0.614 0.062

Test 89.61 8.33 0.428 0.094 20 0.605 0.045

Train 99.89 0.43 0.640 0.024 10 0.737 0.076

Test 100.00 0.00 0.639 0.053 20 0.782 0.030

Accuracy Margin Concordance

Lin

Sol

Agr

De1

De2

Gra



Page 364 of 370 

 

9.5.2 Random forest pair-wise comparisons of cultivar FIE-MS data with 

an electronic  mastermix  population of  FIE-MS fingerprints.  

 

Importance score ranking by RF revealed that 10-20 m/z signals were highly significant to 

discriminate each cultivar from the mastermix population (Figure 9.30A).   To confirm the 

robustness of this approach 100 mastermix populations were generated by random pooling of 

fingerprints and the pairwise comparison of each cultivar performed using RF.  In all instances the 

explanatory signals identified and their rank order showed high correspondence in relation to 

importance score (Figure 9.30B).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.30:  Use of a „mastermix‟ reference population to generate a unique 

cultivar composition representation based on explanatory variables ranked by 

Random Forest. (A)   Relationship between Importance Score and variable rank in 

a Random Forest analysis of FIE-MS data involving the pairwise comparison of 

each cultivar with a mastermix fingerprint population.   (B)  Signal ranking 

correspondence in Random Forest pairwise comparisons of cultivar FIE-MS 

fingerprints with 100 different randomly-generated „mastermix‟ populations. 

 

Figure 9.31A shows in detail the rank order of explanatory signals selected in a RF analysis model 

comparing all potato cultivars against the Mastermix polulation..   Representative (colour coded) 

combinations of these highlighted signals populate the top 10 rank positions in pairwise comparisons 
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of individual cultivars with the mastermix population (Figure 9.31.B).  Interestingly, samples 

representing two independently propagated clones of the cultivar Désirée (De1 and De2) exhibited 

high correspondence (Figure 9.31C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Individual cultivars compared to Mastermix 

population 
 

 

Figure 9.31:  Signal ranking correspondence in Random Forest pairwise comparisons of cultivar 

FIE-MS fingerprints with 100 different randomly-generated „mastermix‟ populations.  (A)  Top 30 

ranked explanatory variables identified in a Random Forest model comparing FIE-MS fingerprints of 

all five potato cultivars.  (B & C) Top ten ranked explanatory m/z identified in the Random Forest 

pairwise comparison of cultivar FIE-MS fingerprints with a „mastermix‟ fingerprint population.   
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9.5.3 Conclusions in relation to a future strategy for the compositional 

comparison of raw food materials 

 

Both representation and subsequent comparison of global chemical composition in plant breeding 

germplasm and food raw materials are difficult tasks.  Additionally, important quality assessments by 

sensory panels rely heavily on subjective data rather than quantitative measures.  Against this 

background there is an urgent need to develop a data structure and a data analysis strategy that will 

allow robust, high-throughput comparative assessment of metabolite content.   In pair-wise 

comparisons between cultivars, we show that highly interpretable models generated by the Random 

Forest analysis of FIE-MS fingerprints
 
can both accurately classify potato tubers and also explicitly 

identify significant compositional differences.  From a utility perspective, the metabolites we 

predicted to be responsible for compositional differences between potato cultivars by both FIE-MS 

and GC-MS were indeed associated with important quality traits.  Interestingly, several unknown 

signals were also highly significant, providing scope for the discovery of novel chemical attributes 

potentially relating to quality characteristics of individual cultivars.  In the future we expect that FIE-

MS fingerprinting can be used effectively to generate a meaningful and comprehensive representation 

of compositional differences within/between complex biological samples.   The high-throughput 

nature and the requirement of only small sample volumes, easily allow for the generation of sufficient 

replicate measurements to ensure for a rigorous generalisability assessment.  Unlike many other 

powerful data mining approaches which strive to produce classifiers comprising largely non-

redundant features, the approach we describe using Random Forest allows all variables an equal 

chance of being both explicitly identified and highly ranked.  By comparing FIE-MS data 

representing individual genotypes to a common „mastermix‟ fingerprint population, chemical „bar 

codes‟ based on Importance Score ranking of explanatory variables (e.g. top 25-30 m/z in adequate 

models) can be generated and might form part of a future database strategy regarding the chemical 

composition of foodstuffs. For example RF ranking could be used to assess compositional similarity 

between batches of food raw materials, or form part of a phenotyping strategy to evaluate large 

genotype populations encountered in either plant breeding or functional genomics experiments.  From 

the perspective of directed plant breeding, a similar approach could be envisaged to link metabolome 

fingerprints to complex quality traits and to identify genetic sources of significant compositional 

novelty.  
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1. Executive Summary

The project has been well planned and has been effectively managed. The project team was
cooperative and open to ideas. From the discussions during the audit they demonstrated a good

awareness and understanding of the requirements of the Joint Code of Practise and systems

implemented were compliant with those requirements in a majority of areas. Only a small number of
recommendations were made.

Overall this project has been conducted to a high standard.

2. Scope

The purpose of this visit was to carry out an audit of the FSA funded research project - Development
of unified data models and data pre-processing strategies and the generation of meaningful,
standardised statistical analyses of metabolome variability in crop plants which is being undertaken
by the University of Aberystwyth in order to assess their compliance with the requirements of Joint

Code of Practise for Research.

The assessment involved discussions with key members of the project team at the University of

Aberystwyth. Much of the work has involved data collection and analysis although some practical

work has also been conducted at the University. The audit included discussion about the status and
progress of the project, project personnel, records of on-going reviews, staff recruitment, training

and on-going development as well an inspection of the facilities and equipment used to conduct the

practical work. Discussions were held with key members of the project team in order to understand
their roles and activities on this project.

3. Overview of Research Contractor
The project is being carried out by the Institute of Biological Sciences in conjunction with the

Computer Science department. Both departments operate within the University of Aberystwyth.

Most of the work on this project has been done by the University, although there has been one

collaborator Scottish Crop Research Institute (SCRI), who has been involved to some extent in the
collection, pre-processing and statistical analysis of data. The collaborator has been made aware of

the requirements of Code of Practise for Research. The University has had close contact with SCRI

throughout the project through regular review meetings.

University staff employed on this project have been apointedd on the basis of their previous

experience from working on similar projects at the University. Other new staff have been employed
specifically to work on this project and have appropriate experience.

The project has largely progressed according to the identified timescales. Some changes have been
made and some objectives abandoned following review of information obtained, but these have

been agreed with the FSA and are appropriately documented.

4. Observations & Assessment Findings

4.1 Responsibilities

4.1.1 Project Personnel

The project is being jointly conducted by the Institute of Biological Sciences and Computer Sciences
departments at the University of Aberystwyth. The Project Coordinator is Prof John Draper who has

been managing the project and he is ably supported by other project team members.
The project team has a high level of experience. All were aware of their responsibilities in relation to

their role within the project and the requirements of the JCoPR.
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4.1.2 Subcontractors
SCRI has been collaborating in some aspects of this project and have been closely involved in the

on-going review meetings.

No other subcontractors have been used, except for those organisations who were requested to

supply information to assist with the literature search. Their input has been limited to the supply of

information.

4.2 Competence

4.2.1 CVs of Project Personnel

Project personnel clearly have a high level of experience. Experience and qualifications are

documented. Many of the personnel working on the project were already working at the University

and had worked on similar projects in the past and therefore had appropriate experience. The
University has a personnel policy, which ensures that any new staff employed are subjected to

appropriate assessment and the laboratory was able to provide evidence to show this policy had
been followed during the recruitment of staff to work on the project. The recruitment system enables

fair and thorough assessment to ensure the appropriate candidate is selected.

4.2.2 Training Records

The University has specific policies in relation to training of staff, which the laboratory was able to

demonstrate were being followed.

Induction training is conducted and this ensures that Health and Safety and other administrative

issues are covered.

Training of staff is planned and reviewed on an on-going basis to ensure that skills relevant to the

area of work are obtained and competency maintained. There is a good system for staff review and
continual development.

Training records are generally well-documented and where it is appropriate competency is assessed
through use of e.g. QC data/materials, which enables effective demonstration of competence.

4.3 Project Planning

4.3.1 Risk Assessment
Potential risks had been taken into account at the project planning stage. This identified a potential

risk with obtaining information from the external organisations, which the laboratory was reliant on to

progress some of the key objectives of the project. Adequate provision was made to minimise this
risk and in the event this did not materialise and the information was provided by organisations when

requested, enabling the project to progress as planned.

4.3.2 Project Plan

Project planning has been done effectively and the project plan is clearly detailed showing the

objectives, responsibilities and anticipated timescales. On-going planning and review is well-
organised and the internal reviews enable progress to be closely monitored.

Two major external reviews have been conducted according to plan involving the FSA at 6 and 18
months and this has enabled further on-going review. Following these reviews some aspects of the

project were reviewed and a decision made to abandon them. This was agreed with the FSA at the

time and records are held.

4.3.3 Approved Procedures for Sampling Materials
No specific requirements for this project. Potato material supplied by SCRI has been tested and is

currently being stored frozen, although if further samples were required fresh material would need to

be obtained.



United Kingdom Accreditation Service – Assessment Report – Continuation Sheet
Research Contractor: University of Aberystwyth

Page 4 of 5

4.3.4 Ethical Approval
None required for this project.

4.4 Quality Control

4.4.1 Auditing & Assessment Procedures

There is no formal auditing system as such, except those relating to Health and Safety activities,
which are audited by the University. There are good systems in place for on-going review of

progress against project objectives, which allows for any issues to be identified and appropriate

corrective action taken and this is considered sufficient for this project.

4.4.2 Internal Project Reviews

Progress on the project has been monitored through use of internal review meetings, which has
involved the project team and representatives from the SCRI. These meetings are recorded and

show an in-depth review which has enabled issues to be identified and appropriately followed-up.

4.4.3 Publication Policy & Authorisation Procedures

The laboratory has published a number of standardised protocols in relevant journals. These
publications have been agreed with the FSA via the review meetings. The laboratory is aware of the

need to agree any future publications with the FSA beforehand.

4.5 Health & Safety

The laboratory has to follow the University wide policy for Health and Safety and there are clear

guidelines regarding these requirements. It is apparent that safety assessments are done,
however some gaps were noted in the records held by the laboratory, although these will have

been held by the Departmental Safety Officer. It is still advisable for the laboratory to ensure

copies of risk assessments relevant to their areas of work are located in the laboratory to enable
easy access by all relevant staff. Evidence of staff training in safety requirements was not

documented, although lab confirmed that in practise staff would follow correct safety procedures,

however the records are needed to support this.

4.6 Handling of Samples & Materials
The only samples handled by the laboratory are those received from the SCRI. Records for those

samples tested by the laboratory are satisfactory.

4.7 Facilities & Equipment

The equipment used by the laboratory to analyse the potato samples suppled by SCRI appeared to

be well-maintained. It was a little unclear as to whether the requisite calibration checks were always
being done on the FIEMS, but for the level of accuracy required the checks are in place are probably

adequate. It would be useful to ensure that there is a clear record to show when the necessary

checks are done to provide evidence that the equipment was operating satisfactorily when in use.
Other more sensitive equipment available was subjected to more regular calibrations and records of

these were held.

Other equipment used for testing appears fit for purpose. Where checks are done these should be

recorded where possible to support the effective performance of the equipment, e.g. pipettes. Lab

should consider whether increased checking of balances (e.g. with check weights) is necessary
particularly where they are being used to weigh out critical measures.

4.8 Documentation of Procedures & Methods

4.8.1 Validated Standard Operating Procedures
Practical work done by the University is subject to QC checking where appropriate and this supports

the methods in use.

Where separate operating procedures are used in the laboratory, these could be better controlled.
Laboratory records could be improved to provide evidence that procedures have been followed in

practise, e.g. particularly in relation to equipment checks, where requirements are documented in
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the protocols, but there are no records generated by the lab to support this.

4.8.2 Document Control Procedures

Document control practises would benefit from review particularly where standard operating
procedures are held, e.g. which cover use of equipment. If documents are formally issued then this

helps when further changes are needed and the document needs to be re-issued.

4.9 Research/Work Records

4.9.1 Experimental Records, Sampling records, Project related records

Appropriate records are being maintained in a suitable format. Most records are stored electronically
and there are mechanisms in place to protect this data. The systems in place ensure good

traceability.

4.9.2 Data Management & Archiving Procedures

This appears to be under effective control. Most data is stored electronically and protection of this
information is controlled to ensure appropriate security and back-up.

The laboratory has an excellent web based system where key documents relevant to the project
such as review meeting minutes, project plan are being stored. This is accessible by all members of

the project team and provides a very effective mechanism for communicating information about the

project across the team.

Retention times of documents has been agreed with the FSA. Records need to be stored where they

can be readily accessed following the completion of the project.

5. References

Joint Code of Practice for Research

6. Appendices

Improvement Action Report & Recommendations prepared by Rachel Oakley
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1. Document objectives
Deliverable 01.01 will be:

... a catalogue of the labs, experiments and technologies in use in selected G02
projects, focusing on potato and tomato ...

This document seeks to structure the assembly of that catalogue through a provisional
checklist of issues to be considered.

This document should be considered a draft and comments and additions are welcomed.
It should not restrict collection of information and comments about potentially useful
G02 data, though in view of the timescales, it might help in prioritising tasks.

The result of this cataloguing exercise will be the deliverable document [1].

2. Information about a data set
For each data set under consideration or selected the following classes of information
will help the process. A form is available (Appendix 1) to assist with collecting this in-
formation.

Project. A name for the project under which data were collected. "G02006" would be
an example.

Experiment. A name or reference for the experiment so that (along with the Project) it
can be identified. Experiment should be broadly interpreted to include "trial", "observa-
tions" and other procedures.

Laboratory. The institution, site and/or laboratory responsible for the experiment.

Contact. The person best able to discuss data availability, structure and meaning.

Description. A few sentences to explain the structure and intention of the experiment.

Rationale. The rationale for (perhaps) including this experiment in the G03 project.

Species. The species or organism concerned. Cultivars, strains, ecotypes, transgenics
etc. should be mentioned.

Growth. Indication of growth conditions (field, greenhouse, growth room etc.) includ-

1



ing sequences (e.g. germination in one environment followed by transplantation etc.).

Harvest. Brief description of how samples were obtained.

Handling. Brief description of whether and how samples were transported and stored.

Preparation. Brief indication of the sample preparation methods used (typically in the
laboratory).

Analysis machine. The machine used for the metabolome estimation. Indicate the tech-
nology (e.g. GC-MS), the maker and model. Any special techniques or procedures
should be noted.

Type of result. The nature of the available results (e.g. "peak list", "spectrum", absolute
or relative measurements).

Format of results. The format(s) in which the results are available (e.g. "Excel spread-
sheets", CSV, "GenStat").

Reference. Available papers, reports etc. where the experiment is described or reported
in more detail. G02 final reports will be very suitable, but please include page or section
numbers as appropriate.

Respondent. The person completing this form.

G02 Data Selection
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1. G02 data cataloguing
This proforma table may assist in collecting information about selected G02 data sets.
Explanation of categories is give above (Section 2).

It consists of two sections. If an experiment involves, for example, more than one meta-
bolome estimate method (e.g. GC-MS and FT-IR) complete Part A in full and a copy of
Part B for each alternative, referring back to the complete Part A Project and Experi-
ment to avoid repetition.

1. Part A

Item Details

Project

Experiment

Laboratory

Contact

Description

Rationale

Species

Growth

Harvest

Handling

G02 Data Selection
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Item Details

2. Part B

Project (From Part A) Experiment (From Part A)

Item Details

Preparation

Analysis machine

Type of result

Format of results

Other comments

Reference

Respondent

Date

G02 Data Selection
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1. Document objectives
This document will be deliverable 01.01.

2. The process of assembly
A document was produced ([1] Version 1.2, 2005/11/28 16:43:47) defining a limited set
of details required about each experiment for potential inclusion in the study. This was
circulated to three parties: i) Institute of Biological Sciences, UWA (IBS, UWA); ii)
Scottish Crop Research Institute (SCRI); iii) (RHUL)

Note
Need details of RHUL
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.

Help was offered in completing the form included in that document, via e-mail or 'phone
conferences.

The appendices to this document are a collection of those responses.

3. Summary of Responses
3.1. Sources

Data have been received from the following:

• G02001 Project. Through SCRI
• E-mails from Derek Stewart suggested a listof 7 experiments with 6 data sets each.
• The 'phone conference of 2006/02/16 (http:// sirius.dcs.aber.ac.uk:9095/g03r0002/

docs/management/minutes/2006-02-16_phone.html) identified some lines from one
experiment with five data sets.

• The document e-mailed by Susan Verrall 2006-13-03 confirmed the lines from the
one experiment and increased the data sets to six.

• At the meeting on 2006-04-20, it was agreed that the FT-IR data set would be
dropped (http:// sirius.dcs.aber.ac.uk:9095/ g03r0002/ docs/ management/ minutes/
2006-04-20.html. This is reflected here.

• A spreadsheet of data fields sent by Susan Verrall 2006-05-12 (http:// siri-
us.dcs.aber.ac.uk:9095/g03r0002/data/SCRI/) contained information about 2 SCRI
LC-MS experiments. This is reflected here.

• G02006 Project. Through UWA, IBS
• The meeting of 2005/11/28 (http://sirius.dcs.aber.ac.uk:9095/g03r0002/docs/man-

agement/minutes/2005-11-28.html) identified 5 data sets. This is reflected here, as
two experiments (2001 and 2003) with 3 and 2 data sets respectively. .

•
Note
The GM lines will presumably need to be removed from the G02006
data sets.

Note
Data are expected from RHUL.

3.2. Data Sets
This table sumarises the "Part B" responses. It shows the experiments with their associ-
ated data sets.
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Project Experiment Data Set

G02001 FSA 2002

(Appendix 2)

GC-MS Aqueous extraction and deriv-
itisation

(Appendix 2, Section 2)

GC-MS Non-polar extraction and de-
rivitisation

(Appendix 2, Section 3)

LC-MS extraction

(Appendix 2, Section 4)

LC-MS extraction (set 2)

(Appendix 2, Section 5

LC-MS extraction - Ian Calhoon via
Derek

(Appendix 2, Section 6)

NMR extraction - Ian Calhoon -via
Derek

(Appendix 2, Section 7)

G02006 2001 Field Trial

(Appendix 3)

GC-TOF

(Appendix 3, Section 2)

GC Quadrupole

(Appendix 3, Section 3)

DIMS

(Appendix 3, Section 4)

2003 Field Trial

(Appendix 4)

GC-TOF

(Appendix 4, Section 2)

DIMS

(Appendix 4, Section 3)

G02 data catalogue
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1. The questions
The following is a list of the topics specified in [1]

1. Information about a data set
Project.

Experiment.

Laboratory.

Contact.

Description.

Rationale.

Species.

Growth.

Harvest.

Handling.

Preparation.

Analysis machine.

Type of result.

Format of results.

Reference.

Respondent.

G02 data catalogue
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2. G02001
1. Part A

Item Details

Project G02001

Experiment FSA 2002: Transcriptome, proteome and metabolome analysis to detect unin-
tended effects in genetically modified potato.

Laboratory Scottish Crop Research Institute

Contact Dr Derek Stewart mailto:Derek.Stewart@scri.ac.uk

Description A fully replicated block experiment to assess if metabolomics can identify
changes in GM potatoes. A range of GM lines with the relevant controls were
grown in the field along with commercially grown cultivars and landrace spe-
cies.

Rationale Rationale for metabolomics only: To ensure the technologies were robust
enough to measure several hundreds of small molecules quickly (a technology
called metabolomics) rather than targeted analysis of only some key compon-
ents. Also to test their effectiveness in detecting unintended effects using a
range of GM crop materials. The sub-set cultivars will be used in this instance.

Species Lines 110 to 124 are modern cultivars of potato with known introgression for
disease resistance from a variety of wild species. Tetraploids (4 sets of chromo-
somes).

• S. tuberosum
• line 110, DESIREE
• line 111, RECORD
• line 112, P.DELL
• line 113, SHELAGH
• line 114, STIRLING
• line 115, TORRIDON
• line 116, GLENNA
• line 117, MORAG
• line 118, EDEN
• line 119, M.PIPER
• line 120, P.JAVELIN
• line 121, CARA
• line 122, P.CROWN
• line 123, BRODICK
• line 124, BARBARA
• line 149, 91.MT.46 E 15, Multi trait high dry matter potato cultivar (in

National List Trials).
• line 150, PINK FIR APPLE, Salad potato modern cultivar.
• line 151, G.WONDER, High dry matter, low yielding
• line 154, LUMPERS, Old cultivar.
• line 155, FORTYFOLD, Old cultivar.
• line 156, ANYA, Salad potato modern cultivar.

• S. phureja
• line 152, INCA SUN, Diploid (in National List Trials). Adapted to long

days.
• line 153, MAYAN GOLD, Diploid (in National List Trials). Adapted to

long days.

Growth 5 tubers of each independent GM and control cultivar were planted in rows in a
total of four randomised plots within the field. (20 plants per line in total).
Plants were grown with standard potato management practices. (Taken from
the G02001 final report p.7)

Harvest Burn down date - first haulm half dose sulphuric acid 28-08-2002 - second
haulm, half dose sulphuric acid 03-09-2002. Fungicide/aphicide 04-09-2002.

G02 data catalogue
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Item Details

Haulm pulverised 11-09-2002. Harvest date 19-09-2002. Tubers stored at 10°C
for a minimum of 2 weeks in the dark to harden off. Sampling performed fol-
lowing Standard Operating Procedure (SOP) For the Sub-Sampling Of Tubers
from Bags/Sacks - see G02001 final report p.39.

Handling See sample preparation protocols for LC-MS analysis and GC-MS analysis in
the G02001 final report pages 41 and 45.

2. Part B - GC-MS Aqueous extraction and derivitisation

Project: G02001 Experiment: FSA 2002

Item Details

Preparation See Extraction of Freeze-dried Potato for GC-MS Analysis and Polar Fraction
Derivatisation in the GC-MS Extraction and GC-MS Derivatisation AQ work-
sheets of the spreadsheet at http:// sirius.dcs.aber.ac.uk:9095/ g03r0002/ data/
SCRI/ also documented as Extraction of freeze-dried potato and Derivatisation
of polar fraction on pages 45 and 46 of the G02001 final report.

Analysis machine ThermoElectron Tempus GC-TOF-MS

See Analysis of polar and non-polar samples by GC-MS on pages 47-49 of the
G02001 final report also partially documented as GC-MS machine method in
the GC-MS Machine Method worksheet of the spreadsheet at http:// siri-
us.dcs.aber.ac.uk:9095/g03r0002/data/SCRI/

Type of result • absolute area
• absolute peak height
• relative response to internal standard

Format of results • Excel spreadsheet containing a sheet per peak
• .raw Excalibur output
• Genstat format sheet

Other comments

Reference

Respondent • Susan Verrall mailto:Susan.Verrall@scri.ac.uk
• Tom Shepherd

Date 14 March 2006

3. Part B - GC-MS Non-polar extraction and derivitisation

Project: G02001 Experiment: FSA 2002

Item Details

Preparation See Extraction of Freeze-dried Potato for GC-MS Analysis and Non-Polar
Fraction Derivatisation in the GC-MS Extraction and GC-MS Derivatisation
NP worksheets of the spreadsheet at http:// sirius.dcs.aber.ac.uk:9095/
g03r0002/data/SCRI/ also documented as Extraction of freeze-dried potato and
Derivatisation of non-polar fraction on pages 45 and 46 of the G02001 final
report.

Analysis machine ThermoElectron Tempus GC-TOF-MS

See Analysis of polar and non-polar samples by GC-MS on pages 47-49 of the
G02001 final report also partially documented as GC-MS machine method in
the GC-MS Machine Method worksheet of the spreadsheet at http:// siri-
us.dcs.aber.ac.uk:9095/g03r0002/data/SCRI/

Type of result • absolute area

G02 data catalogue
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Item Details

• absolute peak height
• relative response to internal standard

Format of results • Excel spreadsheet containing a sheet per peak
• .raw Excalibur output
• Genstat format sheet

Other comments

Reference

Respondent • Susan Verrall mailto:Susan.Verrall@scri.ac.uk
• Tom Shepherd

Date 14 March 2006

4. Part B - LC-MS extraction

Project: G02001 Experiment: FSA 2002

Item Details

Preparation See Extraction of potato samples for LCMS analysis in the Potato LC-MS 4ml
Method worksheet of the spreadsheet at http:// sirius.dcs.aber.ac.uk:9095/
g03r0002/ data/ SCRI/ also documented as the Sample extraction protocol on
p.41 of the G02001 final report.

Analysis machine Finnigan LCQ DECA 3D ion trap API source

See LC conditions/Tune method/MS Method on pages 41-43 of the G02001 fi-
nal report also partially documented as Potato Instrument Method in the
Nigel_polar_MET_MSMS worksheet of the spreadsheet at http:// siri-
us.dcs.aber.ac.uk:9095/g03r0002/data/SCRI/.

Type of result • absolute area
• absolute peak height
• relative response to internal standard

Format of results • Excel spreadsheet containing a sheet per peak
• .raw Excalibur output
• Genstat format sheet

Other comments Technician - Michael Anderson

Reference

Respondent • Susan Verrall mailto:Susan.Verrall@scri.ac.uk
• Julie Sungurtas

Date 9 March 2006

5. Part B - LC-MS extraction (set 2)

Project: G02001 Experiment: FSA 2002

Item Details

Preparation See LC-MS potato extraction original method in the LC-MS Potato Extraction
Orig worksheet of the spreadsheet at http:// sirius.dcs.aber.ac.uk:9095/
g03r0002/data/SCRI/

Analysis machine Finnigan LCQ DECA 3D ion trap API source

See LC conditions/Tune Method/MS Method on pages 41-43 of the G02001 fi-
nal report also partially documented as Potato Instrument Method in the
Nigel_polar_MET_MSMS worksheet of the spreadsheet at http:// siri-
us.dcs.aber.ac.uk:9095/g03r0002/data/SCRI/.
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Item Details

Type of result • absolute area
• absolute peak height
• relative response to internal standard

Format of results • Excel spreadsheet containing a sheet per peak
• .raw Excalibur output
• Genstat format sheet

Other comments Technician - Julie Sungurtas

Reference

Respondent • Susan Verrall mailto:Susan.Verrall@scri.ac.uk
• Julie Sungurtas

Date 9 March 2006

6. Part B - LC-MS extraction - Ian Calhoon via Derek

Project: G02001 Experiment: FSA 2002

Item Details

Preparation

Analysis machine

Type of result

Format of results

Other comments

Reference

Respondent

Date

7. Part B - NMR extraction - Ian Calhoon -via Derek

Project: G02001 Experiment: FSA 2002

Item Details

Preparation

Analysis machine

Type of result

Format of results

Other comments

Reference

Respondent

Date

G02 data catalogue
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3. G02006, 2001
1. Part A

Item Details

Project G02006

Experiment 2001

Laboratory MPIMPP/IBS, UWA

Contact Manfred Beckman mailto:meb@aber.ac.uk

Description "a context for determining whether transgenic potatoes displayed alterations in
metabolite composition outside the range exhibited normally by conventional
cultivars." [4].

Rationale

Species Solanum tuberosum. Cultivars: Désiré, Agria, Linda, Granola, Solara. GM con-
strutcts based on Désiré.

Growth Field conditions in a block design.

Harvest Approximately 48 tubers were selected at random from each of four randomly
arranged field blocks

Handling Stored at 4°C for 4 weeks before sample preparation.

2. Part B - GC TOF-MS

ProjectG02006 Experiment2001

Item Details

Preparation Potato tuber disks (fresh weight, 200mg each) were excised from 3mm below
the tuber peel, perpendicular to the main tuber axis. Immediately after cutting,
disks were frozen in liquid nitrogen and kept frozen at -80°C before extraction.
Tuber slice homogenization and extraction in 1ml of prechilled water/meth-
anol/chloroform (2:5:2, vol/vol/vol).

Analysis machine GC TOF-MS. [5].

Type of result

Format of results

Other comments

Reference [4]

Respondent NwH [mailto:nwh@aber.ac.uk]

Date 2005/12/15 and subsequently updated until ...

3. Part B - GC Qudrupole-MS

ProjectG02006 Experiment2001

Item Details

Preparation

Analysis machine Quadrupole

Type of result

Format of results

Other comments
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Item Details

Reference

Respondent

Date

4. Part B - FIE-MS

ProjectG02006 Experiment2001

Item Details

Preparation Randomized extracts were diluted 1:50 in water/methanol (60:40, vol/vol), and
aliquots of 40µl were injected into a flow of 100µlmin1 water/methanol (60:40,
vol/vol) with a Waters Alliance 2690 liquid chromatography (LC) system.

Analysis machine FIE-MS was performed by using an LCT mass spectrometer (Micromass,
Manchester, U.K.). Randomized extracts were diluted 1:50 in water/methanol
(60:40 vol/vol), and aliquots of 40µl were injected into a flow of 100µl min1

water/methanol (60:40 vol/vol) using a Waters Alliance 2690 liquid chromato-
graphy (LC) system. The flow was split before the ion source to maintain a
flow of 50µl min1. Data were collected in positive mode and negative mode
every second (0.9-s scan time and 0.1-s interscan delay) for 2 min per sample
from m/z 65-1,000. Ionization conditions were set to 3,000-V capillary voltage,
80°C source temperature, 120°C desolvation temperature, 100-V RF lens, 30-V
sample cone voltage, and 10-V extraction cone voltage. The raw ion intensity
data were binned to nominal mass. (taken from http://www.pnas.org/cgi/con-
tent/full/0503955102/DC1#ST)

Type of result

Format of results

Other comments

Reference

Respondent NwH [mailto:nwh@aber.ac.uk]

Date 2005-12-15 and subsequently updated until ...
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4. G02006, 2003
1. Part A

Item Details

Project G02006

Experiment 2003

Laboratory MPIMPP/IBS, UWA

Contact Manfred Beckman mailto:meb@aber.ac.uk

Description

Rationale

Species Solanum tuberosum. See G02006, 2001, Part A

Growth See G02006, 2001, Part A

Harvest See G02006, 2001, Part A

Handling See G02006, 2001, Part A

2. Part B- GC TOF-MS

ProjectG02006 Experiment2003

Item Details

Preparation See G02006, 2001, Part B - GC TOF-MS

Analysis machine TOF See G02006, 2001, Part B - GC TOF-MS

Type of result

Format of results

Other comments

Reference See G02006, 2001, Part B - GC TOF-MS

Respondent NwH [mailto:nwh@aber.ac.uk]

Date 2005/12/15 and subsequently updated until ...

3. Part B - FIE-MS

ProjectG02006 Experiment2003

Item Details

Preparation See G02006, 2001, Part B - GC TOF-MS

Analysis machine FIE-MS. See G02006, 2001, Part B - FIE-MS

Type of result

Format of results

Other comments

Reference See G02006, 2001, Part B - GC TOF-MS

Respondent NwH [mailto:nwh@aber.ac.uk]

Date 2005/12/15 and subsequently updated until ...
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5. SCRI
To be completed
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6. RHUL
To be completed
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1. Introduction
This document contains the design for the ArMet-compliant database for the FSA
G03R0002 project. The design contained herein is based on description of the GC-MS
and LC-MS experiments carried out under FSA project G02001 by the SCRI.

2. Database design
The design for the database is based on the updated design for ArMet [1]. This design
will not be repeated here; it is assumed that the reader is familiar with the contents of the
ArMet re-design document.

The G03R0002 specific extensions and restrictions to the core ArMet design are depic-
ted in the diagram below and described in the following sub-sections.

Figure 1. G03 extensions and restrictions to ArMet

1



2.1. Describing experiments
The Study and DataSetStudy classes

The FSA project G02001 involved a number of experiments on potato led by SCRI.
Four of these experiments have been used to generate this design:

• GC-MS measuring non-polar metabolites.
• GC-MS measuring polar metabolites.
• LC-MS.
• LC-MS (set 2).

These four experiments will each be represented by an ArMet DataSetStudy. Each Data-
SetStudy will group the data sets that were produced by the experiment it represents.
Each experiment description includes contact information for the SCRI project leader.
To support this an extension to the ArMet design is required in the form of an associ-
ation between Study and an Experimentalist. This part of the diagram is described be-
low:

Classes. The Study and DataSetStudy classes in the diagram are equivalent to the classes
of the same names in the ArMet design.

Attributes. The attributes of the Study and DataSetStudy classes in the diagram are
equivalent to those of the same name and class in the ArMet design.

Associations. The DataSetStudy::DataSet and Study::DataSetStudy associations in the
diagram are equivalent to the same associations in the ArMet design. The
Study::Experimentalist association extends the ArMet design and is described below:

G03 Database Design
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Table 1. Additional Associations

Association Description

Study::Experimentalist 0..*::1..1 A Study must be associated with an Experiment-
alist to provide the contact details of the person
responsible for the experiment. An Experiment-
alist may be registered without association with a
particular Study, but may be associated with
multiple Studies for which he is responsible.

2.2. Describing protocols
The Protocol and Experimentalist classes

The G03R0002 database will implement neither the protocol repository nor the attribute
repository standard extensions to the design for ArMet. Documents describing the proto-
cols followed during the experiments included in the database will be maintained on the
project website and referenced from the database. Investigation into providing these pro-
tocol documents in a searchable format will be carried out if time permits. This part of
the diagram is described below:

Classes. The Protocol and Experimentalist classes in the diagram are equivalent to the
classes of the same names in the ArMet design.

Attributes. The attributes of the Protocol and Experimentalist classes in the diagram are
equivalent to those of the same name and class in the ArMet design.

Associations. The Protocol::Experimentalist association in the diagram is equivalent to
the same association in the ArMet design.

2.3. Biological source material
The Genotype, Germplasm and Source classes

During FSA G02001 potates were grown from seed/seed tuber stocks (Germplasm),
each of a single Genotype. Each different Germplasm stock was used to plant out four
separate field plots (Source).

Extensions and restrictions to the ArMet design to support the G03R0002 biological
source material descriptions are described below:

Classes. The Genotype, Germplasm and Source classes in the diagram are equivalent to
the classes of the same name in the ArMet design.

Additional Attributes. The attributes of the Genotype, Germplasm and Source classes
that extend those in the ArMet design are described below:

Table 2. Additional Attributes

Attribute Description

Genotype::typeSCRI The type of the genotype. (Optional, qualifier =
"genotype type")

Genotype::lineNumberSCRI A unique line number for the genotype assigned
by SCRI. (Optional)

Source::replicateNumber An SCRI replicate number assigned to the item
of source material. (Optional)

Source::fieldSection The SCRI field section in which the item of
source material was cultivated. (Optional)

Source::fieldPlot The SCRI field plot in which the item of source
material was cultivated. (Optional)

Use of Pre-existing Attributes. Specific G03 usage of the core ArMet attributes of the

G03 Database Design
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Genotype, Germplasm and Source classes is described below:

Table 3. Pre-existing Attributes

Attribute Description

Germplasm::germplasmID An auto-generated unique identifier for the ger-
mplasm.

Additional Associations. The additional Genotype::Germplasm and Ger-
mplasm::Source associations shown in the diagram are described below:

Table 4. Additional Associations

Association Description

Genotype::Germplasm 1..1::0..* A specialisation of the core Geno-
type::Germplasm association to restrict Ger-
mplasm to a single Genotype.

Germplasm::Source 1..*:0..4 A specialisation of the core Germplasm::Source
association to restrict the number of items of
Source material created from an item of Ger-
mplasm to a maximum of 4.

Use of Pre-existing Associations. Specific G03 usage of the core ArMet Geno-
type::Germplasm and Germplasm::Source associations is described below:

Table 5. Pre-existing Associations

Attribute Description

Genotype::Germplasm 1..*::0..* The ArMet core Genotype::Germplasm associ-
ation should be retained (by way of a view) to
enable ArMet core querying over the G03 data-
base.

Germplasm::Source 1..*:0..* The ArMet core Germplasm::Source association
should be retained (by way of a view) to enable
ArMet core querying over the G03 database.

Association Classes. The Germplasm::Source Protocol association class is equivalent
to the same association class in the ArMet design.

2.4. Samples
The Sample, CollectedSample, PreExtractionSample and PreparedSample classes.

From each field plot one biological replicate (CollectedSample) was taken. Each Collec-
tedSample was freeze-dried and milled to produce one PreExtractionSample from which
material was taken for all analyses.

Three aliquots were taken from each PreExtractionSample. One aliquot was extracted
for GC-MS analysis whilst the remaining two aliquots were extracted for LC-MS ana-
lysis. Each aliquot was extracted to produce a single PreparedSample.

Each PreparedSample for GC-MS analysis underwent fractionation to produce two fur-
ther PreparedSamples, one containing non-polar metabolites and one containing polar
metabolites. Each fraction then underwent derivatisation to produce a further Prepared-
Sample ready for analysis.

Extensions and restrictions to the ArMet design to support the G03R0002 sample de-
scriptions are described below:

Classes. The Sample, CollectedSample, PreExtractionSample and PreparedSample
classes in the diagram are equivalent to the classes of the same name in the ArMet
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design.

Additional Attributes. The attributes of the Sample, CollectedSample, PreExtraction-
Sample and PreparedSample classes that extend those in the ArMet design are described
below:

Table 6. Additional Attributes

Attribute Description

CollectedSample::tuberYield The conbined weight of all of the tubers harves-
ted from the SCRI field plot from which the Col-
lectedSample was taken. (Optional)

CollectedSample::numberOfTubers The number of tubers sampled to create the Col-
lectedSample. (Optional)

CollectedSample::weightOfTubers The combined weight of the tubers sampled to
create the CollectedSample. (Optional)

CollectedSample::comment A user defined comment on the creation of the
CollectedSample. (Optional)

Use of Pre-existing Attributes. Specific G03 usage of the core ArMet attributes of the
Sample, CollectedSample, PreExtractionSample and PreparedSample classes is de-
scribed below:

Table 7. Pre-existing Attributes

Attribute Description

CollectedSample::wetQuantity, Collected-
Sample::dryQuantity

Each G03 CollectedSample should record a
value for dryQuantity only.

PreExtractionSample::wetQuantity, PreExtrac-
tionSample::dryQuantity

Each G03 PreExtractionSample should record a
value for dryQuantity only.

Additional Associations. The additional Source::CollectedSample, Collected-
Sample::PreExtractionSample, PreExtractionSample::PreparedSample and Prepared-
Sample::PreparedSample associations shown in the diagram are described below:

Table 8. Additional Associations

Association Description

Source::CollectedSample 1..1:0..1 A specialisation of the core
Source::CollectedSample association to restrict
each CollectedSample to a single item of Source
material.

CollectedSample::PreExtractionSample 1..1:0..1 A specialisation of the core Collected-
Sample::PreExtractionSample association to re-
strict each PreExtractionSample to a single Col-
lectedSample.

PreExtractionSample::PreparedSample 0..1:0..3 A specialisation of the core PreExtraction-
Sample::PreparedSample association to restrict
the number of PreparedSamples that may be pro-
duced by extraction from a single PreExtraction-
Sample to a maximum of 3.

PreparedSample::PreparedSample 0..1:0..2 A specialisation of the core Prepared-
Sample::PreparedSample association to restrict
the number of PreparedSamples that may be pro-
duced from a single parent PreparedSample to a
maximum of 2 (note that this association is used
to describe fractionation and derivatisation of
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Association Description

GC-MS extracts).

Use of Pre-existing Associations. Specific G03 usage of the core ArMet
Source::CollectedSample, CollectedSample::PreExtractionSample, PreExtraction-
Sample::PreparedSample and PreparedSample::PreparedSample associations is de-
scribed below:

Table 9. Pre-existing Associations

Association Description

Source::CollectedSample 1..1:0..* The ArMet core Source::CollectedSample asso-
ciation should be retained (by way of a view) to
enable ArMet core querying over the G03 data-
base.

CollectedSample::PreExtractionSample 1..*:0..* The ArMet core Collected-
Sample::PreExtractionSample association should
be retained (by way of a view) to enable ArMet
core querying over the G03 database.

PreExtractionSample::PreparedSample 0..*:0..* The ArMet core PreExtraction-
Sample::PreparedSample association should be
retained (by way of a view) to enable ArMet
core querying over the G03 database.

PreparedSample::PreparedSample 0..1:0..* The ArMet core Prepared-
Sample::PreparedSample association should be
retained (by way of a view) to enable ArMet
core querying over the G03 database.

Association Classes. The Protocol association class on the Source::CollectedSample,
CollectedSample::PreExtractionSample, PreExtractionSample::PreparedSample and
PreparedSample::PreparedSample associations is equivalent to the association class of
the same name on the same associations in the ArMet design.

2.5. ChemicalAnalysis
The ChemicalAnalysis, Instrument and InstrumentComponent classes

Each final PreparedSample is subjected to one instance of chemical analysis.

Extensions and restrictions to the ArMet design to support the G03R0002 chemical ana-
lysis description are described below:

Classes. The ChemicalAnalysis, Instrument and InstrumentComponent classes in the
diagram are equivalent to the classes of the same name in the ArMet design.

Attributes. The attributes of the ChemicalAnalysis, Instrument and InstrumentCompon-
ent classes in the diagram are equivalent to those of the same name and class in the Ar-
Met design.

Additional Associations. The additional PreparedSample::DataSet association shown in
the diagram is described below:

Table 10. Additional Associations

Association Description

PreparedSample::DataSet 0..1::0..1 A specialisation of the core Prepared-
Sample::DataSet association to restrict each Pre-
paredSample to a single DataSet.

Use of Pre-existing Associations. Specific G03 usage of the core ArMet Prepared-
Sample::DataSet association is described below:
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Table 11. Pre-existing Associations

Attribute Description

PreparedSample::DataSet 0..1::0..* The ArMet core PreparedSample::DataSet asso-
ciation should be retained (by way of a view) to
enable ArMet core querying over the G03 data-
base.

Association Classes. The ChemicalAnalysis::Instrument Protocol association class and
the PreparedSample::DataSet ChemicalAnalysis association class are equivalent to the
association classes of the same name on the same associations in the ArMet design.

2.6. Data sets
The DataSet, DataPoint, MetaboliteListPoint, DataProcessing, ReferenceMetabolite
and MassSpectralDataPoint classes

Chemical analysis produces one raw data file (Excalibur .RAW) file per sample. This
contains the TIC and spectra for the sample. Data processing is performed on this raw
file to produce a metabolite peak list for the sample. Data processing is mostly per-
formed under automation in the Excalibur software, but some manual checking of the
peaks identified by Excalibur is performed on the output.

Extensions and restrictions to the ArMet design to support the G03R0002 data sets are
described below:

Additional Classes. The classes that extend those in the ArMet design are described be-
low:

Table 12. Additional Classes

Class Description

DataProcessing The protocol followed to create a metabolite
peak list from the raw data set for a sample. A
specialisation of Protocol.

ReferenceMetabolite A reference description for a metabolite used
when manually checking the results of automatic
peak identification during data processing.

MassSpectralDataPoint A data point within a mass spectrum.

Additional Attributes. The attributes of the DataSet, DataPoint, MetaboliteListPoint,
DataProcessing, ReferenceMetabolite and MassSpectralDataPointclasses that extend
those in the ArMet design are described below:

Table 13. Additional Attributes

Attribute Description

DataSet::comment A user-defined comment on the data set.
(Optional)

ReferenceMetabolite::identity The chemical identity for the reference metabol-
ite. (Required, Primary Key, qualifier = "metabol-
ite identifier")

ReferenceMetabolite::rt The expected retention time for the reference
metabolite. (Required)

ReferenceMetabolite::mass The mass of the characteristic ion for the refer-
ence metabolite. (Required)

MassSpectralDataPoint::mzValue The mass-to-charge ratio for the data point.
(Required, Partial Primary Key)
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Attribute Description

MassSpectralDataPoint::ionAbundance The absolute abundance of ions measured for the
mass-to-charge ratio. (Required, Partial Primary
Key)

Additional Associations. The additional DataProcessing::ReferenceMetabolite and Ref-
erenceMetabolite::MassSpectralDataPoint associations shown in the diagram are de-
scribed below:

Table 14. Additional Associations

Association Description

DataProcessing::ReferenceMetabolite 0..*:0..* A ReferenceMetabolite may be defined without
association with a particular DataProcessing pro-
tocol, but may be associated with many DataPro-
cessing protocols in which it is used. A DataPro-
cessing protocol may be defined without associ-
ation with a ReferenceMetabolite, but may be as-
sociated with multiple ReferenceMetabolites that
it employs.

ReferenceMetabolite::MassSpectralDataPoint
1..*:1..*

A MassSpectralDataPoint must be associated
with at least one ReferenceMetabolite whose
spectrum it appears in, but may be associated
with multiple ReferenceMetabolites whose spec-
tra it appears in. A ReferenceMetabolite must be
associated with at least one MassSpectralData-
Point to describe its mass spectrum, but may be
associated with multiple MassSpectralDataPoints
that comprise its mass spectrum.

Association Classes. The DataSet::DataSet DataProcessing association class is equival-
ent to the DataSet::DataSet Protocol class in the ArMet design.

2.7. A note on data types and controlled vocabularies
The following definitions should be followed for the non-basic data types used within
the design:

Table 15. Non-basic data types

Data type Definition

ControlledTerm This type is equivalent to the ControlledTerm
class described in the ArMet design.

URI An ASCII value that conforms to the Network
Working Group RFC 2396.

Date A date value that conforms to ISO 8601.

The following table documents additional controlled vocabularies that should be
provided in implementations for G03.

Table 16. Additional G03 controlled vocabularies

Qualifier Values

genotype type cultivar
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1. Introduction
This document contains the logical design for the metabolite library for the FSA
G03R0002 project. The design contained herein is based on data examples provided by
and discussions held with David Overy.

2. Metabolite library description
The following list provides a description of the data that will be held in the library:

• Each metabolite in the library will be associated with:
1. A primary chemical identity.
2. A chemical formula.
3. Its molecular weight.
4. Zero or one chemical structure diagram.
5. For each class (plants, mammals, fungi, bacteria) for which the metabolite is desig-

nated a primary metabolite, one or more references to supporting information.
6. A flag to indicate whether or not the metabolite has been measured from a stand-

ard.
7. Zero or more chemical synonyms.
8. Zero or more chemical pathways.
9. Zero or more references to further information.
10
.

Zero or more descriptions of biological source in which the metabolite may be
found. For each biological source description that is associated with a metabolite
there will be one or more references to evidence for the association.

• On submission to the database each metabolite will be assigned a set of predicted ad-
ducts. These adducts will be identified by a formula and a mass. Each prediction will
be annotated with information on the ESI ion mode in which it is predicted that the
adduct may be measured and the accuracy of the mass value attributed to the adduct.

• Each metabolite may also be associated with a set of measured adducts. These ad-
ducts will also be identified by a formula and parent ion mass. Each measurement will
be annotated with information on the ESI ion mode and the accuracy of the mass
measurement.

• Each measured adduct may optionally be associated with an ion tree providing the
full results of measurement by ESI-MSn.

Additional constraints on the metabolite library:

• References to additional information/supporting evidence may be literature refer-
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ences, online references or contact details for experimentalists.
• Biological source are described by a taxon designation and a sample description.

They are broadly classified into plants (embryophyta), mammals (mammalia), fungi
(fungiMetazoaGroup) and bacteria (bacteriaEubacteria).

• The same metabolite description including its set of predicted adducts and
(optionally) measured adducts will be associated with all items of biological source in
which the metabolite is expected to occur. To confirm: Once an adduct has been
measured for a metabolite the resulting ion tree will be associated with that metabolite
and, thereby, with all of the biological source with which that metabolite is associ-
ated, regardless of the provenance of the sample from which it has been measured.

• As an adduct when produced from different metabolites may fragment in different
ways, ion trees should be associated with metabolite/adduct relationships and not
simply with adducts.

• A particular ion may appear multiple times within an ion tree. In addition, a particular
ion may appear multiple times within a generation of a tree, i.e. as a fragment of dif-
ferent ions in the previous generation.

3. Database design
The design for the metabolite library is depicted in the diagram below and described in
the following sub-sections.

Figure 1. Metabolite Library Design

Classes. The classes in the diagram are defined below:

Table 1. Classes

Class Description

Metabolite A metabolite that is held in the library.

Synonym A metabolite synonym.

Pathway A metabolite pathway.

Authority A reference to further information on a metabol-
ite.

Online A specialisation of Authority to represent online
references.

Literature A specialisation of Authority to represent literat-
ure references.
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Class Description

Contact A specialisation of Authority to represent experi-
mentalist contact details.

ReferenceSet A set of authorities.

BiologicalSource Some biological source material.

Embryophyta A specialisation of BiologicalSource to represent
plants.

Mammalia A specialisation of BiologicalSource to represent
mammals.

FungiMetazoaGroup A specialisation of BiologicalSource to represent
fungi.

BacteriaEubacteria A specialisation of BiologicalSource to represent
bacteria.

Adduct An adduct of a metabolite.

Prediction The conditions under which it is predicted that a
particular Adduct (formula,mass) may be pro-
duced from a particular Metabolite.

Measurement The conditions under which a particular Adduct
(formula,mass) was measured from a particular
Metabolite.

Mass A daughter ion produced from a particular Ad-
duct of a particular Metabolite using ESI-MSn

under particular Measurement conditions.

Attributes. The attributes of these classes are described below:

Table 2. Attributes

Attribute Description

Metabolite::metaboliteID A unique auto-generated identifier for the meta-
bolite. (Required, Primary Key)

Metabolite::chemicalName The primary chemical identity for the metabolite.
(Required).

Metabolite::formula The chemical formula for the metabolite.
(Required)

Metabolite::molecularWeight The molecular weight of the metabolite.
(Required, Derived)

Metabolite::chemdrawFile A reference to a Chemdraw file containing a de-
piction of the chemical structure of the metabol-
ite. (Optional)

Metabolite::measuredInStandard A flag to indicate that the metabolite has been
measured from a standard. (Required, Default =
false)

Synonym::name A metabolite identity or synonym. (Required,
Primary Key)

Pathway::identity An identifier for a metabolite pathway.
(Required, Primary Key)

Authority::authorityID A unique auto-generated identifier for a refer-
ence. (Required, Primary Key)

Online::link An online reference. (Required)

Literature::reference A literature reference. (Required)

Contact::details The email address for an experimentalist.
(Required)

G03 Metabolite Library Logical Design
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Attribute Description

ReferenceSet::setID A unique auto-generated identifier for the refer-
ence set. (Required, Primary Key)

BiologicalSource::taxon The taxonomic designation for a biological
source. (Required, Partial Primary Key)

BiologicalSource::sample A type of sample for the biological source.
(Required, Partial Primary Key)

Embryophyta::taxon (overrides Biological-
Source::taxon)

The taxonomic designation for the plant.

Embryophyta::sample (overrides Biological-
Source::sample)

A type of plant sample.

Mammalia::taxon (overrides Biological-
Source::taxon)

The taxonomic designation for the mammal.

Mammalia::sample (overrides Biological-
Source::sample)

A type of mammal sample.

FungiMetazoaGroup::taxon (overrides Biologic-
alSource::taxon)

The taxonomic designation for the fungus.

FungiMetazoaGroup::sample (overrides Biolo-
gicalSource::sample)

A type of fungus sample.

BacteriaEubacteria::taxon (overrides Biolgical-
Source::taxon)

The taxonomic designation for the bacteria.

BacteriaEubacteria::sample (overrides Biologic-
alSource::sample)

A type of bacteria sample.

Adduct::formula The chemical formula for the adduct. (Required,
Partial Primary Key)

Adduct::mass The mass of the adduct. (Required, Partial
Primary Key)

Prediction::ionMode The ion mode in which it is predicted that the
Adduct may be produced from the Metabolite.
(Required)

Prediction::accuracy The accuracy of the mass value for this predic-
tion. (Required)

Measurement::treeID A unique auto-generated identifier for the meas-
urement. (Required, Primary Key)

Measurement::ionMode The ion mode under which the Adduct was
measured from the Metabolite. (Required)

Measurement::accuracy The accuracy of the mass value as measured.
(Required)

Mass::internalTreeID An auto-generated unique identifier for the ion
within the ion tree in which it appears.
(Required, Partial Primary Key)

Mass::mass The mass value of the ion. (Required)

Mass::status The status of the mass within the ion tree.
(Required)

Mass::treeLevel The level of the ion tree at which this mass oc-
curs. (Required)

Note
• Metabolite::molecularWeight is derived from Metabolite::formula and a

chart of the weights of individual atoms available from David Overy.
• The primary keys for the Online, Literature and Contact tables will be

the parent Authority primary key.
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• The primary key for the Prediction table will comprise the foreign keys
from Adduct and Metabolite.

• The primary key for the Mass table will comprise Mass::internalTreeID
and the foreign key from Measurement.

• Values stored for Mass::treeLevel should be > 1.

Associations. The associations in the diagram are described below:

Table 3. Associations

Association Description

Metabolite::Synonym 0..*::0..* A metabolite Synonym may be defined without
association with a Metabolite or may be associ-
ated with multiple Metabolites. A Metabolite
may be defined without associated Synonyms,
but may be associated with multiple Synonyms.

Metabolite::Pathway 0..*::0..* A Pathway may be defined without association
with a Metabolite, but may be associated with
multiple Metabolites that it contains. A Metabol-
ite may be defined without an associated Path-
way, but may be associated with multiple Path-
ways in which it occurs.

Authority::Online

Authority::Literature

Authority::Contact

Each Authority must be an Online reference, a
Literature reference or a Contact.

Each Authority may only be associated with one
Online reference, Literature reference or Con-
tact.

ReferenceSet::Authority 0..*::1..* An Authority may be defined without being part
of a ReferenceSet, but may belong to multiple
ReferenceSets. A ReferenceSet must contain at
least one Authority and may contain multiple
Authorities.

Metabolite::ReferenceSet 0..1::0..1
(IsPrimaryEmbryophyta, IsPrimaryMammalia,
IsPrimaryFungiMetazoaGroup, IsPrimaryBac-
teriaEubacteria)

A ReferenceSet may be defined for purposes
other than primary metabolite designation, but
may be used to provide evidence for a single
primary metabolite designation. A Metabolite
may be defined without designation as a primary
metabolite of any class, but may be designated a
primary metabolite in any or all of the four
classes and be associated with a ReferenceSet to
provide evidence for each.

Metabolite::ReferenceSet 0..1::0..1
(DescribedBy)

A ReferenceSet may be defined for purposes
other than Metabolite description, but may be
used to describe a Metabolite. A Metabolite may
be defined without association with a Reference-
Set, but may be associated with one Reference-
Set that describes it.

Metabolite::BiologicalSource 0..*::0..* A BiologicalSource may be defined without as-
sociation with a Metabolite, but may be associ-
ated with multiple Metabolites that it contains. A
Metabolite may be defined without association
with a BiologicalSource (where the Metabolite
has been measured from a standard and no fur-
ther information is available), but may be associ-
ated with multiple BiologicalSource in which it
occurs.

BiologicalSource::Embryophyta Each BiologicalSource must be associated with
an Embryophyta, a Mammalia, a FungiMetazo-
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Association Description

BiologicalSource::Mammalia

BiologicalSource::FungiMetazoaGroup

BiologicalSource::BacteriaEubacteria

aGroup or a BacteriaEubacteria.

Each BiologicalSource may only be associated
with one Embryophyta, Mammalia, FungiMeta-
zoaGroup or BacteriaEubacteria.

Metabolite::Adduct 0..*::1..* (predictedPartOf) An Adduct may be defined without being a pre-
dicted part of a Metabolite but may be a pre-
dicted part of multiple Metabolites from which it
can be produced. A Metabolite must be associ-
ated with at least one predicted Adduct and may
be associated with multiple predicted Adducts
that can be produced from it.

Metabolite::Adduct 0..*::0..* (measuredPartOf) An Adduct may be defined without being a
measured part of a Metabolite but may be a
measured part of multiple Metabolites from
which it can be produced. A Metabolite may not
be associated with any measured Adducts, but
may be associated with multiple Adducts that
have been measured from it.

Measurement::Mass 0..1::0..*

Mass::Mass 0..1::0..*

A Mass must be associated with exactly one of a
parent Mass or a Measurement description.
Masses that are direct fragments of the parent
ion of an Adduct must be associated with the
Measurement description for that Adduct. Other
Masses within an ion tree must be associated
with parent Masses.

An Measurement description need not be associ-
ated with any Masses (i.e. if the parent ion has
been measured, but not fragmented), but may be
associated with multiple Masses that represent
direct fragments of the parent ion measured. A
Mass need not be associated with a Measurement
description, but may be associated with exactly
one for which it provides additional measure-
ment information.

A child Mass need not be associated with a par-
ent mass (i.e. if it is a direct fragment of the par-
ent ion), but may be associated with exactly one
parent Mass. A parent Mass need not have chil-
dren, but may have multiple children.

Note
• A Metabolite that is not associated with any BiologicalSource and is not

designated as a primary metabolite for any class must contain the value
true for its measuredInStandard attribute. Conversely, a Metabolite that
contains the value false for its measuredInStandard attribute must be as-
sociated with at least one BiologicalSource and/or be designated a
primary metabolite for at least one class. (A Metabolite may contain the
value true for its measuredInStandard attribute and at the same time be
associated with one or more BiologicalSource and/or be designated a
primary metabolite for at least one class.)

• A Metabolite that contains the value true for its measuredInStandard at-
tribute must be associated with Adducts that are MeasuredPartsOf it.

3.1. A note on data types
The following definitions should be followed for the non-basic data types used within
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the design:

Table 4. Non-basic data types

Data type Definition

URI An ASCII value that conforms to the Network
Working Group RFC 2396.

PlantTaxa An extendable (following curation) enumeration
of the following values: "Arabidopsis thaliana",
"Brachypodium distachyon", "Oryzae sativa",
"Hordeum vulgare", "Solanum tuberosum"

PlantSample An extendable (following curation) enumeration
of the following values: "leaf", "stem", "root",
"shoot", "bark", "flower", "seed", "fruit", "tuber",
"rhizome", "bulb", "corm"

MammalTaxa An extendable (following curation) enumeration
of the following values: "Homo sapien", "Canis
familiaris", "Rattus"

MammalSample An extendable (following curation) enumeration
of the following values: "blood", "urine", "fae-
ces", "bile", "CSF"

FungusTaxa An extendable (following curation) enumeration
of the following values: "Magnaporthe grisea"

FungusSample An extendable (following curation) enumeration
of the following values: "in vitro", "in situ"

BacteriaTaxa An extendable (following curation) enumeration.
No initial values available.

BacteriaSample An extendable (following curation) enumeration.
No initial values available.

IonMode An enumeration of the following values: "negat-
ive", "positive".

Accuracy An enumeration of the following values: "accur-
ate", "nominal".

MassStatus An enumeration of the following values: "ma-
jor", "minor", "possible".
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1. Introduction
This document contains the logical design for the metabolite library for the FSA
G03R0002 project. The design contained herein is based on data examples provided by
and discussions held with David Overy.

2. Metabolite library description
The following list provides a description of the data that will be held in the library:

• Each metabolite in the library will be associated with:
1. A primary chemical identity.
2. A chemical formula.
3. Its molecular weight.
4. Zero or one chemical structure diagram.
5. For each class (plants, mammals, fungi, bacteria) for which the metabolite is desig-

nated a primary metabolite, one or more references to supporting information.
6. A flag to indicate whether or not the metabolite has been measured from a stand-

ard.
7. Zero or more chemical synonyms.
8. Zero or more chemical pathways.
9. Zero or more references to further information.
10
.

Zero or more descriptions of biological source in which the metabolite may be
found. For each biological source description that is associated with a metabolite
there will be one or more references to evidence for the association.

• On submission to the database each metabolite will be assigned a set of predicted ad-
ducts. These adducts will be identified by a formula and a mass. Each prediction will
be annotated with information on the ESI ion mode in which it is predicted that the
adduct may be measured and the accuracy of the mass value attributed to the adduct.

• Each metabolite may also be associated with a set of measured adducts. These ad-
ducts will also be identified by a formula and parent ion mass. Each measurement will
be annotated with information on the ESI ion mode and the accuracy of the mass
measurement.

• Each measured adduct may optionally be associated with an ion tree providing the
full results of measurement by ESI-MSn.

Additional constraints on the metabolite library:

• References to additional information/supporting evidence may be literature refer-
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ences, online references or contact details for experimentalists.
• Biological source are described by a taxon designation and a sample description.

They are broadly classified into plants (embryophyta), mammals (mammalia), fungi
(fungiMetazoaGroup) and bacteria (bacteriaEubacteria).

• The same metabolite description including its set of predicted adducts and
(optionally) measured adducts will be associated with all items of biological source in
which the metabolite is expected to occur. To confirm: Once an adduct has been
measured for a metabolite the resulting ion tree will be associated with that metabolite
and, thereby, with all of the biological source with which that metabolite is associ-
ated, regardless of the provenance of the sample from which it has been measured.

• As an adduct when produced from different metabolites may fragment in different
ways, ion trees should be associated with metabolite/adduct relationships and not
simply with adducts.

• A particular ion may appear multiple times within an ion tree. In addition, a particular
ion may appear multiple times within a generation of a tree, i.e. as a fragment of dif-
ferent ions in the previous generation.

3. Database design
The design for the metabolite library is depicted in the diagram below and described in
the following sub-sections.

Figure 1. Metabolite Library Design

Classes. The classes in the diagram are defined below:

Table 1. Classes

Class Description

Metabolite A metabolite that is held in the library.

Synonym A metabolite synonym.

Pathway A metabolite pathway.

Authority A reference to further information on a metabol-
ite.

Online A specialisation of Authority to represent online
references.

Literature A specialisation of Authority to represent literat-
ure references.

G03 Metabolite Library Logical Design

2



Class Description

Contact A specialisation of Authority to represent experi-
mentalist contact details.

ReferenceSet A set of authorities.

BiologicalSource Some biological source material.

Embryophyta A specialisation of BiologicalSource to represent
plants.

Mammalia A specialisation of BiologicalSource to represent
mammals.

FungiMetazoaGroup A specialisation of BiologicalSource to represent
fungi.

BacteriaEubacteria A specialisation of BiologicalSource to represent
bacteria.

Adduct An adduct of a metabolite.

Prediction The conditions under which it is predicted that a
particular Adduct (formula,mass) may be pro-
duced from a particular Metabolite.

Measurement The conditions under which a particular Adduct
(formula,mass) was measured from a particular
Metabolite.

Mass A daughter ion produced from a particular Ad-
duct of a particular Metabolite using ESI-MSn

under particular Measurement conditions.

Attributes. The attributes of these classes are described below:

Table 2. Attributes

Attribute Description

Metabolite::metaboliteID A unique auto-generated identifier for the meta-
bolite. (Required, Primary Key)

Metabolite::chemicalName The primary chemical identity for the metabolite.
(Required).

Metabolite::formula The chemical formula for the metabolite.
(Required)

Metabolite::molecularWeight The molecular weight of the metabolite.
(Required, Derived)

Metabolite::chemdrawFile A reference to a Chemdraw file containing a de-
piction of the chemical structure of the metabol-
ite. (Optional)

Metabolite::measuredInStandard A flag to indicate that the metabolite has been
measured from a standard. (Required, Default =
false)

Synonym::name A metabolite identity or synonym. (Required,
Primary Key)

Pathway::identity An identifier for a metabolite pathway.
(Required, Primary Key)

Authority::authorityID A unique auto-generated identifier for a refer-
ence. (Required, Primary Key)

Online::link An online reference. (Required)

Literature::reference A literature reference. (Required)

Contact::details The email address for an experimentalist.
(Required)
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Attribute Description

ReferenceSet::setID A unique auto-generated identifier for the refer-
ence set. (Required, Primary Key)

BiologicalSource::taxon The taxonomic designation for a biological
source. (Required, Partial Primary Key)

BiologicalSource::sample A type of sample for the biological source.
(Required, Partial Primary Key)

Embryophyta::taxon (overrides Biological-
Source::taxon)

The taxonomic designation for the plant.

Embryophyta::sample (overrides Biological-
Source::sample)

A type of plant sample.

Mammalia::taxon (overrides Biological-
Source::taxon)

The taxonomic designation for the mammal.

Mammalia::sample (overrides Biological-
Source::sample)

A type of mammal sample.

FungiMetazoaGroup::taxon (overrides Biologic-
alSource::taxon)

The taxonomic designation for the fungus.

FungiMetazoaGroup::sample (overrides Biolo-
gicalSource::sample)

A type of fungus sample.

BacteriaEubacteria::taxon (overrides Biolgical-
Source::taxon)

The taxonomic designation for the bacteria.

BacteriaEubacteria::sample (overrides Biologic-
alSource::sample)

A type of bacteria sample.

Adduct::formula The chemical formula for the adduct. (Required,
Partial Primary Key)

Adduct::mass The mass of the adduct. (Required, Partial
Primary Key)

Prediction::ionMode The ion mode in which it is predicted that the
Adduct may be produced from the Metabolite.
(Required)

Prediction::accuracy The accuracy of the mass value for this predic-
tion. (Required)

Measurement::treeID A unique auto-generated identifier for the meas-
urement. (Required, Primary Key)

Measurement::ionMode The ion mode under which the Adduct was
measured from the Metabolite. (Required)

Measurement::accuracy The accuracy of the mass value as measured.
(Required)

Mass::internalTreeID An auto-generated unique identifier for the ion
within the ion tree in which it appears.
(Required, Partial Primary Key)

Mass::mass The mass value of the ion. (Required)

Mass::status The status of the mass within the ion tree.
(Required)

Mass::treeLevel The level of the ion tree at which this mass oc-
curs. (Required)

Note
• Metabolite::molecularWeight is derived from Metabolite::formula and a

chart of the weights of individual atoms available from David Overy.
• The primary keys for the Online, Literature and Contact tables will be

the parent Authority primary key.

G03 Metabolite Library Logical Design

4



• The primary key for the Prediction table will comprise the foreign keys
from Adduct and Metabolite.

• The primary key for the Mass table will comprise Mass::internalTreeID
and the foreign key from Measurement.

• Values stored for Mass::treeLevel should be > 1.

Associations. The associations in the diagram are described below:

Table 3. Associations

Association Description

Metabolite::Synonym 0..*::0..* A metabolite Synonym may be defined without
association with a Metabolite or may be associ-
ated with multiple Metabolites. A Metabolite
may be defined without associated Synonyms,
but may be associated with multiple Synonyms.

Metabolite::Pathway 0..*::0..* A Pathway may be defined without association
with a Metabolite, but may be associated with
multiple Metabolites that it contains. A Metabol-
ite may be defined without an associated Path-
way, but may be associated with multiple Path-
ways in which it occurs.

Authority::Online

Authority::Literature

Authority::Contact

Each Authority must be an Online reference, a
Literature reference or a Contact.

Each Authority may only be associated with one
Online reference, Literature reference or Con-
tact.

ReferenceSet::Authority 0..*::1..* An Authority may be defined without being part
of a ReferenceSet, but may belong to multiple
ReferenceSets. A ReferenceSet must contain at
least one Authority and may contain multiple
Authorities.

Metabolite::ReferenceSet 0..1::0..1
(IsPrimaryEmbryophyta, IsPrimaryMammalia,
IsPrimaryFungiMetazoaGroup, IsPrimaryBac-
teriaEubacteria)

A ReferenceSet may be defined for purposes
other than primary metabolite designation, but
may be used to provide evidence for a single
primary metabolite designation. A Metabolite
may be defined without designation as a primary
metabolite of any class, but may be designated a
primary metabolite in any or all of the four
classes and be associated with a ReferenceSet to
provide evidence for each.

Metabolite::ReferenceSet 0..1::0..1
(DescribedBy)

A ReferenceSet may be defined for purposes
other than Metabolite description, but may be
used to describe a Metabolite. A Metabolite may
be defined without association with a Reference-
Set, but may be associated with one Reference-
Set that describes it.

Metabolite::BiologicalSource 0..*::0..* A BiologicalSource may be defined without as-
sociation with a Metabolite, but may be associ-
ated with multiple Metabolites that it contains. A
Metabolite may be defined without association
with a BiologicalSource (where the Metabolite
has been measured from a standard and no fur-
ther information is available), but may be associ-
ated with multiple BiologicalSource in which it
occurs.

BiologicalSource::Embryophyta Each BiologicalSource must be associated with
an Embryophyta, a Mammalia, a FungiMetazo-

G03 Metabolite Library Logical Design

5



Association Description

BiologicalSource::Mammalia

BiologicalSource::FungiMetazoaGroup

BiologicalSource::BacteriaEubacteria

aGroup or a BacteriaEubacteria.

Each BiologicalSource may only be associated
with one Embryophyta, Mammalia, FungiMeta-
zoaGroup or BacteriaEubacteria.

Metabolite::Adduct 0..*::1..* (predictedPartOf) An Adduct may be defined without being a pre-
dicted part of a Metabolite but may be a pre-
dicted part of multiple Metabolites from which it
can be produced. A Metabolite must be associ-
ated with at least one predicted Adduct and may
be associated with multiple predicted Adducts
that can be produced from it.

Metabolite::Adduct 0..*::0..* (measuredPartOf) An Adduct may be defined without being a
measured part of a Metabolite but may be a
measured part of multiple Metabolites from
which it can be produced. A Metabolite may not
be associated with any measured Adducts, but
may be associated with multiple Adducts that
have been measured from it.

Measurement::Mass 0..1::0..*

Mass::Mass 0..1::0..*

A Mass must be associated with exactly one of a
parent Mass or a Measurement description.
Masses that are direct fragments of the parent
ion of an Adduct must be associated with the
Measurement description for that Adduct. Other
Masses within an ion tree must be associated
with parent Masses.

An Measurement description need not be associ-
ated with any Masses (i.e. if the parent ion has
been measured, but not fragmented), but may be
associated with multiple Masses that represent
direct fragments of the parent ion measured. A
Mass need not be associated with a Measurement
description, but may be associated with exactly
one for which it provides additional measure-
ment information.

A child Mass need not be associated with a par-
ent mass (i.e. if it is a direct fragment of the par-
ent ion), but may be associated with exactly one
parent Mass. A parent Mass need not have chil-
dren, but may have multiple children.

Note
• A Metabolite that is not associated with any BiologicalSource and is not

designated as a primary metabolite for any class must contain the value
true for its measuredInStandard attribute. Conversely, a Metabolite that
contains the value false for its measuredInStandard attribute must be as-
sociated with at least one BiologicalSource and/or be designated a
primary metabolite for at least one class. (A Metabolite may contain the
value true for its measuredInStandard attribute and at the same time be
associated with one or more BiologicalSource and/or be designated a
primary metabolite for at least one class.)

• A Metabolite that contains the value true for its measuredInStandard at-
tribute must be associated with Adducts that are MeasuredPartsOf it.

3.1. A note on data types
The following definitions should be followed for the non-basic data types used within
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the design:

Table 4. Non-basic data types

Data type Definition

URI An ASCII value that conforms to the Network
Working Group RFC 2396.

PlantTaxa An extendable (following curation) enumeration
of the following values: "Arabidopsis thaliana",
"Brachypodium distachyon", "Oryzae sativa",
"Hordeum vulgare", "Solanum tuberosum"

PlantSample An extendable (following curation) enumeration
of the following values: "leaf", "stem", "root",
"shoot", "bark", "flower", "seed", "fruit", "tuber",
"rhizome", "bulb", "corm"

MammalTaxa An extendable (following curation) enumeration
of the following values: "Homo sapien", "Canis
familiaris", "Rattus"

MammalSample An extendable (following curation) enumeration
of the following values: "blood", "urine", "fae-
ces", "bile", "CSF"

FungusTaxa An extendable (following curation) enumeration
of the following values: "Magnaporthe grisea"

FungusSample An extendable (following curation) enumeration
of the following values: "in vitro", "in situ"

BacteriaTaxa An extendable (following curation) enumeration.
No initial values available.

BacteriaSample An extendable (following curation) enumeration.
No initial values available.

IonMode An enumeration of the following values: "negat-
ive", "positive".

Accuracy An enumeration of the following values: "accur-
ate", "nominal".

MassStatus An enumeration of the following values: "ma-
jor", "minor", "possible".
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1. Introduction
This document contains the physical design for the metabolite library for the FSA
G03R0002 project. The design contained herein is based on data examples provided by
and discussions held with David Overy and implements the metabolite library logical
design.

2. Designing base tables
The base tables for the library are written in Oracle SQL DDL. All tables have been nor-
malised and checked for entity and referential integrity. The following notes describe
the decisions made during the design of these tables.

Naming conventions. The following naming conventions have been followed in the
production of the base tables:

Table 1. Database naming conventions

Element Naming convention

Tables The name from the logical design appended with
"_t".

Intersection tables The names (or abbreviations of the names) of the
two tables concatenated and appended with "_i".
(Intersection table names are documented be-
low.)

Constraints The table name and attribute or table (where ap-
plicable) to which the constraint applies separ-
ated by "_" and appended with a description of
the constraint. Descriptions are as follows:

• Not null constraints: "_notnull"
• Check constraints: "_check"
• Primary key constraints: "_pk"
• Foreign key constraints: "_fk"

Sequences The name of the table and attribute that the se-
quence will be used to populate separated by "_"
and appended with "_seq".
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Element Naming convention

Triggers The name of the table on which the trigger will
operate appended with a description of the trig-
ger and then appended with "_tr". Common de-
scriptions are as follows, others are documented
below:

• Automatic generation of primary keys:
"_autoPK"

• Checks on attribute values prior to population:
"_populate"

• Implementation of ON UPDATE CASCADE:
"_updatecascade"

Stored functions and procedures Names that describe their function - documented
below.

Packages Names that describe their function - documented
below.

Indexes The table and attribute names to which the index
applies separated by "_" and appended with
"_ind".

Tables. The following notes describe the implementation of the base tables:

Table 2. Notes on base table design

Table Notes

Authority_t This table implements the Authority, Contact,
Literature and Online tables from the logical
design. Each row in the table contains the Au-
thority::authorityID, Contact::details, Literat-
ure::reference and Online::link attributes. The
authorityID attribute is mandatory whilst the
contactDetails, LiteratureReference and on-
lineLink attributes are optional. Whilst this table
will be sparse, as each row should contain only
one type of reference, the number of references
to be stored as a whole makes this is an accept-
able trade-off for efficiency in data retrieval.

An additional mandatory display attribute has
been added to the table. This attribute is de-
signed to hold values that should be displayed in
the interface as hotlinks to the references. For
contacts this will be an identifier for the contact
that when selected will open an email applica-
tion. For online references this will be the name
of the resource that is referenced by the URL.
For literature references the value of the attribute
defaults to "Literature references". It is anticip-
ated that this will link to a separate page popu-
lated with the details of the reference(s).

The literatureReference attribute has a maximum
length of 200 and the display attribute has a
maximum length of 50.

A sequence and trigger have been implemented
to populate the authorityID attribute.

A trigger has been implemented to ensure that
only one of contactDetails, literatureReference
and onlineLink are populated in any one row of
the table. This trigger also supplies the default
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Table Notes

value for the display attribute when a literature
reference is provided and checks for the presence
of a value for the display attribute when a con-
tact or online reference is provided.

ReferenceSet_t This table implements the ReferenceSet table
from the logical design.

A sequence and trigger have been implemented
to populate the setID attribute.

RefSetAuthority_i This table implements the aggregation associ-
ation between ReferenceSet and Authority from
the logical design.

ON DELETE CASCADE has been implemented
on the foreign key from ReferenceSet.

Metabolite_t This table implements the Metabolite table from
the logical design and the associations between
the Metabolite table and the ReferenceSet table.

There are five associations between the Metabol-
ite table and the ReferenceSet table which rep-
resent the Metabolite's designation as a primary
metabolite in one of the four classes and an au-
thoratative description of the Metabolite. These
associations are all specified as 0..1::0..1 in the
logical design. All of these associations have
been implemented as foreign keys to the Refer-
enceSet table in the Metabolite table so that the
meaning of each association with respect to each
metabolite may be maintained within the Meta-
bolite table and, thereby, facilitate more efficient
searching by Metabolite (which will be more
common than by ReferenceSet). Two triggers
(Metabolite_setIDupdate_tr and Metabol-
ite_setIDdelete_tr) have been written to delete
referenced sets from the ReferenceSet table on
update of a setID within the Metabolite table or
on deletion of a metabolite from the Metabolite
table.

The chemicalName attribute will be required to
store greek letters. As reading UTF-16 character
codes from Oracle database fields into Java is
not straightforward (See notes in
g03r0002rep/code/Metabolite/Prototyping/Chara
cterEncoding) it has been decided that the chem-
icalName field will be implemented as a
VARCHAR2 field and the xhtml formatted char-
acter codes for the greek letters will be coded in-
to the chemical names prior to storage in this
field.

The molecularWeight attribute is a derived at-
tribute whose value can be calculated from the
value from the formula attribute and the atomic
weights available from the periodic table of the
elements. As the molecular weight is a very
stable attribute of a metabolite is has been de-
cided that it would be most efficient for this de-
rived value to be calculated and stored on insert
or update of a metabolite to the database rather
than each time that it is retrieved. To implement
this an additional table called WeightLookup_t
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Table Notes

has been implemented that contains two fields:
atomicCode (implemented as VARCHAR2(5))
and weight (implemented as NUMBER). Both
attributes are required and atomicCode is the
primary key. This table will be populated with
the atom codes and atomic weights from the
periodic table of the elements. To perform the
derivation of the molecular weight for a metabol-
ite a Java stored procedure has been written and
loaded into the database. The Java class is called
MolecularWeight and the method is called calcu-
lateWeight. This procedure takes a chemical for-
mula, parses it into atom codes and their quantit-
ies, looks up the atom weights in the
WeightLookup_t table and calculates the total
molecular weight. A wrapper function called de-
rive_weight has been implemented to provide a
call interface to this function and a trigger called
Metabolite_deriveWeight_tr has been implemen-
ted to call the function on insert or update of the
table. Note that this implementation relies on the
existence of properly formatted atomic codes in
the WeightLookup_t table (i.e. an initial upper-
case character optionally followed by a single
lowercase character) and the provision of chem-
ical formulae that contain the same.

A sequence and trigger have been implemented
to populate the metaboliteID attribute.

The chemicalName attribute has a maximum
length of 150 and the formula attribute has a
maximum length of 50.

An additional optional String attribute called
"MID" has been implemented to store the user-
defined metabolite identifiers included in the
data provided for upload. This attribute has a
maximum length of 20. It is included solely to
ease data upload.

Synonym_t This table implements the Synonym table from
the logical design.

As with the chemicalName attribute of Metabol-
ite_t (described above) the name attribute will be
required to store greek letters. As reading UTF-
16 character codes from Oracle database fields
into Java is not straightforward (See notes in
g03r0002rep/code/Metabolite/Prototyping/Chara
cterEncoding) it has been decided that the name
field will be implemented as a VARCHAR2
field and the xhtml formatted character codes for
the greek letters will be coded into the chemical
names prior to storage in this field.

The name attribute has a maximum length of
200.

MetSyn_i This table implements the Metabolite::Synonym
association from the logical design.

ON DELETE CASCADE has been implemented
on the foreign key from Metabolite_t.

Pathway_t This table implements the Pathway table from
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Table Notes

the logical design.

As with the chemicalName attribute of Metabol-
ite_t (described above) the identity attribute will
be required to store greek letters. As reading
UTF-16 character codes from Oracle database
fields into Java is not straightforward (See notes
in
g03r0002rep/code/Metabolite/Prototyping/Chara
cterEncoding) it has been decided that the iden-
tity field will be implemented as a VARCHAR2
field and the xhtml formatted character codes for
the greek letters will be coded into the chemical
names prior to storage in this field.

The identity attribute has a maximum length of
150.

MetPath_i This table implements the Metabolite::Pathway
association from the logical design.

ON DELETE CASCADE has been implemented
on the foreign key from Metabolite_t.

Class_t This table forms part of the implementation of
the BiologicalSource table from the logical
design. It is designed as a domain table for the
class attributes of the Taxon_t, Sample_t and
BiologicalSource_t tables (described below). In-
formation that is required about a biological
source class is an external reference to an online
taxonomy entry that describes the class and a
value that should be used to represent the class in
the library interface. When classes are displayed
in the interface the display value should be
presented as a hotlink to the external reference.

The table contains two attributes: externalRefer-
ence of type VARCHAR2 which should contain
the URI to an online taxonomy entry and display
also of type VARCHAR2 which should contain
the value used to represent the class in the inter-
face. Both attributes are required and extern-
alReference is the primary key.

A trigger has been written that implements ON
UPDATE CASCADE on foreign keys to this ta-
ble in the Taxon_t, Sample_t and Biological-
Source_t tables described below.

The externalReference attribute has a maximum
length of 200 and the display attribute has a
maximum length of 20.

Taxon_t This table forms part of the implementation of
the BiologicalSource table from the logical
design. It is designed as a domain table for the
taxon attribute of the BiologicalSource_t table
(described below). Information that is required
about a taxon is an external reference to an on-
line taxonomy entry that provides further in-
formation about the taxon, the genus, species and
class of the taxon (used for searching - note that
a taxon may represent a subspecies, line etc. of
the species used in its description) and a value
that should be used to represent the taxon in the
library interface. When a taxon is displayed in
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Table Notes

the interface the display value should be presen-
ted as a hotlink to the external reference.

The table contains five attributes: externalRefer-
ence of type VARCHAR2 which should contain
the URI to an online taxonomy entry, genus of
type VARCHAR2 which should contain the
genus name, species of type VARCHAR2 which
should contain the species name, class which is a
foreign key to the Class_t table (described
above) and display of type VARCHAR2 which
should contain the value used to represent the
taxon in the interface. All attributes are required
and externalReference is the primary key.

A trigger has been written that implements ON
UPDATE CASCADE on the foreign key to this
table in the BiologicalSource_t table described
below.

The externalReference attribute has a maximum
length of 200, the genus attribute has a maxim-
um length of 100, the species attribute has a
maximum length of 100 and the display attribute
has a maximum length of 200.

Sample_t This table forms part of the implementation of
the BiologicalSource table from the logical
design. It is designed as a domain table for the
sample attribute of the BiologicalSource_t table
(described below). Information that is required
about a sample is an external reference to an on-
line ontology entry that provides further inform-
ation about the sample, the class of the sample
(used for searching) and a value that should be
used to represent the sample in the library inter-
face. When a sample is displayed in the interface
the display value should be presented as a hot-
link to the external reference.

The table contains three attributes: extern-
alReference of type VARCHAR2 which should
contain the URI to an online ontoloty entry, class
which is a foreign key to the Class_t table
(described above) and display of type
VARCHAR2 which should contain the value
used to represent the sample in the interface. All
attributes are required and externalReference is
the primary key.

A trigger has been written that implements ON
UPDATE CASCADE on the foreign key to this
table from the BiologicalSource_t table de-
scribed below.

The externalReference attribute has a maximum
length of 200 and the display attribute has a
maximum length of 100.

BiologicalSource_t This table implements the BiologicalSource table
from the logical design.

The taxon and sample attributes from the logical
design have been implemented as foreign keys to
the Taxon_t and Sample_t tables (described
above) respectively. In addition a foreign key to
the Class_t table (described above) has been in-
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Table Notes

cluded as part of the primary key to implement
the subclasses of BiologicalSource in the logical
design.

A trigger has been written that implements ON
UPDATE CASCADE on the foreign key to this
table from the MetBioSource_i table described
below.

MetBioSource_i This table implements the Metabol-
ite::BiologicalSource association and its associ-
ation class from the logical design.

Two triggers have been written
(MetBioSource_setIDupdate_tr and MetBio-
Source_setIDdelete_tr) to delete referenced sets
from the ReferenceSet table on update of refSet-
ID in this table or on deletion of a record from
this table.

ON DELETE CASCADE has been implemented
on the foreign key from Metabolite_t.

Adduct_t This table implements the Adduct table from the
logical design.

The formula attribute has a maximum length of
50.

Prediction_i This table implements the Prediction association
table on the Metabolite::Adduct PredictedPartOf
association from the logical design.

ON DELETE CASCADE has been implemented
on the foreign key from Metabolite_t.

Measurement_i This table implements the Measurement associ-
ation table on the Metabolite::Adduct Measured-
PartOf association from the logical design.

A sequence and trigger have been implemented
to populate the treeID attribute.

ON DELETE CASCADE has been implemented
on the foreign key from Metabolite_t.

Note that this table is not in 3NF. The ionMode
and accuracy attributes can both be worked out
from the metaboliteID, formula and mass attrib-
utes. The treeID attribute has been introduced as
an auto-generated primary key for this table to
enable more efficient searching over the Mass_t
table (described below) which uses its foreign
key to the Measurement_i table as part of its
primary key.

Mass_t This table implements the Mass table from the
logical design.

The treeID foreign key to Measurement_i has
been implemented as part of the primary key and
is therefore not optional as documented in the lo-
gical design. It is important that the treeID forms
part of the primary key for the Mass_t table for
efficiency in retrieval of complete ion trees and
for efficiency in retrieval of metabolite informa-
tion from daughter ion masses.

A sequence and trigger have been implemented
to populate the internalTreeID attribute. The
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Table Notes

constraint on the contents of treeLevel has been
implemented as a check constraint.

ON DELETE CASCADE has been implemented
on the foreign key from Measurement_i and on
the foreign key to a parent Mass_t.

Note that this table is not in 2NF. The mass,
status and treeLevel attributes can be worked out
from the internalTreeID part of the primary key
alone. The treeID foreign key to Measurement_i
has been introduced as part of the primary key
for efficiency in data retrieval as described
above.

Datatypes. The following notes describe how the datatypes in the logical design have
been implemented in the base tables:

Table 3. Datatypes

Datatype Oracle type Notes

long NUMBER(38) In Oracle NUMBER(38) is the
longest integer possible.

URI VARCHAR2(200) There is no basic URI type in
Oracle. Given that the library
will have a web-based interface
implementation of the URI
nature of this data type is de-
ferred to the interface.

String VARCHAR2 The length of each specific
VARCHAR2 attribute has been
documented within the table
notes above.

float NUMBER NUMBER is the floating point
data type in Oracle.

boolean VARCHAR2(1) There is no basic boolean type
in Oracle. These attributes
should be implemented with a
check constraint to ensure that
the populating values are either
"N", "n", "Y" or "y".

IonMode VARCHAR2(8) These attributes should be im-
plemented with a check con-
straint to ensure that the popu-
lating values are either "posit-
ive" or "negative".

Accuracy VARCHAR2(8) These attributes should be im-
plemented with a check con-
straint to ensure that the popu-
lating values are either "accur-
ate" or "nominal".

MassStatus VARCHAR2(8) These attributes should be im-
plemented with a check con-
straint to ensure that the popu-
lating values are either "major",
"minor" or "possible".
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3. Business rules
The following table describes the constraints to the metabolite library that have not been
implemented as part of the base tables:

Table 4. Additional constraints on the metabolite library

Constraint description Implementation notes

Mandatory participation of ReferenceSet in the
Authority::ReferenceSet association.

This check should be carried out by the data sub-
mission/update application.

Mandatory participation of Metabolite in the Ad-
duct::Metabolite association.

This check should be carried out by the data sub-
mission/update application.

Each ReferenceSet should be referred to once
only as either an authority for a primary meta-
bolite designation, an authority for a metabolite,
or an authority for a Metabol-
ite::BiologicalSource association.

Implemented by way of a package called Refer-
enceSets and four triggers called Metabol-
ite_setcheck_tr, Metabolite_setuse_tr, MetBio-
Source_setcheck_tr and MetBio-
Source_setuse_tr.

Each Mass should be either a direct fragment of
the parent ion of an Adduct or should contain a
value for the parent Mass foreign key. Direct
fragments of parent ions should not contain a
value for the parent Mass foreign key.

This check should be carried out by the data sub-
mission/update application.

A Metabolite that is not associated with any Bio-
logicalSource and is not designated as a primary
metabolite for any class must contain the value
true for its measuredInStandard attribute. Con-
versely, a Metabolite that contains the value
false for its measuredInStandard attribute must
be associated with at least one BiologicalSource
and/or be designated a primary metabolite for at
least one class. (A Metabolite may contain the
value true for its measuredInStandard attribute
and at the same time be associated with one or
more BiologicalSource and/or be designated a
primary metabolite for at least one class.)

This check should be carried out by the data sub-
mission/update application.

A Metabolite that contains the value true for its
measuredInStandard attribute must be associated
with Adducts that are MeasuredPartsOf it.

This check should be carried out by the data sub-
mission/update application.

The class attribute of a BiologicalSource record
must be the same as the class attributes of the
Taxon and Sample records referenced by the
BiologicalSource record.

This check should be carried out by the data sub-
mission/update application.

4. Database optimisation
A number of measures have been taken to optimise searches made over the library data-
base. These are described below.

Handling of derived data. The only derived data item is the Metabol-
ite::molecularWeight attribute which is calculated from the Metabolite::formula attrib-
ute and a lookup table of atomic codes and weights. As described above, the formula at-
tribute is a very stable attribute of a metabolite description and so, for efficiency in data
retrieval, the value for molecularWeight is calculated and stored in the database on in-
sert or update of Metabolite::formula.

Relaxation of normalisation. As described above the Measurement_i and Mass_t
tables are not fully normalised. The Measurement_i table is not in 3NF and the Mass_t
table is not in 2NF. This relaxation of normalisation allows the primary key on the
Mass_t table to include a simplified foreign key from the Measurement_i table which in
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turn optimises the retrieval of complete ion trees which is a major transaction require-
ment.

Indexes. When searching over metabolites the most common searches will be by chem-
ical names, synonyms and formulae. In addition the transaction requirements specify the
need to search by pathway and there will be a large number of pathways stored in the
database. Therefore, indexes have been implemented on the Metabolite::chemicalName,
Metabolite::formula and MetPath_i::identity attributes (the Synonym::name attribute is
a primary key and is, therefore, indexed already). As there will be limited numbers of
biological source in the database it was not felt necessary to implement any indexes over
the tables that describe it.

When searching over ESI-MSn data the most common searches will be for parent ions
and major daughter ions. Therefore, indexes have been implemented on the Predic-
tion::mass, Measurement::mass, Adduct::mass and Mass::mass/Mass::status attributes.
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