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Lay Summary 
Antimicrobial Resistance (AMR) occurs when bacteria evolve to become resistant to 

antibiotic substances. This happens, and has always happened, with naturally occurring 

antibiotics and with antibiotics that are used to treat animals or people. AMR can arise 

during farming or food production. This provides a potential exposure route to consumers 

via food. Ready-to-eat foods are particularly important here because they are eaten 

without further cooking in the home. This means that bacteria present on these food items 

that have AMR, or that contain DNA (called AMR genes; or ARGs) associated with AMR 

are more likely to be eaten intact. The aim of this project was to look for ARGs in a range 

of ready-to-eat foods, to provide information about the ARGs which are present on ready-

to-eat foods typically consumed in the UK. However, the presence of ARGs does not 

necessarily mean that there are antibiotic-resistant bacteria present. Finding an ARG is 

like finding part of the blueprint for a car: it doesn’t necessarily mean a car can be built, or 

would work if it was built, but it does mean that one of the things necessary to get building 

is in place. 

We identified ARGs on ready-to-eat foods using metagenomic sequencing. Metagenomic 

sequencing works by simultaneously analysing all of the different types of DNA from a 

sample to identify what genes or bacteria may be present. There are many thousands of 

known ARGs. It is the ability to test for everything all at once that makes metagenomics so 

useful. Metagenomics will detect AMR genes regardless of the bacteria that they are in. 

Sometimes we can tell which specific bacteria ARGs were in, but often all we can tell is 

that a particular type of ARG DNA is present in something: we can't necessarily tell 

whether the bacteria it was in was harmful, harmless or helpful; whether the ARGs actually 

made the bacteria resistant to antibiotics in practice, or whether the bacteria that contained 

the ARGs were alive or dead. 

Metagenomics is not yet used routinely for detecting ARGs in food. And, like every 

detection method, it is not perfect. Sometimes ARGs that we know about and that are 

present a sample will not be detected, particularly if they are present in small amounts. In 
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other cases, parts of the DNA in bacteria may look enough like a particular ARG to give us 

a positive result even though the ARG isn't there. Hence, the results contain some false 

negatives and false positives. There is always trade-off between these two types of 

detection error. In general, we attempted to prioritise minimising false positives. 

The aims of this project are twofold – to estimate the burden of AMR genes in ready-to-eat 

foods on retail sale in the UK, and to examine how to best use metagenomics to do this. 

We looked at single-food-type products to do this (tomatoes, milk, ham, not sandwiches, 

pies or pasties) so that we could identify in which particular types of food we had found 

AMR genes. 

We had the capacity to take and test 1001 ready-to-eat food samples to meet these aims. 

We first looked at previously published scientific work on AMR in ready-to-eat foods to 

decide how many samples of each food-type to test. We found no evidence AMR was 

consistently more or less common in any particular food type. Hence, we assigned sample 

numbers to individual food types in proportion to their consumption in the UK. The aim 

here was to get a set of samples that represented the average UK consumption of ready-

to-eat foods. These samples were then analysed to see which samples provided the most 

bacterial DNA. 

We selected a subset of 256 samples for metagenomic sequencing to identify ARGs, 

again based on consumption, but also selecting more foods that gave larger amounts of 

bacterial DNA, because we thought that these types were most likely to give reliable 

results about ARG presence. The results were combined with information about the 

amount of each food in UK diets to estimate the ARG burden from ready-to-eat foods in 

the UK. 

We estimated that the great majority of UK diets contain at least one ARG from RTE food. 

Some classes of ARGs were much rarer than others. For example, ARGs associated with 

resistance to the antibiotics colistin and methicillin were found rarely; ARGs associated 

with resistance to vancomycin, fluoroquinolone or carbapenem antibiotics and some others 

were found more often. There are several things to consider here. Firstly, despite the very 
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stringent filtering of results that we applied, it remains possible that a small minority of 

ARGs identified from short fragments of DNA were false positive detections. Conversely, 

our efforts to reduce false positive hits (along with other inherent limitations that come from 

testing samples) mean that it is unlikely that we detected every single ARG present in the 

samples. So, the results presented here give the ARGs for which the evidence of presence 

was strongest rather than a perfect list of all ARGs present in the samples that we tested. 

It is always important to remember that many of the ARGs identified here were for a single 

part of a complex resistance mechanism. Hence, it is likely the true burden of current 

active AMR provided by the ARGs that we detected is lower than the burden of those 

ARGs in the diet. However, there may be an unquantified AMR burden from ARGs that we 

failed to detect. 

We also tested 24 samples using a more experimental technique that could allow us to 

identify where the ARGs were present for example in which types of bacteria. Only small 

amounts of DNA sequence data were generated by this approach, which reduced the 

number of times we could assign locations to ARGs in this study. Nonetheless, the 

technique did show promise for providing additional information about ARGs. For example, 

in some cases, the experimental approach was better able to reconstruct entire bacterial 

genomes (the total DNA sequence present in a bacterium) from the samples. 

This study has provided useful data on ARG presence on ready-to-eat foods in the UK, 

and their consumption in the typical UK diet. Significant insights on the use of 

metagenomic approaches have been gained, for instance about the problems of 

identification of ARGs from DNA sequences, especially in a study of this scale, and with 

such a wide variety of types of food. Recommendations for future improvements and 

complementary further work have been made which include; wider sampling to estimate 

the relative contributions of different foodstuffs to the ARG burden of the diet (and in a 

wider range of diets, for example vegan diets), generation of more sequence data per 

sample to allow ARGs to be identified with greater confidence, and efforts to quantify 

ARGs present in samples to allow different measures of burden and assessments of risk 

to be used. 
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Executive Summary 
Antimicrobial Resistance (AMR) is increasingly recognised as a vitally important, global 

public health issue. The emergence of AMR in the food chain can be driven by entirely 

natural processes or it can arise in response to the use of, for example, veterinary or 

prophylactic antibiotics. Hence, consumers may be exposed to AMR via food. Ready-to-

eat (RTE) foods are of particular interest because they are eaten without further cooking in 

the home. Hence, any AMR genes (ARGs) or AMR bacteria present on RTE food items 

are likely to be consumed intact. 

Metagenomic sequencing is based on non-targeted sequencing of DNA from a sample; 

the identified sequences can be used to identify ARGs that are present. This has several 

advantages over more traditional, phenotypic screening for AMR bacteria: principally that 

we can test simultaneously for the presence of all the ARGs that we know about. ARGs 

can be detected regardless of the bacterium in which they are present, and if sufficient 

DNA sequence is generated the bacterium that contains the ARG can also be identified. 

However, metagenomics is not in routine use for systematically screening foods for ARGs 

and has very rarely been used in RTE foods in any context. 

Therefore, the aims of this project are twofold – to estimate the burden of ARGs in RTE 

foods on retail sale in the UK, and to evaluate the use of metagenomics to this end. For 

this study only single-food-type RTEs were in scope (oranges, cheese, smoked salmon; 

not quiche or salads). This was so that the particular food type in which an ARG had been 

found could be identified. Hence, the sampling plan provided samples that were 

representative of in-scope RTE food rather than RTE food as a whole. 

To achieve these aims a literature review was first undertaken to identify available 

quantitative information about AMR prevalence in RTE foods. Data from the National Diet 

and Nutrition Survey was used to identify RTE foods that fell into four broad categories 

(fresh produce, dairy, cooked meats, seafood). Literature relating to AMR in the identified 
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foods was retrieved, and quantitative data extracted. No evidence was found of consistent 

differences between food types in the proportion of samples found to contain AMR, though 

this may have been due to the relatively small number of available studies. Based on the 

results of this literature review, a sampling strategy was developed to collect 1001 RTE 

food samples for testing. As no consistent differences were identified among food types 

across the reviewed studies, the number of samples to be taken of each food type was in 

proportion to UK consumption. Samples were taken from regions in proportion with 

population, and from retailers according to market share. The aim here was to provide a 

set of samples that were representative of the typical consumption of RTE. 

All samples underwent DNA extraction and metabarcoding sequencing of Variable Region 

4 of the 16S locus, to provide an estimate of the proportion of bacterial DNA in the DNA 

extracted from the samples. A subset of 256 samples were then selected for non-targeted 

metagenomic sequencing based on of food type consumption and weighted towards 

samples from food types that were found to have higher bacterial to host DNA ratios. This 

weighting was done to increase the power of subsequent sequencing to detect the 

presence of ARGs.  

Sequences from the 256 samples were analysed bioinformatically to identify ARGs. 

Several approaches were trialled, and limitations associated with these approaches were 

identified. The diversity of bacteria present and the amount of host DNA obtained from 

some samples prevented the use of assembled sequences for ARG detection. Among 

other impacts, this meant that the genomic context of which plasmids or bacteria ARGs 

were found in could not be identified. In addition, this meant that ARGs were identified on 

the basis of individual short DNA sequences (using the gold standard ARG database) 

which reduces the confidence with which the presence of ARGs can be confirmed 

compared with whole-gene matching. The ARGs identified in each food group were 

combined with consumption data to estimate the ARG burden from RTE foods in the 

average diet in the UK.  
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We estimated that there are ARGs from RTE food present in almost all average diets. The 

prevalence in diets varies considerably among individual ARGs, with genes encoding 

certain efflux pumps being found in approximately 97% of average diets, while many types 

of beta-lactamase gene were found in less than 25% of diets. ARGs associated with 

components of resistance to a number of antibiotics of interest were examined in further 

detail. Genes associated with components of colistin and methicillin resistance were very 

rare, with only two ARGs detected for each antibiotic. However, because of the measure of 

incidence used, and the fact they were found in relatively highly consumed foods, the 

incidence of one intrinsic colistin resistance gene was estimated at 46% of diets in the UK 

general population and one mobile colistin resistance gene was estimated at 7% of diets. 

Genes encoding components of methicillin resistance were estimated to be present in 17-

37% of average diets, depending on the gene in question. Genes associated with 

components of resistance to fluoroquinolones or carbapenems, and potential extended 

spectrum beta-lactamases were estimated to be present in all average UK diets. However, 

it is possible that the proportion of diets containing some ARGs may have been over- or 

underestimated because of the difficulty of identifying the genes present based on short 

DNA fragments.  In addition, the presence of ARGs does not map directly to the presence 

of AMR bacteria. While this may seem counterintuitive, there are many reasons why this is 

the case. For example, an ARG might encode one component of a larger gene complex, of 

which every element is required to generate phenotypic antimicrobial resistance. Or the 

ARGs may only be expressed under certain environmental conditions. Furthermore, ARGs 

are not a modern phenomenon. While anthropogenic sources can greatly increase 

selection pressure for ARG evolution, some ARG families (for example β-lactamases) 

have existed for millions of years. 

Only low amounts of DNA sequence data were generated by the long-read sequencing 

approach. This was probably caused by low amounts of input DNA. Nonetheless, the 

technique did show promise for the identification of ARGs co-located on the same section 

of genome and demonstrated the ability to identify whole bacterial genome sequences 

from metagenomic data. For example, a whole genome likely to belong to Acinetobacter 
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albensis could be assembled from one of the long-read sequenced samples. Development 

of this procedure may provide the key to more direct measurement of the presence of 

AMR bacteria. 

This study has provided useful data on AMR gene presence on ready-to-eat foods in the 

UK, and their consumption. Significant insights on the use of metagenomic approaches 

have been gained, especially about challenges such as identification of AMR genes from 

DNA sequences in diverse food types. Recommendations for future improvements and 

complementary further work have been made. These include wider sampling, to estimate 

the relative contributions of different foodstuffs to the AMR gene burden of the diet (and in 

a wider range of diets, for example vegan diets), generation of more sequence data per 

sample, to allow AMR genes to be identified with greater confidence, and efforts to 

quantify ARGs present, to allow additional measures of burden and assessments of risk to 

be used. 
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Glossary 
Term Definition 

Reads Individual nucleotide sequences generated from input DNA or RNA in 

the sequencing process. High Throughput Sequencing platforms can 

produce thousands or even millions of reads per sample on a single 

run. 

Short-read Referring to sequence data generated from sequencers such as 

Illumina’s NovaSeq. Typically, data generated by these sequencers are 

between 75-300 nucleotides long and this process is referred to as 

short-read sequencing. 

Long-read Referring to sequence data generated from sequencers such as Oxford 

Nanopore’s PromethION. Typically, data generated by these 

sequencers can be thousands of nucleotides long and this process is 

referred to as long-read sequencing. 

Phred Quality A measure of quality automatically assigned to nucleotides in a read. A 

Phred quality score of 10 indicates a 10% chance of an incorrect base, 

a score of 20 = 1% chance of an incorrect base, a score of 30 = 0.1% 

chance of an incorrect base etc. 

Contigs A set of overlapping sequences which together represent a consensus 

region of DNA. Long contigs can be generated from shorter reads in 

the Assembly process. 

Assembly A collection of contigs generated from a sample which together aim to 

best represent the original genomic content of that sample. The 

process of Assembly also refers to the generation of contigs from 

reads. 
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Term Definition 

NG50 The size of the contig which, along with larger contigs, represents 50% 

of the sequence of a genome. This can be used as a measure of 

assembly completeness, when the genome size of the particular 

organism being sequenced is known. 

N50 The size of the contig which, along with larger contigs, represents 50% 

of the sequence of an assembly. This can be used as a measure of 

assembly completeness. 

GC Content The percentage of nucleotides in a genome, or section of a genome, 

that are made up of either guanine ‘G’ or cytosine ‘C’. 

Coverage Often referring to the ‘depth of coverage’. This is the number of times 

that a nucleotide has been sequenced for a given assembly/genome. 

Genomes are often referred to as having a coverage of for example 

50x, which means that an average of 50 nucleotides were sequenced 

for each nucleotide position across the genome. 

Host DNA The DNA from the host organism that will also be present when 

extracting DNA for sequencing microbial communities. For example, 

apple DNA would be expected from samples extracted from an apple 

and cow DNA would be expected from samples extracted from beef or 

milk. 

Metabarcoding The targeted amplification and sequencing of a specific gene or gene 

region in order to identify different organisms present within a sample. 

The region should be conserved enough to be present and amplifiable 

in most organisms within a broad group (for example bacteria) and 

sequenced easily, yet variable enough to be able to identify different 

taxa (for example genera or species) within that broad group. 
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Term Definition 

V4 Region A region of the 16S ribosomal RNA gene which is variable enough to 

be used as the specific region for metabarcoding studies of bacteria 

and archaea. 

Metagenomics The non-targeted sequencing of total DNA from a sample. The amount 

of DNA sequence generated will depend on factors such as the yield of 

DNA extracted, and the output of the sequencing technology used. 

Metagenomic sequencing will capture DNA from multiple organisms, 

such as bacteria, fungi, plants, animals etc. Depending on factors such 

as the amount of DNA sequence generated and the complexity of the 

communities being sequenced, metagenomic sequencing allows for the 

assembly of large fragments of DNA, and the possibility of assembling 

entire genes, chromosomes and genomes. 

Mobile 

Genetic 

Elements 

(MGEs) 

Regions of DNA which are capable of moving around either within or 

between genomes. These DNA regions could replicate on their own 

within the cell (for example, plasmids) or be integrated into the 

chromosome(s) of the organism in question (for example, Integrative 

and Conjugative Elements).  
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1.  Introduction 
1.1 Background to the study 

Antimicrobial Resistance (AMR) is increasingly recognised as a vitally important, global 

public health concern (O'Neill, 2014), potentially causing untreatable infectious diseases 

and making recent medical advances (for example chemotherapy, organ transplant) 

unusable. This is especially important when considering the emergence of resistance to so 

called critically important antimicrobials (CIAs) (for example(Liu et al., 2016)), which can 

be the last line of defence against bacteria already resistant to frontline antibiotics. The 

use of antimicrobials in the agrifood chain is known to lead to the evolution of AMR, which 

may be transmitted to human pathogens or the human commensal microbiota (Hudson et 

al., 2017, van Bunnik and Woolhouse, 2017). 

An evidence gap exists about the extent to which consumption of foodstuffs contributes to 

antimicrobial resistance in the human microbiome, especially for ready-to-eat (RTE) 

products. These products are of particular interest, as they are consumed without further 

cooking in the home, implying that any AMR bacteria (or intact AMR genes (ARGs)) 

present could contribute to AMR in the microbiome of the consumer.  

RTE products also span a range of production techniques which may differ in the extent to 

which they promote the evolution of AMR, based on differing antimicrobial inputs during 

production. Cooked, RTE meats and dairy products are both animal-based foods, and the 

animals involved may have been treated with antibiotics during the primary production 

process. Non-RTE meats including red meat (APHA, 2020) and poultry (APHA, 2019) are 

known to harbour AMR bacteria, and it is not currently known how prevalent AMR bacteria 

are on RTE meats on retail sale in the UK. Dairy animals can be exposed to antibiotics to 

treat diseases such as mastitis either therapeutically or prophylactically (for example via 

dry cow therapy (Saini et al., 2013)), and this may lead to the evolution of AMR. Fresh 

produce, including RTE fruits and vegetables, may also have been directly treated with or 

indirectly exposed to antibiotics which can lead to the evolution of AMR on crops (Haynes 

et al., 2020). Other RTE food types, such as seafood, also have considerably antimicrobial 
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inputs during production, for example in aquaculture (Schar et al., 2020). Beyond primary 

production, slaughter/harvest and secondary processing of foods may contain sources of 

antimicrobial compounds which may drive AMR evolution. For example, there is some 

evidence that biocides may lead to co-evolution of resistance to antibiotics (Li et al., 2019, 

Khan et al., 2016), although the picture is still mixed (Lin et al., 2016, Murray et al., 2019). 

Metagenomic sequencing involves non-targeted sequencing of DNA from a sample, and 

can be used to identify ARGs that are present. This has several advantages over more 

traditional, phenotypic screening for AMR bacteria. For example, ARGs can be detected 

regardless of the bacterium they are present in (including pathogenic and commensal 

species). If sufficient DNA sequence is generated, sequences can be assembled into 

longer contiguous lengths of DNA sequence (contigs). This enables ARGs to be placed in 

their genomic context, by identifying the plasmid or bacterium they are found in. However, 

metagenomics is not in routine use for screening foods for ARGs and has very rarely been 

used in RTE foods in any context. 

The multiple and varied routes by which AMR may evolve in RTE foods, the enhanced risk 

from the fact that they are not cooked at home, and the knowledge gaps on ARG presence 

in RTE foods at retail sale all led to the commissioning of the project reported here. 

1.2 Aims and objectives 

This project was designed to begin to address that evidence gap described above, and as 

a pilot project to better understand the advantages and limitations of a metagenomic 

approach to ARG detection in RTE foods. We sampled 1000 products from a variety of 

RTE food categories (cooked meats; dairy products; fresh produce; RTE seafood was 

excluded from the scope by the FSA because it is consumed in small quantities compared 

with the other categories), weighted by consumption data and any available evidence on 

AMR prevalence. Samples were first assessed for suitability for further investigation using 

a 16S metabarcoding screen, which will amplify both bacterial DNA, and organellar 

(mitochondrial or chloroplast) in samples with high levels of foodstuff (or ‘host’ DNA). A 

subset of 256 samples were then sequenced metagenomically to identify the presence of 
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AMR genes, regardless of the bacteria (pathogen or commensal) which contain them. This 

data was combined with food consumption data from the National Diet and Nutrition 

Survey to estimate the burden of AMR in UK diets. This will provide important insights into 

the fitness for purpose of existing AMR targets for surveillance, and contribute to FSA’s 

mission to ensure food is safe to eat. In recent years, metagenomic approaches have 

provided a wealth of AMR data from other areas of food production, but very few studies 

have been performed on the metagenome of RTE foods in any context. To achieve these 

objectives, the project undertook the following steps. 

1. Short literature review on AMR in selected ready-to-eat foods 

Review of available information on AMR in appropriate ready-to-eat (RTE) foods, and 

extraction of quantitative data on AMR gene/bacteria prevalence. 

2. Define sampling strategy 

Used data from the National Diet and Nutrition Survey (NDNS) data and data from the 

literature review to finalise the samples to be taken from specific RTE food types. 

3. Collection of 1000 samples of ready-to-eat foods 

Sampled RTE products according to the sampling strategy, and courier to Fera 

4. 16S Metabarcoding of 1000 samples 

Extracted DNA from products as they arrive, and store DNA at -30°C. Then performed 

16S metabarcoding sequencing and analysis on DNA extracts from 1000 samples, to 

identify bacteria present. 
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5.  Shotgun metagenomic sequencing of 256 samples 

Using data from 16S metabarcoding, identified samples which could go forward for 

metagenomic sequencing based on the presence of sufficient bacterial DNA sequence. 

Then using stratification from the sampling plan selected 256 samples for metagenomic 

sequencing on the Illumina NovaSeq. Of these samples, 24 were also selected for 

long-read, PromethION sequencing. 

6. Identification of AMR genes in shotgun metagenome data 

Short read data and long read DNA sequence data were analysed to identify AMR 

genes (ARGs). Only ARG data derived from the short-read, Illumina data was used for 

subsequent modelling steps. Long-read data from the PromethION was considered 

more experimental and was used to assess the applicability of the technology. 

7. Exposure modelling of AMR gene intake in average diets 

Data from NDNS was combined with the results of the ARG identification to estimate 

dietary exposure to AMR genes. 

A further remit of the project, not directly connected to AMR, is in the food-safety context. 

This is a check of the sequence data for evidence of foodborne pathogens of concern 

("priority taxa"), i.e. those which might flag the need for laboratory-based confirmation, 

which could then necessitate statutory action by the Food Standards Agency if positive. 

This would only affect food samples from batches whose use-by date had not expired. 

Naturally, all samples were purchased and received at the laboratory prior to the expiry 

date, but many food classes such as most fruit, vegetables and meats have a short or very 

short consumption window (for example, meat which should be consumed within one 

month of domestic freezing by the consumer), and would therefore has passed the expiry 
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date by the time our sequence analysis results were available. There are some notable 

exceptions among necessarily frozen foods such as ice cream, whose expiry date may be 

many months post-purchase. 

The sequence data alone cannot be considered sufficient to confirm presence (or indeed 

absence) of these pathogens, and the 16S metabarcoding data in particular has significant 

limitations in terms of taxonomic resolution. In general, it is possible to find such 

sequence-based evidence which may be completely consistent with, but not demonstrative 

of the presence of taxa of concern. The degree to which such evidence may be narrowed 

down to the level of genus, or in some cases even species, does differ from one taxonomic 

group to another. Some genera within the Enterobacteriaceae are especially difficult to 

distinguish.  

Nonetheless, one undertaking is the analysis of the 1,000 samples' 16S metabarcoding 

data sets to check for evidence of any of the priority taxa in a list of foodborne pathogens 

provided by the FSA. We also analysed the selected 256 samples' metagenomics 

sequence data set with the same aim. 
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2. Methodology 
2.1 Sampling Strategy 

2.1.1 Literature Review 

2.1.1.1 Background to Literature Review 

The purpose of this assessment was to provide information to guide the sampling of ready-

to-eat foods (1000 samples) for a study on AMR presence. Hence the main quantities of 

interest are the proportion of samples of different types of food that may contain AMR 

bacteria and the extent to which this may vary within and between foods. 

2.1.1.2 Review Methodology 

Initially, the National Diet and Nutrition Survey (NDNS) data rolling program (years 1-8, 

2008/9-2015/16) was used to identify RTE foods in the four broad food groups of interest 

(fresh produce, dairy, cooked meats, seafood). These survey data are based on the 

returns given by participants, and as such can include freeform text. Food types were 

assessed, and where appropriate, food types were amalgamated. Food types were also 

assessed for their ready to eat status (for example, have they been cooked, or do they 

require cooking). For example, the following food types were all amalgamated under the 

name ‘Whole milk’: 

• Milk whole summer pasteurised 

• Milk whole pasteurised winter 

• Milk whole sterilised 

• Milk whole UHT 

• Milk whole channel island pasteurised summer 

• Milk whole channel island pasteurized winter 

• Whole milk after boiling 
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• Milk whole unpasteurised 

• Whole milk dried 

Of these sample types, two (Whole milk after boiling and Whole milk dried) were not 

classed as RTE as they had either been cooked or required further processing after 

purchase. After discussion with FSA, food types which were canned or UHT were also 

excluded from scope, as they should not contain viable bacteria, and were unlikely to 

contain detectable bacterial DNA.  

Food types were also classed as either informative or non-informative, based on whether 

they contained a single ingredient which would allow the source of an ARG to be isolated 

to that ingredient, or multiple ingredients. Non-informative products were deemed out of 

scope, as any ARGs identified in them could not be traced to their original ingredients. All 

food items in the NDNS were assessed in this manner. This assessment and classification 

were performed by different team members, independently, and the results compared. Any 

inconsistencies in assessment were then discussed, and a consensus reached. Out of 

4720 food type: 1166 were assessed to be RTE; 475 of RTE products were assessed as 

in scope of which 90% of consumption within each of the four food groups consisted of 58 

products: ham not smoked, corned beef, chicken slices unsmoked, frankfurter, turkey 

slices unsmoked, salami, roast beef slices, ham smoked, chorizo, roast pork slices, 

cucumbers, strawberries, apple juice pasteurised, white grapes, melon, carrots, lettuce, 

black grapes, pineapple, plums, white onions, nectarines, orange juice freshly squeezed, 

kiwi fruit, mangoes, peaches, avocado, raspberries, cherry tomatoes, red peppers, raisins, 

iceberg lettuce, blueberries, semi skimmed milk, whole milk, skimmed milk, cheddar 

cheese, soya milk sweetened, salted butter, vanilla ice cream, unsweetened yogurt, 

reduced fat spread, probiotic yogurt drink, one percent milk, low fat unsweetened yogurt, 

fat spread, spreadable butter, soya milk unsweetened, ham not smoked, corned beef, 

chicken slices unsmoked, frankfurter, turkey slices unsmoked, salami, roast beef slices, 

ham smoked, chorizo, roast pork slices.  
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The list of foodstuffs that were deemed RTE and informative and represented at least 90% 

of the consumption within each of the four product groups was then used to design a 

search term to return literature for the review. The search term was then iteratively 

improved to reduce false positive returns. The final search term used was; 

("AMR" OR "antimicrobial resistan*" OR "anti-microbial resistan*" OR "antimicrobial 

resistance gene" OR "anti-microbial resistance gene" OR "antibiotic-resistan*" OR 

"antibiotic resistan*") 

AND 

(food* OR "ready to eat" OR "ready-to-eat") AND ("smoked salmon" OR "smoked 

mackerel" OR crabstick* OR ham OR "corned beef" OR "chicken slice*" OR frankfurter* 

OR "turkey slice*" OR salami OR "roast beef slice*" OR chorizo* OR banana* OR apple* 

OR "orange juice pasteurised" OR "pasteurised orange juice" OR tomato* OR pear OR 

pears OR orange* OR "small citrus" OR cucumber* OR strawberry OR strawberries OR 

"apple juice pasteurised" OR "pasteurised apple juice" OR "white grape*" OR melon* OR 

carrot* OR lettuce OR "black grape*" OR pineapple* OR plum OR plums OR "white 

onion*" OR nectarine* OR "orange juice freshly squeezed" OR "freshly squeezed orange 

juice" OR "kiwi fruit" OR mango* OR peach* OR avocado* OR raspberry OR raspberries 

OR "cherry tomato*" OR "red pepper*" OR raisin OR raisins OR "iceberg lettuce*" OR 

blueberries OR blueberry OR watermelon* OR grapefruit* OR "semi skimmed milk" OR 

"semi-skimmed milk" OR "whole milk" OR "skimmed milk" OR "cheddar cheese" OR "soya 

milk sweetened" OR "sweetened soya milk" OR "salted butter" OR "vanilla ice cream" OR 

"unsweetened yogurt" OR "unsweetened yoghurt" OR "reduced fat spread" OR "probiotic 

yogurt drink" OR "probiotic yoghurt drink" OR "one percent milk" OR "low fat unsweetened 

yogurt" OR "low fat unsweetened yoghurt" OR "fat spread" OR "spreadable butter" OR 

"soya milk unsweetened" OR "unsweetened soya milk")) 

NOT 
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("smoked chicken slices" OR "smoked turkey slices" OR orange-ii OR "mull. arg." OR 

"muell. arg." OR "orange-" OR "-orange" OR "sea cucumber" OR "pv. tomato" OR "Eagle's 

F12 Ham" OR "cactus-pear" OR "prickly pear") 

This term was searched against several scientific and grey literature databases. The dates 

in parentheses indicate the time period that that the databases cover, but in this instance 

the search was limited to the last five years, to return the most recent, relevant results, and 

to ensure a manageable number of references were returned; 

• Web of ScienceTM Core Collection (1981-present)  

• BIOSIS Citation IndexSM (1985-present)  

• CABI : CAB Abstracts® and Global Health® (1973-present)  

• Current Contents Connect® (1998-present)  

• FSTA® - the food science resource (1969-present)  

• KCI-Korean Journal Database (1980-present)  

• MEDLINE® (1950-present) 

• Russian Science Citation Index (2005-present)  

• SciELO Citation Index (1997-present)  

• Zoological Record® (1993-present) 

• Base (2014-present) 

• Copac (2014-present) 

• EFSA (2014-present) 

• Google Scholar (2014-present) 

• Microsoft Academic (2014-present) 

• National Archives (2014-present) 

• PubMed (2014-present) 

• WorldWide Science (2014-present) 

2.1.2 Sampling Strategy 



 

Page 22 of 206 

 

 

 

Based on the results of the literature survey, the sampling strategy was to be based on the 

total consumption of food types within four broad categories (dairy, fresh produce, cooked 

meats, seafood). These broad categories were proposed in the response to tender, as 

they encompassed the diversity of different RTE food types on retail sale in the UK. The 

1000 samples to be taken were to be divided evenly between these broad food categories 

(250 samples of each type), and then samples were to be taken within each food category 

based on consumption within each category. However, when consumption of these 

different broad categories was compared, it was observed that consumption varied widely 

between them. Dairy accounted for approximately 55% of consumption, produce for 42%, 

cooked meat for 3% and seafood less than 0.5%. Based on this the FSA decided to 

refocus sequencing effort on high consumption food items, and to pick food types from all 

RTE foods according to consumption. This improves the ability to estimate the 

consumption of AMR genes in the average diet, while reducing the ability to say as much 

about AMR content of particular food types, or different diets. 

The sampling strategy was then amended to sample the most consumed food types such 

that the sampled food types represented 90% of the consumption of in-scope RTE foods 

(quantity reported consumed of sampled in-scope RTE foods in the diet survey was 90% 

of the quantity of all in-scope RTE foods). The number of samples of each food type was 

in proportion to the amount of the food type in the average diet, but with a minimum of five 

samples per food type. This resulted in 52 different food types being sampled, comprising 

33 type of produce, 17 types of dairy, and two types of cooked meat. While fewer dairy 

types were sampled than produce types, more than half of the samples taken were dairy 

samples. The number of samples of each food type taken from each UK region was 

assigned in proportion to the region’s population and agreed with FSA. 90 sets of duplicate 

samples were taken: a duplicate consisted of two samples of the same product, from the 

same lot, bought from the same location at the same time; samples to be duplicated were 

selected at random (by product type, region, and retail outlet). Hence the sampling plan 

called for 910 distinct samples (defined by product type, lot, region, retail outlet and date) 

and 90 samples which were duplicates from among the 910 samples.  Lastly the sample 
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plan was based on samples being taken from a total of 60 different retailers to control cost.  

 

Table 1 gives a summary of the final sampling plan; Table 2 gives additional detail about 

product types. 

Table 1: Summary of sample plan 

Food Group Total Samples Unique Samples Products 

Dairy 546 492 17 

Meat 20 20 2 

Produce 434 398 33 
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Table 2: Sampling plan with products 

Produce: 

Product Samples Unique samples 

Bananas 74 66 

Apples 56 54 

Orange juice pasteurised 31 30 

Tomatoes 29 27 

Pears 21 18 

Small citrus 19 16 

Oranges 18 17 

Apple juice pasteurised 16 14 

Strawberries 16 15 

Cucumbers 14 14 

White grapes 10 10 

Carrots 7 7 

Cherry tomatoes 7 5 

Lettuce 7 7 

Melon 7 7 

Olives in brine 7 5 

Plums 7 5 

Avocado 6 5 

Black grapes 6 6 

Blueberries 6 5 

Iceberg lettuce 6 5 

Kiwi fruit 6 5 

Mangoes 6 5 

Raspberries 6 5 
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Product Samples Unique samples 

White onions 6 5 

Grapefruit 5 5 

Nectarines 5 5 

Orange juice freshly 

squeezed 
5 5 

Peaches 5 5 

Pineapple 5 5 

Raisins 5 5 

Red peppers 5 5 

Watermelon 5 5 

 

Dairy: 

Product Samples Unique samples 

Semi skimmed milk 257 234 

Whole milk 159 137 

Skimmed milk 28 26 

Cheddar cheese 24 22 

Reduced fat spread 7 6 

Salted butter 7 7 

Soya milk sweetened 7 7 

Unsweetened yoghurt 7 6 

Vanilla ice cream 7 7 

Double cream 6 5 

Lactose free semi skimmed 

milk 
6 5 
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Product Samples Unique samples 

Spreadable butter 6 5 

Fat spread 5 5 

Low fat unsweetened 

yoghurt 
5 5 

One percent milk 5 5 

Probiotic yoghurt drink 5 5 

Soya milk unsweetened 5 5 

Meat: 

Product Samples Unique samples 

Ham not smoked 15 15 

Corned beef 5 5 

2.2 Sampling   

Samples were collected by HallMark Veterinary & Compliance Services based on the 

sampling strategy, and from the eight largest supermarket retailers. Samples were taken 

according to market share. For the purposes of sample handling, samples were divided 

into two broad categories – dairy and produce (for logistical reasons, cheese and cooked 

meats were sampled with the produce samples). Dairy samples (538 in number, not 

including cheese samples) were collected during the first half of the collection period which 

ran from 17th June 2019 to 27th August 2019. Produce samples (504 in number, including 

cheese and cooked meats) were collected in the second half of the collection period which 

ran from 2nd September 2019 to 28th October 2019. These totals include samples rejected 

by either HallMark or Fera, which were subsequently resampled. 

FSA provided a letter to be given to the retailers by HallMark, explaining the purpose of the 

sampling. 



 

Page 27 of 206 

 

 

 

2.3 DNA Extraction 

2.3.1 Dairy Samples 

Samples were extracted on the day of receipt where possible. When this was not possible 

due to a large number of samples arriving, half of the samples were frozen for processing 

on the next day on which samples were not due to arrive. 

For dairy samples, two x 1.8ml aliquots were taken from each sample, one of which was 

frozen at -40°C as a reserve sample. The samples were extracted using the Qiagen 

DNeasy® PowerFood® Microbial Kit according to the Milk Extraction Protocol as follows:  

Samples were centrifuged at 13,000 x g for 5 minutes and the fat layer was removed with 

a 10µl loop plus 0.8ml of the supernatant. The samples were then centrifuged for a second 

time at 13,000 x g for 5 minutes and any remaining fat was again removed with a 10µl loop 

plus 0.5ml of the supernatant. The resulting pellet was resuspended in the remaining 

supernatant using a pipette with wide bore tip. The suspension was then transferred to a 

clean 2ml microcentrifuge tube and again centrifuged at 13,000 x g for 5 minutes. All the 

remaining supernatant was removed. This tube transfer step aimed to reduce the amount 

of residual fat contamination present in the original sample tube when the fat layer was 

removed. The resulting pellet was resuspended (by pipetting) in 450µl Solution MBL (from 

the Qiagen kit). The samples were incubated at 75°C in a thermomixer for 5 minutes at 

550rpm. The samples were then transferred to PowerBead tubes and incubated for a 

further 10 minutes at 75°C and 550 rpm on the thermomixer. The tubes were then mixed 

for 15 minutes at maximum speed by vortexing horizontally on a Vortex Genie 2 fitted with 

a 12 x 2ml tube holder adaptor. The tubes were then centrifuged at 13,000 x g for 1 minute 

at room temperature and the supernatant was transferred to a clean 1.5ml microfuge tube 

containing 100µl Solution IRS. The tubes were vortexed to mix and incubated on ice for 5 

minutes. The tubes were again centrifuged at 13,000 x g for 1 minute at room temperature. 

The entire volume of supernatant was transferred to a clean 1.5ml microcentrifuge tube 

containing 900µl of Solution MR and mixed by vortexing. The supernatant (650µl) was 

loaded onto an MB Spin Column and centrifuged at 13,000 x g for 1 minute. The flow 
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through was discarded and this step repeated until all the supernatant had been 

processed. The columns were then washed by the addition of 650µl of Solution PW and 

centrifugation at 13,000 x g for 1 minute, followed by 650µl ethanol (96-100%) and 

centrifugation at 13,000 x g for 1 minute. The flow-through was discarded and the columns 

centrifuged at 13,000 x g for 2 minutes to ensure there was no ethanol carryover. The 

columns were placed in clean 1.5ml microcentrifuge tubes and the DNA was eluted by the 

addition of 100µl of Solution EB to the centre of the membrane. Following incubation at 

room temperature for 5 minutes the columns were centrifuged at 13,000 x g for 1 minute. 

The eluate was stored at -40°C. For each batch of samples processed, an extraction blank 

was included which in the case of dairy samples was 450µl Solution MBL added to a clean 

tube with no bacterial pellet and processed in the same manner as the dairy samples. 

2.3.2 Produce Samples 

All produce samples, including cooked meats but excluding cheese (both of which were 

included in the produce samples collection set for logistical reasons), were processed on 

the day of receipt. Cheese samples were stored at -40°C as they required a different 

extraction protocol. 

Samples were processed according to their sample type – see the list of processing 

conditions below below. Briefly, samples that were usually consumed whole were rinsed to 

remove external bacteria and reduce contamination with host/matrix DNA. Samples that 

were usually consumed peeled were peeled, and the consumed flesh was then rinsed, as 

per guidance from FSA. 

Initial sample processing conditions for produce sample types: 

Rinse outside of whole fruit/slice of meat or 25g if sample weighs less for example, 

blueberries (25ml rinse buffer): 

• Apples 

• Pears 

• Nectarines 
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• Peaches 

• Plums 

• Strawberries 

• Blueberries 

• Raspberries 

• Cherry tomatoes/tomatoes 

• Cucumber – use 50ml rinse buffer 

• Lettuce 

• Red Pepper  

• White/Black grapes 

• Ham 

• Corned Beed 

• Raisins 

• Olives 

Peel and rinse whole interior (25ml rinse buffer): 

• Banana 

• Orange 

• Small citrus (for example, satsuma/mandarin/clementine) 

• White onion 

• Grapefruit – use 50ml rinse buffer 

• Carrot 

Cut into with scalpel and rinse 25g interior flesh: 



Page 30 of 206 

 

 

 

• Melon 

• Watermelon 

• Pineapple 

• Kiwi 

• Mango 

• Avocado 

Juice - centrifuge sample directly: 

• Orange Juice 1ml 

• Apple Juice 15ml 

 

Solid samples were placed into ziplock bags and 25ml/50ml rinse buffer (1x TE with 1.2% 

(v/v) Triton X-100 and 3% (v/v) antifoam) was added. The bag was shaken gently (soft 

fruits/meats), or the fruit was rubbed in the buffer for approximately 30 seconds. The buffer 

was transferred to a 50ml Falcon tube and centrifuged at 10,000 x g for 10 minutes to 

obtain a pellet 

Liquid samples were centrifuged directly to obtain a pellet. For orange juice, which tended 

to generate more sediment than apple juice, 1ml was centrifuged at 10,000 x g for 10 

minutes. For apple juice, 15ml was centrifuged at 3,430 g for 10 minutes (lower speed due 

to larger volume requiring a centrifuge and rotor with lower maximum speed). 

All samples from this point underwent the same extraction procedure for gram positive 

bacteria using the Qiagen DNeasy Blood and Tissue Kit following the manufacturer’s 

protocol as follows: 

The supernatant was removed and 180µl lysis buffer (20 mg/ml lysozyme in 1 x TE buffer 

pH 8.0 with 1.2% v/v Triton X-100) was added to the resulting pellet. In cases where a 

large pellet was obtained, more lysis buffer was added and volumes of reagents in 
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subsequent steps were adjusted upwards accordingly. Samples were incubated at 37°C 

and 400rpm in a thermomixer for a minimum of 30 minutes. Following incubation, 25µl 

proteinase K and 200µl buffer AL were added, mixed thoroughly by vortexing, and 

incubated at 56°C and 550rpm in a thermomixer for a further minimum of 30 minutes. 

Ethanol (96-100%, 200µl) was added to the sample and again mixed thoroughly by 

vortexing. The mixture was pipetted onto a DNeasy mini spin column and centrifuged at 

13,000 x g for 1 minute (or longer if the sample was particularly fibrous). The columns 

were then washed by the addition of 500µl of Buffer AW1 and centrifugation at 13,000 x g 

for 1 minute, followed by 500µl Buffer AW2 and centrifugation at 13,000 x g for 3 minutes. 

The flow-through was discarded and the columns centrifuged at 13,000 x g for 1 minute to 

ensure there was no ethanol carryover. The columns were placed in clean 1.5ml 

microcentrifuge tubes and the DNA was eluted by the addition of 100µl of Solution AE to 

the centre of the membrane. Following incubation at room temperature for 5 minutes, the 

columns were centrifuged at 13,000 x g for 1 minute. The eluate was stored at -40°C. For 

each batch of samples processed, an extraction blank was included which comprised 1ml 

rinse buffer processed in the same manner as orange juice.  

2.3.3 Cheese Samples 

The cheese samples were stored at -40°C to enable them to be processed as one batch of 

24 samples. The samples were thawed thoroughly and 1g weighed into a 15ml Falcon 

tube. Initial processing for DNA extraction occurred following (Arcuri et al., 2013). Briefly, 

5ml 2% w/v sodium citrate solution (in water) was added to the tube, vortexed for 1 minute, 

shaken using a MoBio vortex adapter for 10 minutes, followed by further vortexing for 2 

minutes. Samples were then centrifuged at circa 5,500 x g for 10 minutes, the supernatant 

removed, and 1ml 1 x TE buffer (pH 8) added. Tubes were then vortexed again for 1 

minute, the samples transferred to a 1.5ml microcentrifuge tube and centrifuged at 13,000 

x g for 10 minutes, following which the supernatant was removed. The pellet was 

processed for DNA extraction using the QIAGEN DNeasy Blood & Tissue kit following the 

manufacturer’s protocol for gram positive bacteria as for the rinsate samples above, with 

slight variations. Briefly, this entailed addition of 250µl lysis buffer (as above) to the pellet, 
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followed by incubation at 37°C and 550 rpm on a thermomixer for 90 minutes. Proteinase 

K (35µl) and buffer AL (280µl) were added, samples mixed by vortexing, and incubated at 

56°C and 550 rpm on a thermomixer for 90 minutes. Ethanol (96-100%, 280 µl) was added 

to the sample and again vortexed. The sample mixture was added to a DNeasy mini spin 

column and processed as for the rinsate samples with the slight modification of a second 

elution step with an additional 100 µl buffer AE giving a total volume of eluate of 200 µl. 

The column eluate was stored at    -40°C until PCR amplification was performed. An 

extraction blank comprising 5ml 2% w/v sodium citrate solution was processed in the same 

manner as the cheese samples. 

2.4 16S Metabarcoding 

2.4.1 Rationale 

Metabarcoding consists of sequencing a particular "marker gene" common to all of the 

organisms of interest. The DNA sequence of the marker gene must have some highly 

conserved regions, i.e. be near-identical in all of the taxa in order that a segment of DNA 

between two such regions can be targeted for amplification by PCR using cognate DNA 

primer oligonucleotides ("primers"). At the same time, the amplified segment therein (the 

"barcode") must have a sufficiently variable DNA sequence such that it differs between 

taxa. 

In this case, the gene encodes the ribosomal RNA small subunit, also known as the 16S 

subunit in bacteria. The targeted segment is within the V4 variable region of the gene, and 

the amplified segment ("amplicon") between the PCR primers is most commonly 253 

nucleotide base-pairs (bp) in length. 

2.4.2 PCR Amplification 

Prior to PCR, samples were distributed across 6 x 96-well plates for dairy samples and 6 x 

96-well plates for produce samples, ensuring at least two samples of the same type would 

be on the same MiSeq run, and also that samples from a single type were distributed 

across at least two MiSeq runs, to account for any inter-run variation.  
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PCR was performed using 16Sv4 primers in order to amplify bacterial DNA.  PCR 

reactions comprised 0.3mM dNTPs, 0.3µM each of forward and reverse primer, and 0.6 

units Phusion® High Fidelity DNA Polymerase (New England BioLabs) in 1 x HF buffer and 

1µl DNA extract as template in a total volume of 25µl. A positive control sample 

NGSgBlock (synthetic oligonucleotide encompassing primer binding sites for 16S and ITS 

primers) at 0.005ng/µl, and a PCR negative control comprising 1µl molecular biology 

grade water were also amplified alongside the samples for quality control purposes. 

Primers for 16Sv4 (Caporaso et al., 2012, Apprill et al., 2015, Parada et al., 2016, Walters 

et al., 2016) were: 

Nex_16S_515F 

(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGYCAGCMGCCGCGGTAA) 

Nex_16S_8067R 

(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACNVGGGTWTCTAAT) 

Nextera tag sequences are highlighted in bold. These allow the index tags to be added to 

the samples during library preparation to allow discrimination of individual samples 

following sequencing. 

Samples were amplified with the following ‘touch down’ thermocycling conditions on a 

BioRad C1000 thermal cycler: 

Initial denaturation at 98°C for 2 minutes, followed by 22 cycles of denaturation at 98°C for 

20 seconds, primer annealing at 65°C for 45 seconds decreasing 0.5°C per cycle down to 

54°C, extension at 72°C for 60 seconds, then a further 8 cycles of 98°C for 20 seconds, 

54°C for 45 seconds, 72°C for 60 seconds, followed by a final extension at 72°C for 10 

minutes and hold at 4°C. Total number of cycles was 30. 

Following thermocycling, amplification success was measured by visualisation of 

amplicons on agarose gels containing 0.1 µg/ml ethidium bromide (Sigma). Five microlitres 

of the PCR reaction was added to 1 µl 6X Orange DNA Loading Dye (ThermoFisher) and 

electrophoresed through a 1% agarose gel in 1X TBE buffer for 1 hour at 140V. Amplicons 
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were visualised on a UV transilluminator and verification of correct amplicon size was by 

comparison to a DNA size standard ladder (Quick Load DNA Marker Broad Range - New 

England BioLabs).  

Following gel visualisation, 4 critical points were checked: 

• Ensure amplicon bands of the appropriate size (450 – 500 bp for 16SV4) are 

present in the samples. 

• Ensure an amplicon band is present in the positive control. 

• Ensure there is an absence of bands in the PCR negative control. 

• Ensure there is an absence of bands in the extraction blanks.  

The proportion of samples with a visible band after PCR amplification was relatively low 

(55% dairy samples generated visible amplicons, 65% of produce samples generated 

visible amplicons). However, with no a priori information about what proportion of samples 

should generate high quality amplicons all samples were taken forward for sequencing. 

2.4.3 Sequence Library Preparation 

Library preparation took place based on the Illumina protocol for 16S Metagenomic 

Sequencing Library Preparation. Firstly, the remaining 20µl amplicon for each sample 

underwent a size-selection magnetic bead clean up to remove unincorporated PCR 

components and any small non-specific products (for example primer-dimers). Briefly, 16µl 

AMPure XP (Agencourt) magnetic beads were added to 25µl PCR reaction and mixed by 

pipetting. After incubation for 5 minutes at room temperature, samples were placed on a 

magnetic stand for 2 minutes to pellet the beads. The supernatant was removed and the 

beads washed twice with 200 µl freshly-prepared 80% ethanol, incubating for 30 seconds 

after addition of the ethanol before removal. Following the second wash, the samples 

remained on the magnetic stand for 5-10 minutes until the beads were dry. Samples were 

removed from the magnet and either 52.5µl or 25.5µl molecular biology grade water added 

(smaller volume added to less concentrated amplicons – as judged by gel band intensity). 

The beads were resuspended by pipetting and incubated at room temperature for 5 



 

Page 35 of 206 

 

 

 

minutes. Samples were then replaced on the magnetic stand and the beads allowed to 

pellet for 2 minutes. The cleared supernatant (50µl or 22µl depending on resuspension 

volume) was transferred to a clean 96-well plate prior to indexing PCR. 

Index PCR was performed using Illumina Nextera XT Index Kit v2 dual index adapters. 

PCR reactions comprised 0.3 mM dNTPs, 5µl each of N7 and S5 adaptors from the index 

kit, 1mM MgCl2. and 1 unit Phusion® High Fidelity DNA Polymerase (New England 

BioLabs) in 1 x HF buffer and 5µl cleaned amplicon as template in a total volume of 50µl. 

An index negative was included which comprised 5µl molecular biology grade water. 

Samples were index amplified with the following thermocycling conditions on a BioRad 

C1000 thermal cycler: 

Initial denaturation at 95°C for 3 minutes, followed by 8 cycles of denaturation at 95°C for 

30 seconds, adapter annealing at 55°C for 30 seconds, and extension at 72°C for 30 

seconds, followed by a final extension at 72°C for 5 minutes and hold at 12°C. 

Indexed samples (or ‘libraries’) then underwent a second magnetic bead clean to remove 

unincorporated PCR components. The protocol was as for the first-round bead clean with 

the exception of bead volume and elution volume. For the index PCR bead clean, 56µl 

AMPure XP magnetic beads were added to the 50µl index PCR reaction, and following 

bead drying, 27.5µl molecular biology grade water was added to resuspend the beads with 

a final volume of 25µl supernatant being transferred to a clean 96-well plate following bead 

pelleting. 

The qualities of the libraries were then assessed by quantifying all libraries using either a 

Qubit™ dsDNA HS Assay (Invitrogen) and measuring library concentration on a Qubit™ 

fluorometer, or a Quant-iT™ Picogreen™ dsDNA Assay Kit (Invitrogen) and measuring 

library concentration on a Fluoroskan Ascent plate reader (Thermo Scientific).  In addition, 

a selection of high and low quantifying libraries plus all controls (i.e. PCR positive, PCR 

negative, extraction blanks, index PCR negative) were run on an Agilent Technologies 

TapeStation 2200 using HS D1000 tapes, size ladder and sample buffer.  
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Following quantification, 3 critical points were checked:  

• Ensure the extraction blanks and PCR negative controls are below 30% of the 

mean sample values. 

• Ensure the positive control is at least 10 ng/µl. 

• Ensure the majority of samples are above 10 ng/µl. 

Following TapeStation, 3 further critical points were checked: 

• From the traces, ensure the libraries have peaks 300 – 800 bp in size and of the 

expected shape for amplicons. 

• From the traces, ensure the absence of peaks at circa 100 – 150 bp as this could 

indicate the presence of primer dimers following incomplete removal, and a second 

bead clean up may be required. 

• From the traces, ensure there is minimal peak presence at the amplicon size in the 

PCR negative, index negative, and extraction blank.  

Once the quality of the libraries had been assessed, the libraries from two 96-well plates 

(192 samples maximum including extraction blanks, positive and PCR negative/index 

negative controls which can be inspected for indications of contamination, for example 

high bacterial read counts in negative controls) were pooled in equimolar amounts to 

create a 20nM library pool in a 1ml total volume. 

The pool was quantified using a Qubit™ dsDNA HS Assay to determine the actual 

concentration, and the average size of the pool was determined by running the pool on the 

TapeStation. These were then used to dilute the library pool to 4nM in preparation for 

running on the Illumina MiSeq. 

2.4.4 MiSeq 16S Amplicon Sequencing 
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Libraries were then sequenced on an Illumina MiSeq sequencer, using the MiSeq Reagent 

Kit V3. A total of 10 pmol sample pool and 10% PhiX was loaded on to the machine for 

sequencing.  

2.5 16S Amplicon Sequence Analysis 

2.5.1 Microbial Community Analysis 

This analysis served to confirm the presence of amplifiable and identifiable bacterial DNA 

in all of the samples, while providing qualitative indications about the relative abundance of 

bacterial versus host DNA. A further purpose was to provide one source of evidence of the 

presence of any priority taxa (foodborne pathogens of concern which warrant further 

investigation), since in principle the methodology provides the taxonomic origin of all of the 

DNA fragments sequenced. This complemented a more targeted approach to detection of 

these priority taxa (2.5.2). 

1001 samples were thus processed using Qiime2 (Bolyen et al., 2018), a decentralised 

microbiome analysis package, which contains a number of useful tools that are used to 

analyse High Throughput Sequencing data. A bioinformatics workflow is shown in Figure 

1, which outlines the analysis steps that are undertaken. 
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Figure 1. Qiime2 analysis pipeline used to identify taxa in the 1001 ready to eat samples. 

Figure 1 describes the pathway through the Qiime2 pipeline, which is described in more 

detail below. Firstly, paired end fastq files are imported into Qiime2. Sequences are then 

trimmed by the cutadapt software tool (Martin, 2011), which looks for primers in the 

sequences and trims them. In addition to this, any sequences which are shorter than 50 
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nucleotides are removed so as to exclude erroneous sequences from passing through to 

further analysis. Sequences are then denoised using Dada2 (Callahan et al., 2016), which 

attempts to correct sequencing errors, where possible, to determine real biological 

sequence variants (ASVs). Any sequences which were shorter than 160 nucleotides were 

discarded. This threshold was chosen so that host sequences (such as cow or pig 

mitochondria) would be included in the final dataset which can be used to infer the relative 

proportion of bacteria to host DNA. Sequences were also quality filtered and joined, and 

an initial chimera removal step is performed. Chimeras are then checked for again using 

the Vsearch tool (Rognes et al., 2016), and a feature table file and representative 

sequence file is produced. Features are then classified using Vsearch, with the Silva 

database (Quast et al., 2013) providing taxonomic information. Finally, bar plots are 

produced, which detail the relative abundance of each taxon per sample (this data can 

also be view as a table for exact read numbers). 

2.5.2 Priority Taxon Detection 

In addition to the more conventional analysis described above, a targeted approach to 

detecting the priority taxa was undertaken. This does not constitute part of the AMR study 

itself, and was for food-safety considerations (see 1.2 Aims and objectives); it is therefore 

summarised briefly here, and described in more detail in Appendix 1A. 

The reason for supplementing the standard, general approach to determining which 

bacterial taxa are present (2.5.1) is essentially that no such methods are flawless, and 

false-negatives may result, especially if the frequency of amplicon sequences 

corresponding to a taxon of concern are very low. Further, the standard methods will 

generally classify the amplicon data to bacterial genus level and no further, whereas in 

some particular cases it may be possible to narrow down the origin taxa to one of a small 

number of species of interest within the wider genus. We therefore took a parallel, 

complementary approach, targeted towards the taxa of concern (various foodborne 

pathogens specified at the genus and species level). Full details are in Appendix 1A. 
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2.6 Selection of Samples for Metagenomic Sequencing 

2.6.1 Selection of Samples for NovaSeq Sequencing 

We had the capacity to sequence 256 samples. Hence, a subset of 256 samples were 

selected for sequencing. The selection was weighted towards sample types that were 

more likely to provide a larger number of bacterial reads, and hence a larger number of 

ARG bacterial reads if ARGs were present. i.e. sequencing was directed towards sample 

types with the greatest power to discriminate between ARG presence and absence in 

bacteria present.  

Based on the results of the 16S metabarcoding analysis, food types were separated into 

food types with a high proportion of reads of bacterial origin, food types with a low 

proportion of reads of bacterial origin, and food types showing a continuum of 

bacterial:host DNA. Food types for metagenomic sequencing were then weighted such 

that 80% of samples come from the high bacteria and continuum food types, and 20% 

come from the low bacteria food types. Samples were randomly allocated from within 

these types. This was done in order to focus on those foods which are most likely to give 

information about ARG content (note, NOT those which are most likely to have ARGs), 

and not on those foods where we are unlikely to get information on ARG content (note, 

NOT those which are unlikely to have ARGs). This is somewhat analogous to limits of 

detection of tests – directing testing towards sample types where our test has a better limit 

of detection. 

This design still permitted the sequencing of a minority of samples from the foods where 

we are unlikely to get much information about ARG content (i.e. those with low proportions 

of bacterial 16S sequences), but it was felt that i) it would be useful to some extent for 

checking the validity of our upstream decision making, and ii) that this would allow some 

highly consumed food types to be sequenced that would otherwise be omitted (for 

example bananas). 
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Where available, a duplicate sample pair was sequenced for each food type. We also 

sequenced ten samples that were technical fails for 16S sequencing, to check whether 

failure of 16S sequencing is a good predictor of failure of metagenomic sequencing. 

The number of samples for each food type selected for NovaSeq sequencing are shown in 

Table 13.  

2.6.2 Selection of Samples for PromethION Sequencing 

The sequence data generated by the PromethION was not intended to be used for burden 

estimation, but to gain insights into the additional benefits to be gained from using long-

read sequencing technologies. As such there was no requirement to stratify by 

consumption or select samples randomly. That being the case, 24 samples were picked 

based on a preliminary ARG assessment using DeepARG on contigs assembled using 

MEGAHIT (Li et al., 2015) (Data not shown), to obtain samples showing both high and low 

levels of putative co-localisation, high and low ARG richness, and a variety of sample 

types. 

2.7 Metagenomic Sequencing 

2.7.1 NovaSeq Library Preparation 

The 256 samples selected for NovaSeq sequencing underwent Illumina Nextera Flex 

library preparation (now Illumina DNA Prep) following the Illumina protocol (document 

1000000025416 v 7 May 2019). Briefly, the DNA undergoes fragmentation and addition of 

Nextera tags in a single enzymatic step (the Nextera tags being the same sequence as 

above on the 16S primers). Unique dual index adaptors were added via a PCR reaction, in 

a similar way to the amplicon index PCR, followed by a double-sided bead purification of 

the libraries to remove any very small or very large fragments. The libraries were 

quantified as before using a Quant-iT™ Picogreen™ dsDNA Assay Kit (Invitrogen) and 

measuring the library concentration on a Fluoroskan Ascent plate reader (Thermo 

Scientific). In addition, a selection of high and low quantifying libraries plus the index PCR 
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negative were analysed on the Agilent Tapestation using HS D5000 tapes, size ladder and 

sample buffer. 

Following TapeStation analysis. 2 critical points were checked: 

• The index PCR negative was below 10% of the mean sample values 

• The majority of samples were above 10ng/µl. 

Three further critical points were checked from the TapeStation traces: 

• Ensured the libraries have peaks between 350 – 800bp 

• Ensured the absence of smaller sized peaks 

• Ensured the absence of peak presence at the libraries size in the index negative 

Once the quality of the libraries had been assessed, the libraries were pooled in equimolar 

amounts to create a 20nM library pool in a 1ml total volume. The pool was quantified using 

a Qubit™ dsDNA HS Assay to determine the actual concentration, and the average size of 

the pool (approximately 370bp) was determined by running the pool on the TapeStation. 

2.7.2 NovaSeq Sequencing 

Following confirmation of the quality and concentration of the library, the prepared 

sequence library was couriered on ice to Newcastle University. Clustering QC was carried 

out on an illumina MiSeq using Reagent Kit V2 Nano. The library was then prepared for 

sequencing according to the NovaSeq 6000 Sequencing System Guide using two 

NovaSeq S2 300 cycle (2 x 150bp) Flowcells. Sequence data in fastq format was 

submitted to Fera via recorded delivered of a portable hard drive. 

2.7.3 PromethION Library Preparation 

The 24 samples selected for long-read sequencing on the PromethION were prepared 

using the native barcoding genomic DNA sequencing kit (SQK-LSK109; Oxford Nanopore 

Technologies) with expansion kits EXP-NBD104 and EXP-NBD114 (Oxford Nanopore 
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Technologies) according to the manufacturer’s protocol. Briefly, the double-stranded DNA 

fragments were initially end-repaired and dA-tailed before being ligated to barcodes. The 

barcoded libraries were quantified using the Qubit dsDNA HS Assay Kit (Invitrogen) and 

Qubit fluorometer (Invitrogen) before being combined in equimolar amounts to form a 

single pool. Sequencing adapters were then ligated onto the pooled DNA. The DNA pool 

profile was analysed using the Agilent Genomic kit through the Agilent TapeStation system 

(Agilent) according to the manufacturer’s protocol in order to assess the average library 

size in base pairs (799bp). The library was also again quantified using the Qubit dsDNA 

HS assay in order to determine, along with the library size, the concentration of library as a 

range of 5-50fmols can be loaded onto the PromethION flow cell.  

2.7.4 PromethION Sequencing 

The prepared library was divided into two in order to run two flow cells. The two library 

samples (6.8 fmols per sample) were loaded onto two PromethION flow cells loaded into 

the PromethION sequencing device (Oxford Nanopore Technologies). The sequencing run 

was performed over a maximum of 72 hours. 

2.8 Bioinformatic Analysis of Metagenomes 

2.8.1 Overview of metagenomics sequence data analysis 

The principal aim of the analysis of metagenomic sequences from the food samples is to 

identify antimicrobial resistance genes (ARGs) present, with presence/absence data for 

each ARG being used as the input to the estimation of ARG burden (section 2.9). There 

are a number of prerequisite quality control and other processes to this end. 

A further aim was to identify instances of co-location of genes, i.e. where two or more 

ARGs occur close to each other on the same segment of DNA. 

An incidental analysis was to detect sequence-based evidence of the presence of any of a 

number of foodborne pathogens of concern, in order that any unexpected food-safety 

concerns would not be missed and could be acted upon by the FSA if necessary. 
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Several additional aims constitute assessments of the sequencing bioinformatics 

methodology. In short, to answer questions on whether the DNA extraction, the volume of 

sequencing (referred to as "depth") and each data analysis method are suitable to 

determine the required information about ARGs, for each food type. 

Overall, the metagenomics analyses used the following sequencing data (section 2.7) as 

inputs, with the characteristics of each of the below sequence data described in Appendix 

3b: 

1. The short-read sequence data (Illumina NovaSeq), unassembled 

2. Longer "assemblies" ("contigs") obtained by assembling the short reads 

3. The long-read sequence data (ONT PromethION; for a limited number of samples 

only) 

4. Overlapping long-read PromethION sequences can also be expected to occur, so 

these too are assembled into contigs. 

2.8.1.1 Summary of analysis of the different types of sequence data 

The steps involved in the detection of likely ARG sequences in the above sequence data 

are as follows. 

• Basic quality-control, which consists mainly of trimming off any poor-quality bases 

from the ends of each read, and completely rejecting some reads if appropriate. 

• Removal of DNA sequence reads of likely "host" origin. Although the laboratory 

methodology aims to maximize bacterial DNA and avoid the DNA of the food 

organism, there is an inevitable tendency for some plant or animal DNA to be 

present in the sample. 

• Analysis of the short reads (input data type 1 above), to identify ARG sequences. 

• Assembly of the short reads to create "contigs" (input data type 2) 

• Assessment of the quality and consistency of the assembled contigs, by a 

technique known as "back-mapping" (see below). 
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• Analysis of the assembled contigs to identify ARG sequences (full-length gene 

sequences will be detected, while some others may only be partially present on the 

ends of contigs). 

These are described in more detail in the following sections. 

2.8.2 Quality Control and Host Genome Filtering 

The workflow for quality control and production of sequence data for ARG analysis is 

shown below (Figure 2). Raw sequence data was trimmed to a minimum quality score of 

20 and a minimum length of 50 using the Sickle (Joshi and Fass, 2011) software. 

In order to remove sequencing reads which originated from a non-bacterial source, i.e. the 

food "host genome", the trimmed sequence data was then compared to a relevant host 

genome, where available, using the bwa (Li, 2013) software, which performs "mapping" of 

reads to reference sequences. Refer to Appendix 2 

(metagenomics_sequencing_by_sample.xlsx) for genomes used for each sample. For 

example, the cow genome is used for dairy products and corned beef; many fruit and 

vegetable categories have a publicly available genome sequence for the plant species. 

Samples which had no suitable host genome readily available were mapped to a related 

genome instead. Unmapped reads were then extracted using the samtools (Li et al., 2009) 

software. These reads were then assembled (see below) using MEGAHIT (Li et al., 2015). 
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Figure 2. Flowchart outlining the bioinformatics analysis prior to ARG detection analysis. 

2.8.3 ARG-detection software and reference databases 

As proposed in the original schedule, we used two third-party software tools and 

associated databases for identification of ARGs from DNA sequence data. Since 

submitting the proposal, our evaluation of available bioinformatics resources remains that 

use of more than one tool is recommended, and that the two software tools/databases are 

still appropriate. These programs are: 

• RGI/CARD (Alcock et al., 2020): RGI is the software which uses the curated CARD 

database. 

• DeepARG (Arango-Argoty et al., 2018), which also comes supplied with a dedicated 

database. 
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The CARD database is long established, highly cited and has been used as the basis of 

other ARG-prediction tools and databases - indeed the DeepARG database is partly 

constructed from it. We regard the CARD database as the standard, but other researchers 

have built upon it and created resources which potentially contain a broader range of 

annotated ARG sequences. This was the motivation behind DeepARG, which uses 

machine-learning methods (specifically, a deep-learning approach) with the aim of high-

confidence detection of variant ARG sequences which may have never been observed 

before. We therefore regard DeepARG results as generally more speculative, and indeed 

have used these results in effect as supporting data to the principal (RGI) results (see 

below).  

However, there is also the consideration that any single reference database is unlikely to 

be comprehensive. In general, the use of two (or more) tools/databases provides a greater 

perspective than one alone, and helps to identify any systemic problems which might 

occur with the ARG-prediction analysis. 

Further information on ARG databases, categories and names of ARGs can be found in 

Appendix 3c 

2.8.4 Two approaches to analysis of the read data: unassembled reads versus 
assemblies 

2.8.4.1 Unassembled Reads 

One approach to the analysis of metagenomics sequencing data for the detection of ARGs 

is to compare each sequencing read to a database of ARGs. This has the advantage that 

each read of sufficient quality is used to identify ARGs; a disadvantage is that the short 

read nature of this approach may be more likely to lead to false positive ARG 

assignments, since shorter fragments are less likely to discriminate between ARGs and 

non-ARGs. Where an appropriate match is found, this ARG is assigned to that sequence.  
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For this approach, RGI (ran in BWT mode, referred to as “RGI BWT” throughout) and 

“DeepARG-SS” were used. We note that at the time we performed these analyses 

(beginning May 2020), RGI BWT was formally still beta-release software. 

Further information describing the methodologies and limitations of unassembled read 

analysis can be found in Appendix 3d. 

2.8.4.2 Assembly of reads 

An alternative and widely used approach to metagenomics sequence analysis is to 

assemble the reads into sets of longer contiguous sequences (“contigs”). Contigs have the 

advantage of being longer, more complete and more accurate than unassembled reads, 

which will ultimately provide more confidence when identifying ARGs. One notable 

drawback, however, is that fewer contigs may be assembled if there is insufficient 

sequencing depth. Here, we refer to the sets of assembled contigs for each sample as 

"assemblies". 

ARGs in the assemblies are identified by comparing contigs to a database of ARGs, using 

the principal mode of RGI ("RGI MAIN") and the long-sequence specific version of 

DeepARG, "DeepARG-LS". 

Further information describing the methodologies and limitations of assembled read 

analysis can be found in Appendix 3d 

2.8.5 Metagenome Assemblies 

The main purposes of performing metagenome assembly are: 

• to assemble the short reads into at least gene length sequences, which in general 

makes recognition of AMR (or any) genes more reliable 

• to provide information on co-location of AMR genes and other AMR-relevant 

sequence features (various mobile genetic elements, for example). 

2.8.5.1 Expectations of metagenome read assembly 
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The outcomes of metagenome assembly are difficult to anticipate. The number of 

assembled sequences ("contigs") and their length distribution depend on a number of 

factors, as does the total proportion of the short read-sequenced nucleotides which 

correspond to any of the contig sequences. These considerations are expanded upon in 

the Discussion. Further information describing the distribution of contig length and the 

detection of ARG sequences in assembled metagenomes be found in Appendix 3e 

2.8.6 Quantitation 

2.8.6.1 Unassembled reads 

It is not uncommon for ARG-incidence publications to report unnormalised read counts, i.e. 

expressed only as a proportion of total reads. Other studies employ a length-based 

normalisation, while more rigorous approaches to normalisation, following the same 

tradition as RNA-seq, have also been gaining ground in the literature. 

However, as described in Section 2.9, the subsequent modelling work requires either 

reliable true-positive, false-positive error rates in order to make use of incidence 

frequencies (such as based on read counts); or else, must be treated in a binary fashion, 

i.e. presence (anything non-zero) versus absence. Therefore, we have performed rigorous 

read-by-read assessment of all samples, to attempt to eliminate false positive matches 

(read ↔ reference alignments). This is described in more detail in Sections 2.8.7.2 and 

2.8.7.3. 

2.8.6.2 Assemblies 

To obtain frequencies of each contig of an assembly, more sophisticated methods are 

necessary. Complexities arise from the fact that some mapped positions may be 

ambiguous, not all mapped positions make perfect matches, the frequencies of back-

mapped reads may vary considerably along the contig's length, and other factors. In short, 

methods which effectively model the process in order to produce the best estimate of each 

contig's frequency in the sample, are required. 
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We used KALLISTO (Bray et al., 2016) which both performs the mapping and estimates 

"true" quantities from the results (this has been used in other metagenomics studies, for 

example (Bell et al., 2018)). The metric reported by KALLISTO is "transcripts (of the gene 

in question) per million total transcripts" (TPM). 

We emphasise that the downstream modelling described here requires reliable 

presence/absence data, rather than quantitative data. Therefore, these data were not 

used quantitatively for the modelling. 

However, the back-mapping results serve as a good indicator of consistency and quality of 

the assemblies. As described later, we performed back-mapping to both the full-length 

assembled contigs, and to the predicted ORFs therein. 

For a small number of long contig sequences, we attempted to identify the species of 

origin using the Progenome classifier software (Mende et al., 2020, Mende et al., 2013). 

This is designed for single genome sequences, by typing using as many of 40 universal 

prokaryote marker genes as can be identified. 

2.8.7 Screening RGI BWT read-ARG matches 

As noted previously, the downstream modelling described here requires reliable 

presence/absence data. The simplest approach would be that presence of an ARG is 

indicated by one or more sequence reads which have been identified by the ARG-

prediction software as being sufficiently similar to (part of) the sequence of that ARG. A 

more stringent approach would be to require a minimum of both reads of a single pair to 

match, and for more than one observation (read pair) to occur in the sample. Moreover, 

our a priori assumption was that in any given sample, a non-zero number of matches may 

be false positives, and that some of those may be easily recognisable as such on 

inspection. For these reasons, we applied strict screening criteria to the results output by 

the software, as described in the following sections.  

2.8.7.1 RGI BWT output  
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RGI BWT outputs a "per-ARG" table for each sample, where each row represents a 

distinct ARG (in the CARD database). (There is also an analogous table at the allele rather 

than ARG level). 

Here, we briefly describe this output and other output produced by RGI BWT, to clarify 

how we have processed this data. 

RGI BWT creates the following: 

• Various intermediate files which arise as part of the RGI processing. 

• Tables (one row per ARG) which summarises averaged metrics (such as mean 

quality of matches between short-read pairs and the reference sequence(s) for that 

ARG). 

In each row of the ARG table for a sample, the number of matching reads is specified in 

various contexts (such as wholly-matching and partially-matching; Appendix 3 contains 

further information on this). This effectively provides relative quantitative information, within 

the sample. Various other columns state some ARG-specific attributes (cross-references 

to ARO accessions, etc) and metrics describing the matches between the reads/read pairs 

and the ARG reference sequence (such as average coverage of the reference sequence 

in terms of percentage length and average length; average mapping-quality score of 

completely-matching reads; etc). 

These various per-read (or per-read pair) quality metrics are necessarily averaged, since 

there is no per-read data. Therefore, individual read ↔ ARG reference matches cannot be 

inspected, and nor can they be screened further for the purpose of additional quality 

control. 

However, a component of the temporary output of RGI BWT is a standard SAM-format 

alignment file (The SAM/BAM Format Specification Working Group, 2021), created by the 

short read-mapping software BowTie2 (Langmead et al., 2009, Langmead and Salzberg, 

2012) This file contains details for each read that is mapped to (matched with) a reference 

ARG sequence. RGI BWT then uses this data to create the various summary tables. 
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The RGI BWT process and its output is described in more detail in Appendix 3. That also 

includes further information on how we assessed all the read-to-reference matches, and 

discarded some of these based on the details of each match, contained in the SAM file. 

2.8.7.2 Assessing causes of identifiable false positives 

Attributes of the read ↔ reference mapping to be considered can be broadly categorised 

as follows: 

• Lengths of matching read segments and any mismatching segments 

• Uniqueness of the mapping 

• Plausibility of the sequences themselves irrespective of whether the read and 

reference sequences are very similar 

• Sequence identity of the matching read segments. 

Lengths of segments: When reads are mapped by BowTie2, it is common for segments 

(at either or both ends) to be "clipped" and omitted from the mapping, because they fail to 

match the reference sequence sufficiently well. There are essentially two reasons for this: 

part of the read extends beyond the end of the reference sequence ("overhangs"), i.e. that 

segment represents genomic sequence which is not part of the gene in question; or the 

segment is too dissimilar to the reference. Unless the latter type of segment (referred to 

here as an "unmapped segment") is very short, this is an indication that overall, the read 

does not represent a good match with the reference, even if the matched (mapped) 

segment is a perfect match. Note that mapped segments are not necessarily identical to 

the aligned part of the reference, nor should they be expected to be in all cases. The 

mapped and unmapped segments collectively constitute the parts of the read which 

notionally should have been aligned to the reference (whereas the overhanging segments 

would not be expected to be). 

Mapped, overhanging and unmapped segments are illustrated in Appendix 3. Irrespective 

of the presence of unmapped or overhanging segments, the mapped segment needs to be 
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of sufficient length to have discriminatory value, in terms of uniquely identifying an ARG. 

This consideration is not only of discriminating between reference sequences in the 

database (CARD), but also in general; for example, a very short segment might occur not 

only in different bacteria but also in various other kingdoms of life. Further, we considered 

the relative length of any unmapped read segment in comparison with the total mapped + 

unmapped length. 

Uniqueness: Some reads may equally well match multiple reference sequences; in brief, 

whether or not a read was uniquely mapped is apparent in the MAPQ score assigned by 

BowTie2. RGI BWT appears to ensure that only a single mapping (or no mappings) is 

present for each read, indicating that for some reads, equally good matches may not 

appear. Our approach is to discard these ambiguous reads, even though this may lead to 

some false negatives. This is part of the overall rationale to retain only reads which can be 

clearly matched to an ARG. 

Plausibility of read and matching reference sequences: The issue here concerns long 

homopolymeric segments and also related long segments of sequences which are of very 

low complexity (for example dominated by one nucleotide base but interspersed with 

occasional instances of a different base). In terms of absolute frequencies, such segments 

are not rare in the sequence data sets and are also a known issue (especially with poly-G) 

with two-colour sequencing platforms including NovaSeq (De-Kayne et al., 2020).  

Even if there were only a single long homopolymer sequence (i.e. assumed to be 

erroneous) in the reference database, then in a large NGS data set there are likely to be 

many instances of the same homopolymer sequence, which will match the reference well. 

This will result in an inflated count of this reference, and indeed often a false positive in 

terms of presence versus absence. Low-complexity segments can also match 

homopolymers (or each other) very well even if not completely identical. 

Homopolymers in mapped read segments are easy to detect; low-complexity sequences 

require a different approach such as a sequence entropy calculation (here we use an 
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entropy calculation on the overall proportion p of each base, i.e. ∑ -px ln(px) for x = { A, C, 

G, T } ). 

Sequence identity of the matching read segments: The required level of sequence 

identity between the mapped read segment and the aligned reference is conditional on the 

nature of the resistance attributed to the ARG. In brief, unless the sequence segments are 

very short, the levels of sequence identity that will necessarily occur for most mapped 

segments will be sufficient to infer homology and often the likely function. That will not 

always amount to identifying a particular ARG, but high identities, even if considerably 

below 100%, will often indicate that the ARG or a variant thereof has been identified. 

However, some ARGs, referred to as "variant-mutation ARGs" have sequences near-

identical to those of non-ARGs, but exhibit a small number of SNPs (possibly one) which 

prevent some antibiotics from binding to them. Besides these target molecule-encoding 

genes, it is possible that other AMR types are conferred by such mutations (the range of 

antibiotic substrates of degrading enzymes could conceivably be broadened in this way). 

These "variants" are curated in CARD, and when assessing reads mapped to such 

references, 100% identity is required. 

The ARO ontology (maintained alongside the CARD data) under the "determinant of 

antibiotic resistance" branch (ARO:3000000), includes a term ARO:0000031, "antibiotic 

resistant gene variant or mutant". 

Of course, with short-read data, even a 100%-identical match does not usually confirm that 

the referenced AMR gene (AMR variant allele) is present; it merely indicates that that part 

of the gene that was sequenced is consistent with that allele. This can still lead to false 

positives if the sequenced segment of the gene is identical in the AMR and non-AMR 

alleles. Nonetheless our approach is to reject matches only where there is evidence that 

they are not a known AMR variant of the gene (i.e. identity < 100%). 

2.8.7.3 Quality criteria used for screening 

https://www.ebi.ac.uk/ols/ontologies/aro
https://www.ebi.ac.uk/ols/ontologies/aro/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FARO_0000031&viewMode=All&siblings=false
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The retention quality criteria used for screening are as follows; refer to section 2.8.7.2 for 

definitions of the "mapped", "overhanging" and "unmapped" segments. Unless otherwise 

stated, these criteria apply to the mapped segments. 

• Absence of any homopolymers longer than a maximum threshold (12 bp) 

• Sequence entropy of a magnitude greater than a minimum threshold (1.1) 

• MAPQ score of at least a minimum threshold (2) 

• Total length of all unmapped segments does not exceed a threshold proportion 

(25%) of the total unmapped + mapped segments length 

• Mapped segment length of at least a minimum threshold (45 bp) 

• Total mapped segment length of both reads of the pair of at least a minimum 

threshold (75 bp) 

• Conditional upon the AMR type (as annotated by the ARO term), a minimum 

percentage identity between the mapped segment and the aligned reference 

segment (if the ARG is annotated as ARO:0000031 or as any descendant ARO 

term, then the minimum identity is 100%; for all other ARGs, no minimum identity is 

required). 

Excepting the penultimate criterion (the only one which considers reads as a pair), any 

single read which fails any of the above is discarded, irrespective of the performance of its 

paired read. Both reads are discarded if the pair fails the minimum combined-length 

requirement. 

 

With the rationale of requiring independent sequence read observations of each ARG 

within each sample, we applied a final filter on the basis or read-pair counts: an ARG was 

counted as positive only if at least two read pairs passed the previous filters, where both 

reads of the pair mapped to the same ARG. 

2.8.8 Antibiotics of particular concern 
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During the analysis stage and as an addition to the work originally proposed, FSA 

requested that genes encoding resistance to six antibiotics, groups of antibiotics, or genes 

conferring AMR phenotypes of particular concern were flagged. These were; 

• Colistin 

• Methicillin 

• Vancomycin 

• Carbapenem antibiotics 

• Fluoroquinolone antibiotics 

• ESBL (Extended Spectrum Beta Lactamase) ARGs 

The antibiotic resistance literature is vast, and it was beyond the scope and resource of 

the current project to manually assess the antibiotics to which all the genes identified 

conferred or may confer resistance. Instead, it was decided to utilise the ARO ontology, 

which flags the antibiotics to which a particular ARG confers resistance. This is extremely 

useful, although there are a number of limitations to this approach, which largely depend 

on hierarchical level of the antibiotic/antibiotic class of interest. Fluoroquinolone and 

carbapenem antibiotics are directly flagged in the results from RGI (see Appendix 8). 

However, the others were not, and this necessitated an inspection of ARO to identify ARO 

terms that were annotated as conferring resistance to the antibiotics of interest. For 

methicillin and vancomycin, a text search of the ARG names from our analysis for mention 

of these antibiotics was also performed. 

ESBLs were even more challenging, as there is not a single, agreed definition of ESBL 

(Paterson and Bonomo, 2005), and ESBL phenotype is not consistently annotated within 

ARO. For these genes it was agreed with FSA to highlight genes for which some alleles 

can confer an ESBL phenotype and label them as potential ESBL genes. These were 

CTX, SHV, TEM, OXA, VEB, GES, PER, IBC, BES and TLA. 

Finally, for vancomycin and colistin, it was observed that a number of genes which are 

known to confer resistance were present, but not flagged by the ARO terms. In these 
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instances, van genes (for vancomycin resistance) and MCR genes (for colistin resistance) 

were identified by a further text search. 

It is therefore possible (and indeed likely) given the limitations of the ARO that some genes 

conferring resistance to these antibiotics of interest are present but have not been 

identified. However the approach outlined above was the only feasible way to undertake 

this analysis given the starting point of the project, which was to estimate the presence 

and burden of AMR genes, rather than of resistance to antibiotics. 

2.8.9 Priority Taxon Detection 

Refer to 1.2 Aims and objectives. This part of the analysis does not relate to the AMR 

study, and was performed on request by the FSA for food-safety reasons. Potentially, the 

results could be used in future to relate to findings regarding ARGs in the samples 

concerned, but that was not an objective here. 

The object was to identify priority taxa of concern in any samples still within the use-by 

date. At the time of purchase all samples were within the expiry date (if stated) and were 

processed for DNA extraction promptly. The expiry date of only a few samples (such as ice 

cream) had not yet passed by the time the sequence data was available for analysis. The 

analysis used the short-read NovaSeq metagenomics data, and the contig sequences 

assembled from them. 

The list of priority taxa was supplied by the FSA, and was the same as that used for the 

earlier screening of the 1,001 16S metabarcoding data sets (2.5.2): Campylobacter, 

Enterococcus faecalis, Salmonella, Enterococcus faecium, Shigella, Escherichia coli, 

Klebsiella pneumoniae, Listeria monocytogenes, Clostridium botulinum, Staphylococcus 

aureus, Clostridium perfringens and Yersinia enterocolitica. 

Briefly, the procedure followed these steps: 

• Analysis of the unassembled short reads of all samples, using a relatively fast, 

widely used tool designed for this purpose. 
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• For those samples which were still within expiry data and tested positive for any of 

the priority taxa in (1), the following analyses were conducted on all of the sample's 

assembled contigs: 

• Contigs were compared to the sequences of a small number of "classical marker 

genes", i.e. the Multi Locus Sequence Typing (MLST) loci (where available) since 

these are essentially diagnostic of the organisms' DNA 

• Since MLST genes are few in number and are thus often likely to not be sampled by 

metagenomics sequencing due to chance, the contigs were also compared with a 

more general sequence database; many more of the contigs are likely to yield 

databases matches, with the disadvantage that many database sequences may not 

discriminate between taxa, and that the provenance of taxonomic annotation of 

these database sequences is on average much less authoritative than those in an 

MLST database. 

Further details of the methodology are in Appendix 4. 

2.8.10 Assessment of the use of 16S Metabarcoding to screen samples prior to 
metagenomic sequencing 

The 54 samples belonging to food types labelled as 'low bacteria' by 16S sequencing 

(Table 6) were analysed, to see if these same samples also had low bacterial 

concentrations when sequenced metagenomically. The level of bacteria was defined by 

inspecting the distribution of bacteria and host reads across each sample type. ‘Low 

bacteria’ was assigned to food categories that had the majority of the samples with 75% or 

greater host reads. In order to estimate the number of bacterial and host reads in each 

sample, Kraken2 (Wood et al., 2019), a taxonomic sequence classifier, was run on all 256 

samples. Reads counts for any reads which were labelled as either bacteria or unclassified 

were extracted for subsequent analysis. As the supplied Kraken2 database is intended for 

identifying bacteria, archaea and viruses, 'unclassified' hits can generally be attributed to 

host sequence, and thus can be used as a proxy for host sequences. 
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The 10 samples which had failed 16S sequencing QC steps and were selected for 

metagenomic sequencing (section 2.6.1) were also analysed. Total read numbers from 

metagenomic sequencing for all 256 samples were ranked from high to low, and the ranks 

of the 10 'failed' samples were inspected. 

2.8.11 PromethION Data Analysis 

The order of analysis for the PromethION data is shown in Figure 3. 
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Figure 3 Flowchart outlining the main steps taken in the analysis of the long-read data. 

Blue boxes indicate the outputs of bioinformatics tools. Grey boxes indicate the outputs 

relating directly to ARGs and MGEs. 

2.8.11.1 Assembly 

As the average read quality for the run was good, but the total number of reads generated 

was low, it was decided that no quality threshold would be imposed prior to the assembly 

step, therefore allowing all of the reads to contribute towards assemblies. The removal of 

host sequences at this step was also deemed unnecessary, as this would not negatively 

impact the assembly time, and can be subsequently removed after this step. 

The Flye assembler (Kolmogorov et al., 2020) was used to assemble the samples. The 

‘nano-raw’ parameter was used to address the fact that input data had not been error 

corrected, and the ‘meta’ parameter was used to run the assembler in metagenome aware 

mode. Of the 24 samples sequenced, 18 produced sufficient data for assemblies to be 

generated.  

Polishing is a means to increase the accuracy of assemblies, and can be accomplished 

both with short and long reads. Firstly, the long read polishing tool, Medaka, (Oxford 

Nanopore Technologies Ltd, 2018) was used to increase the accuracy of the assemblies, 

before subsequent polishing with the short read polisher, Pilon (Walker et al., 2014). BWA-

MEM (Li, 2013) was used to remove host sequences from the assembled and polished 

data. Prokka (Seemann, 2014) was used to annotate the assemblies with gene references 

where possible. However, as this is low-coverage metagenomic nanopore data, prokka’s 

ability to annotate accurately will be somewhat reduced due to indels (insertions/deletions) 

and homopolymer errors causing incomplete genes to be identified, or possibly entirely 

missed. 

2.8.11.2 DeepARG and NanoARG 
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DeepARG (Arango-Argoty et al., 2018) is a machine learning tool that uses deep learning 

to characterise and annotate antibiotic resistance genes in metagenomes. Due to its deep 

learning nature, DeepARG was used on this initial set of long read data as an 

experimental approach, to evaluate how suited it is to handling the unique problems of 

Nanopore sequencing. NanoARG (Arango-Argoty et al., 2019) is a web service provided 

by the same group as DeepARG, which features an adapted version of the DeepARG 

pipeline. Samples were also submitted to this web service to assess the differences 

between the two analysis pipelines. To identify instances of co-occurrence, AMR genes 

which were identified by DeepARG as belonging to the same contig were extracted, and 

the start and end positions of the ARG were noted. The ACLAME database (Leplae et al., 

2010) was used to check for any Mobile Genetic Elements (MGEs) present in the dataset. 

This was performed by first converting the database into a BLAST (Altschul et al., 1990) 

database, and then running a BLASTn (megablast) search to identify any matches. Due to 

indels and homopolymer errors of Nanopore sequencing, coupled with the low coverage of 

the data, it is difficult to convincingly separate errors from real MGE hits. 

2.8.11.3 Hybrid-Spades vs Meta-Spades Assembler Comparison 

As the amount of data generated from the PromethION was low, assemblies created using 

primarily the long-read data will result in less informative results. To evaluate how long-

read data can instead be used to improve primarily short-read assembly tools, the best 

performing 14 long-read samples were assembled using Spades (Prjibelski et al., 2020) in 

both meta (for metagenomic assembly of illumina short read data) and hybrid (for 

assembly using both long nanopore and short illumina reads) modes. DeepARG was run 

on both assembly datasets, and co-occurrences were calculated. 

2.9 Estimation of population burden 

2.9.1 Dietary Consumption Data 

Data from the UK National Diet and Nutrition Survey (NDNS) were extracted from the UK 

Data Archive (NatCen Social Research, 2019). The data included the same year 1-8 

survey records as used in prioritising the sampling plan, collected between 2008/09 and 
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2015/16, plus the recently added year 9 records (2016/17). Sample weightings were 

recalculated to account for the differences in sample sizes between years. The total 

number of individuals included in the combined dietary dataset is 13350. The NDNS 

sampling strategy ensures these are representative of the UK population, including 

children and adults. The consumptions of the sampled RTE items were extracted for each 

individual, to provide information about the combinations of those items consumed per 

person within the population.  

2.9.2 Assumptions Based on Sample Design 

The sampling strategy is described in Section 2.1.2. It covers sample food types such that 

90% of consumption of RTE foods was covered, and sample numbers were in proportion 

to consumption with a minimum of five samples per food type. The total number of 

samples is 256. While fewer types of dairy were sampled than types of produce, more than 

half of the samples taken were dairy samples. The number of samples of each food type 

taken from each UK region was in proportion to its population. Samples were taken from 

the eight largest supermarket retailers according to market share. Hence the collection of 

samples was designed to be and is assumed to be representative of the overall population 

consumptions of RTE products in the dairy, produce and meat categories. 

2.9.3 Possible Measures Related to AMR Burden in the UK Diet 

We can refer to burden in a single ready to eat food type as the incidence and prevalence 

of AMR genes in that food. In order to compare with other food types, the measures used 

should be consistent between foods. For a single ARG, in general terms we define 

incidence as the presence/absence of the ARG and prevalence as the frequency with 

which it appears. More precise definitions are required depending on whether the 

incidence and frequency relate to a single food type or to the overall population diet as a 

whole. 

For incidence, we identify the ARGs found at least once within the samples of a single 

food type (incidence per food) or found at least once across samples of all consumed 

types (incidence in UK diet) 
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For prevalence, there are two possible quantities of interest. The first is the proportion of 

retail samples of individual ready to eat food types (for example what proportion of semi-

skimmed milk samples in the UK contain a particular ARG or ARG type). Second is the 

prevalence in the UK diet overall (what proportion of individuals are exposed to a particular 

ARG or ARG type). Prevalence in the ready to eat portion of the UK diet is estimated from 

multiple foods and accounts for the consumption amounts of each food type as recorded in 

the UK dietary survey (NDNS). The calculation is defined in equation (1) below. The two 

measures of burden defined here can be further refined by considering subsets of ARGs 

according to classifications of interest. Following discussions with the FSA the following 

were identified as classes of interest and led to separate burden calculations: 

• all ARGs 

• ARG gene families 

• ARGs linked to colistin resistance 

• ARGs linked to carbapenem resistance 

• ARGs linked to methicillin resistance 

• ARGs linked to vancomycin resistance 

• ARGs linked to fluoroquinolone resistance 

• Antibiotic resistant gene variant or mutant 

• Potential ESBL activity 

2.9.4 Incidence Summaries at Sample/Food Level 

First, we estimate the proportion of samples (of a given food type) containing a specific 

ARG. This is consistent with previous literature on measurement of AMR in foods. After 

calculating the incidence of individual ARGs in all samples (and within a food type) the 

following summaries can be derived by simple aggregation 

• Number of ARGs in each single sample, and the between-sample range seen in 

this number.  
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• Number of unique ARGs or ARG families found across all samples of a given food 

type 

2.9.5 Incidence: Total UK Diet 

The 52 sampled food types are consumed within the UK and appear in the NDNS 

consumption diary data. Therefore, the incidence and the number of distinct ARGs in the 

diet can be estimated directly from the data. A lower bound estimate is simply the number 

of unique ARGs combined across all the collected samples. It is possible that others are 

present in the wider diet but not measured due to the limited sample sizes. 

2.9.5.1 Prevalence Calculations, per Food 

At the individual food level, we can compute the proportion of samples containing 

individual ARGs (direct count of samples, relative to the total number of samples obtained 

for any given food type). This is important for understanding which ready to eat food types 

in UK retail are potential sources of AMR, and the relative levels of different AMR genes. 

2.9.5.2 Frequency (Relative Number of Samples) of a given ARG in a Food-Specific 
Dataset 

These can be compared across food categories by plotting or tabulating the data (for 

example see Figure 16). 

2.9.6 Prevalence Calculations, Population Level 

When considering a particular ARG, the prevalence is defined as the proportion of UK 

individuals whose diet contain that ARG. This accounts for the typical combinations of RTE 

products that are consumed by single individuals and also the incidence of AMR found in 

the measured samples. It is relevant to assess how often there is potential for transmission 

of AMR genes in the human gut, and which ARGs are most prominent. Each individual 

consumption is linked to the AMR incidence of the combined samples for the relevant food 

type. This assumption is appropriate when considering the long term prevalence, because 

each individual will consume different products over time. 
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For some individuals, multiple consumptions for the same food type occur within the 

survey. They may be from the same source and have similar ARG profile, or may be from 

different items. If an individual consumes multiple items with the same ARG present, this is 

considered the same as if only one of those items contained the ARG. For the purpose of 

this modelling exercise, it is assumed that there is no aggregation effect (prevalence is 

proportion of individuals, not proportion of eating events). We are also considering the 

overall population, with many different dietary preferences. Individual subgroups with 

special dietary habits, for example vegetarians, could be analysed separately if the AMR 

burden for those subgroups were of particular interest. 

Suppose we have 𝑁𝑁 individuals 𝑖𝑖 = 1,2, … ,𝑁𝑁 in the dietary survey with survey sampling 

weights 𝑤𝑤𝑖𝑖. Consider the food types 𝑘𝑘 = 1,2, … ,𝐾𝐾 (𝐾𝐾 = 52) included in the 256 analysed 

samples. Let 𝑗𝑗 index a particular ARG (𝑗𝑗 = 1,2, … , 𝐽𝐽). We define the incidence indicator 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 

to be 1 if ARG 𝑗𝑗 is present in food 𝑘𝑘 consumed by individual 𝑖𝑖 and 0 otherwise. Another 

indicator 𝐶𝐶𝑖𝑖𝑖𝑖 is set to 1 if food 𝑘𝑘 is consumed by individual 𝑖𝑖 and 0 otherwise. A measure of 

the total prevalence of ARG 𝑗𝑗 can then be defined as 

𝐵𝐵𝑗𝑗 = (1/∑ 𝑤𝑤𝑖𝑖
𝑁𝑁
𝑖𝑖=1 )∑ 𝑤𝑤𝑖𝑖 max

𝑘𝑘
( 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 𝐶𝐶𝑖𝑖𝑖𝑖)𝑁𝑁

𝑖𝑖=1       (1) 

For each ARG, the empirical proportion of all NDNS diets containing the ARG was 

calculated using (1) to estimate 𝐵𝐵𝑗𝑗. Diary survey values for the consumptions of food items 

were used for 𝐶𝐶𝑖𝑖𝑖𝑖. Because all individuals are assumed to consume from the same pool of 

samples over a long time period, 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐼𝐼𝑗𝑗𝑗𝑗 (same for all individuals) where 

𝐼𝐼𝑗𝑗𝑗𝑗 = �1 1 or more samples of food type 𝑘𝑘 contains arg 𝑗𝑗
0 otherwise                                                                     

    

An indication of the sampling uncertainty in these estimates is provided by generating 100 

bootstrap samples (for each food type, re-sampling with replacement from its original 

data). The 100 prevalence estimates were used to plot approximate 95% confidence 

intervals. 
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These uncertainties do not include measurement uncertainty (i.e. in the absence of an 

explicit estimate of the false positive and negative rates associated with the identification 

of ARGS in samples we assume that the detection of the presence of ARGS is reliable)  or 

sampling uncertainty in the dietary consumption surveys. The latter is expected to be 

extremely small compared to the sampling uncertainty in ARG measurements, as there 

are 13350 individuals surveyed. The numbers of RTE foods sampled are much smaller 

and often show variability between measurements (for example as seen in Figure 12). The 

uncertainty intervals are included only to highlight the possible impact of sampling 

uncertainty. Due to the nature of the burden definition in (1), the true proportions are more 

likely to be at the upper end of the interval under the assumption of a low false positive 

rate, because increasing the number of samples for a particular food would only lead to 

higher proportions of diets containing the ARG. 

2.9.6.1 Possible Unquantified Uncertainties 

There are multiple potential sources of uncertainty associated with the sample workflow 

which may affect how representative the list of AMR genes presented in this report are of 

the AMR genes which are present in the largest proportion of UK diets. While these cannot 

be quantified from the data obtained in this study, some of these sources are discussed in 

section 4.1.1. 
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3. Findings 
3.1 Sampling Strategy 

3.1.1 Literature Review 

Only a minority of the publications provided by our literature search provided useful 

quantitative data on the incidence of AMR in foods, as follows. 

Our list of search terms was arrived at by a process of trial and refinement. Although our 

final query involves a lengthy series of precise terms, it was still difficult to differentiate 

between studies of the retail context and various other research purposes. For example, 

some published studies investigated efficacy of various post-harvest treatments on 

produce, which involved experimental inoculation of vegetables prior to assaying for 

bacteria/AMR. Further false positives, despite being necessarily positive for “ready to eat” 

or “food” terms, included several laboratory studies on antimicrobial activity of novel 

bacteriocins (often derived from Lactobacillus or Lactococcus strains from “milk”, for 

example). Other studies sampled as-is produce or meat products etc, but in the pre-retail 

context including both pre- and post-harvest, and within processing factories, sometimes 

at numerous stages of production. 

Numerous other studies can be assumed to have produced quantitative data of the kind 

we required, but simply did not report them in sufficient detail. Commonly, data on the 

proportion of AMR isolates of a specified bacterial species made no reference to the 

number of samples from which they were obtained, either explicitly or as a proportion of 

the total samples of that food type. Also commonplace was the still less informative 

reporting (in multi food-type studies) where these AMR isolate proportions did not even 

reference the food types from which they were obtained. 

Data on AMR presence in ready to eat foods was gathered from 48 sources describing 

studies in which ready to eat foods had been tested for the presence of AMR bacteria. 

Information about 30 foods (lettuce, cucumber, spinach, carrot, salami, tomato, celery, 

apples, peppers, grapes, dates, peaches, watermelon, pears, nectarines, roast duck, beef 
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salami, ham not smoked, iceberg lettuce, ice cream, smoked salmon, chicken slices 

unsmoked, milk (skim status unspecified), strawberries, melon, shrimp, orange juice 

freshly squeezed, butter, yoghurt, cream), 46 microbiological taxa and 110 types (gene or 

antibiotic) of resistance was provided. 

Figure 4 shows a summary of the information provided by the 48 studies. Table 3 gives the 

references used for each food type. 

In general, several foods were tested within each study for the presence of a number of 

bacterial taxa. In some studies the initial detection of taxa was undertaken by growing 

bacteria on media that contained antibiotics. In other studies taxa were detected and then 

tested for AMR. For the purposes of this review a sample was counted as positive for 

bacteria if it tested positive for any of the bacterial taxa tested, and positive for the 

presence of AMR if any of the AMR tests were positive. Because of the way that 

information was presented in many of the studies we reviewed, we could gain information 

on the number of samples in which particular types of AMR were detected, but not number 

of different types of AMR present in individual samples. Table 4 and Figure 5 show a 

summary of the proportion of samples in which AMR presence was found in the 25 studies 

for which we were able to estimate this quantity. 

There is considerable variation in the proportion of samples of the same food type found to 

contain AMR across studies. Part, but not all of this variation is caused by estimating 

proportions from small numbers of samples. A more important source of variation may be 

related to studies having different scopes: Table 5 shows a summary of 14 studies that 

examine AMR in Lettuce. Studies report between 0 and 94% of samples contain AMR. 

The main driver for this is differences in bacterial taxa studied between studies, with higher 

AMR rates being associated with the less-targeted (Bacterium, species not specified) 

study and more common taxa (for example Staphylococcus spp.). There is also variation 

that is not associated with differences in bacterial taxa, or random variation driven by small 

sample sizes. For, example the two studies reporting the presence of AMR associated 

Salmonella enterica reported very different proportions (5%, 0.003% p<0.0001). 
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No evidence was found of large differences in the proportion of samples found to contain 

AMR in different food groups (dairy, meat, produce, seafood). However, given the 

foregoing discussion and the small number of studies, this is probably better characterised 

as absence of evidence than strong evidence of absence. 
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Table 3. References from which AMR data were extracted for each food type. 

Food Type References Reviewed 

Apples (Mesbah Zekar et al., 2017) 

Beef Salami (Organji et al., 2018) 

Butter (Cetinkaya et al., 2014) 

Carrots (Liu et al., 2019) (van Hoek et al., 2015) (Bamidele et al., 2017) 

(Gutierrez-Alcantara et al., 2016a) (Jones-Dias et al., 2016) 

(Karumathil et al., 2016) (Akoachere et al., 2018) (Mesbah Zekar et 

al., 2017) (Ali, 2019)  

Celery (Mesbah Zekar et al., 2017) 

Chicken slices 

unsmoked 

(Fijalkowski et al., 2016) 

Cream (Cetinkaya et al., 2014) 

Cucumber (Chen et al., 2015) (Bamidele et al., 2017) (Akoachere et al., 2018) 

(Liu et al., 2019) (Wu et al., 2018) (Mesbah Zekar et al., 2017) (Ye et 

al., 2018) (Ling et al., 2018) 

Dates (Mesbah Zekar et al., 2017) 

Grapes (Mesbah Zekar et al., 2017) 

Green 

Pepper/Peppers 

(Akoachere et al., 2018) (Liu et al., 2019) (Park et al., 2018) 

(Mesbah Zekar et al., 2017) 

Ham not smoked (Iulietto et al., 2016) (Domenech et al., 2015) (Fijalkowski et al., 

2016) (Pesavento et al., 2014) (Cetinkaya et al., 2014) 

Ice cream (Domenech et al., 2015) 
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Food Type References Reviewed 

Iceberg lettuce (van Hoek et al., 2015) (Bhutani et al., 2015) (Berthold-Pluta et al., 

2017) (Ortega-Paredes et al., 2018) 

Lettuce (Niyomdecha et al., 2016) (Almeida et al., 2015) (Cesar et al., 2015) 

(Chen et al., 2015) (van Hoek et al., 2015) (Igbeneghu and 

Lamikanra, 2015) (Higgins et al., 2017) (Bamidele et al., 2017) 

(Bokai et al., 2017) (Jones-Dias et al., 2016) (Karumathil et al., 

2016) (Byrne et al., 2016) (Adzitey, 2018) (Akoachere et al., 2018) 

(Liu et al., 2019) (Wu et al., 2018) (Yi et al., 2018) (Park et al., 2018) 

(Mesbah Zekar et al., 2017) (Berthold-Pluta et al., 2017) (Ortega-

Paredes et al., 2018) (Wood et al., 2015) (Ling et al., 2018) 

Melon (Reddy et al., 2016) 

Milk (skim status 

unspecified) 

(Gao et al., 2018) (Wu et al., 2019) 

Nectarines (Mesbah Zekar et al., 2017) 

Orange juice 

freshly squeezed 

(Berthold-Pluta et al., 2017) 

Peaches (Mesbah Zekar et al., 2017) 

Pears (Mesbah Zekar et al., 2017) 

Roast Duck (Ye et al., 2018) 

Salami (Fijalkowski et al., 2016) (Federici et al., 2014) (Cetinkaya et al., 

2014)  (Rahimi et al., 2017) 

Shrimp (Igbinosa and Beshiru, 2019) 

Smoked Salmon (Domenech et al., 2015) 
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Food Type References Reviewed 

Spinach (Liu et al., 2019) 

Strawberries (Kurtboke et al., 2016) (Jones-Dias et al., 2016) (Ortega-Paredes et 

al., 2018) 

Tomato (Gutierrez-Alcantara et al., 2016b) (Reddy et al., 2016) (Estepa et 

al., 2015) (Liu et al., 2019) (Wu et al., 2018) (Mesbah Zekar et al., 

2017) (Ye et al., 2018) (Ortega-Paredes et al., 2018) (Ling et al., 

2018) 

Watermelon (Mesbah Zekar et al., 2017) 

Yoghurt (Cetinkaya et al., 2014) 
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Figure 4. Summary of AMR information provided by 48 studies 

Figure 5. Proportion of food samples in which AMR presence was detected. Points show 

mean across studies, lines show maximum and minimum rate reported in individual 

studies 
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Table 4. Samples tested for AMR in 25 studies 

Group Food type Studies 

Number 
of 
samples 
tested 

Number 
of 
samples: 
positive 
bacteria 

Number 
of 
samples: 
positive 
AMR 

Samples 
positive 
for AMR 
(%): 
mean 

Samples 
positive 
for AMR 
(%): 
minimum 

Samples 
positive 
for AMR 
(%): 
maximum 

Samples 
positive for 
AMR 
among 
samples 
containing 
bacteria 
(%): mean 

Samples 
positive 
for AMR 
among 
samples 
containing 
bacteria 
(%): 
minimum 

Samples 
positive 
for AMR 
among 
samples 
containing 
bacteria 
(%): 
maximum 

dairy Ice cream 1 758 6 2 0.264 0.264 0.264 33.3 33.3 33.3 

dairy Milk  1 276 70 69 25 25 25 98.6 98.6 98.6 

meat Ham Not 

Smoked 

2 674 20 7 1.04 0 3.74 35 0 58.3 

meat Roast duck 1 12 1 1 8.33 8.33 8.33 100 100 100 
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Group Food type Studies 

Number 
of 
samples 
tested 

Number 
of 
samples: 
positive 
bacteria 

Number 
of 
samples: 
positive 
AMR 

Samples 
positive 
for AMR 
(%): 
mean 

Samples 
positive 
for AMR 
(%): 
minimum 

Samples 
positive 
for AMR 
(%): 
maximum 

Samples 
positive for 
AMR 
among 
samples 
containing 
bacteria 
(%): mean 

Samples 
positive 
for AMR 
among 
samples 
containing 
bacteria 
(%): 
minimum 

Samples 
positive 
for AMR 
among 
samples 
containing 
bacteria 
(%): 
maximum 

meat Salami 2 160 2 2 1.25 0.833 2.5 100 100 100 

produce Apples 1 14 1 1 7.14 7.14 7.14 100 100 100 

produce Carrot 5 413 29 29 7.02 4.74 28.6 100 100 100 

produce Celery 1 6 1 1 16.7 16.7 16.7 100 100 100 

produce Cucumber 4 231 46 10 4.33 0 25 21.7 0 100 

produce Dates 1 2 0 0 0 0 0 NA NA NA 

produce grapes 1 30 1 1 3.33 3.33 3.33 100 100 100 
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Group Food type Studies 

Number 
of 
samples 
tested 

Number 
of 
samples: 
positive 
bacteria 

Number 
of 
samples: 
positive 
AMR 

Samples 
positive 
for AMR 
(%): 
mean 

Samples 
positive 
for AMR 
(%): 
minimum 

Samples 
positive 
for AMR 
(%): 
maximum 

Samples 
positive for 
AMR 
among 
samples 
containing 
bacteria 
(%): mean 

Samples 
positive 
for AMR 
among 
samples 
containing 
bacteria 
(%): 
minimum 

Samples 
positive 
for AMR 
among 
samples 
containing 
bacteria 
(%): 
maximum 

produce Iceberg 

lettuce 

2 202 11 11 5.45 1.04 100 100 100 100 

produce Lettuce 14 32228 316 231 0.717 0 94.4 73.1 0 100 

produce Melon 1 19412 15 1 0.005 0.005 0.005 6.67 6.67 6.67 

produce Nectarines 1 3 1 1 33.3 33.3 33.3 100 100 100 

produce Peaches 1 15 2 2 13.3 13.3 13.3 100 100 100 

produce Pears 1 7 2 2 28.6 28.6 28.6 100 100 100 
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Group Food type Studies 

Number 
of 
samples 
tested 

Number 
of 
samples: 
positive 
bacteria 

Number 
of 
samples: 
positive 
AMR 

Samples 
positive 
for AMR 
(%): 
mean 

Samples 
positive 
for AMR 
(%): 
minimum 

Samples 
positive 
for AMR 
(%): 
maximum 

Samples 
positive for 
AMR 
among 
samples 
containing 
bacteria 
(%): mean 

Samples 
positive 
for AMR 
among 
samples 
containing 
bacteria 
(%): 
minimum 

Samples 
positive 
for AMR 
among 
samples 
containing 
bacteria 
(%): 
maximum 

produce Peppers 2 67 4 3 4.48 3.57 5.13 75 66.7 100 

produce Spinach 1 31 1 1 3.23 3.23 3.23 100 100 100 

produce Tomato 7 32680 52 34 0.104 0 50 65.4 0 100 

produce Watermelon 1 24 1 1 4.17 4.17 4.17 100 100 100 

seafood Shrimp 1 720 59 52 7.22 7.22 7.22 88.1 88.1 88.1 

seafood Smoked 

Salmon 

1 803 1 69 0.125 0.125 0.125 1.45 1.45 1.45 
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Table 5. AMR data obtained from 14 Studies testing lettuce for AMR. “Bacterium” 
refers to unspecified bacteria identified. 

Bacterial taxa 
Number of AMR 
types Samples 

Proportion 
AMR (%) 

Bacterium 16 125 94.4 

Staphylococcus spp. 11 36 83.3 

Escherichia coli, Salmonella 8 120 20.8 

toxigenic Clostridium difficile 5 297 13.8 

Klebsiella pneumoniae Enterobacter 

cloacae 29 41 7.32 

Citrobacter freundii, Serratia spp. 16 137 5.11 

Salmonella enterica 7 40 5.00 

Escherichia coli 14 65 3.08 

Acinetobacter baumanii  

Stenotrophomonas maltophilia 5 100 2.00 

Salmonella enterica 4 31099 0.003 

Listeria monocytogenes 8 9 0.000 

Cronobacter spp. 9 4 0.000 

Cronobacter spp. 9 87 0.000 

Escherichia coli 5 68 0.000 

3.1.2 Sampling Strategy 

Based on the results of the literature survey, the sampling strategy was to be based on the 

total population consumption of food types within four broad categories (dairy, fresh 

produce, cooked meats, seafood). These broad categories were proposed in the response 

to tender, as they encompassed the diversity of different RTE food types on retail sale in 

the UK. The 1000 samples to be taken were to be divided evenly between these broad 

food categories (250 samples of each type), and then samples were to be taken within 



 

Page 82 of 206 

 

 

 

each food category based on consumption. However, when consumption of these different 

broad categories was compared, it was observed that consumption varied widely between 

them. Dairy accounted for approximately 55% of consumption, produce for 42%, cooked 

meat for 3% and seafood less than 0.5%. Based on this the FSA decided to refocus 

sequencing effort on high consumption food items, and pick food types from all RTE foods 

according to consumption. This improves the ability to estimate the average consumption 

of AMR foods, while reducing the ability to say as much about AMR content of certain food 

types. 

The sampling strategy was then amended to sample food types such that 90% of 

consumption of RTE foods was covered, with a minimum of five samples per food type. 

This resulted in 52 different food types being sampled, comprising 33 produce types, 17 

dairy types, and two cooked meat types. While fewer dairy types were sampled than 

produce types, more than half of the samples taken were dairy samples. The final list of 

samples to be taken was distributed across UK regions based on population and agreed 

with the FSA. 

3.2 Sampling 

A total of 1042 samples were collected. Of these 41 were rejected, either by Hallmark 

(n=9), or by Fera (n=32), leaving a total of 1001 samples to be processed. Samples were 

rejected for two main reasons: the quality of the product had deteriorated in transit (for 

example squashed fruit, leaking ice cream, samples arrived after their use-by date); 

incorrect sample type had been purchased (for example semi-skimmed milk rather than 

skimmed, fat spread of mixed dairy and plant origin). 

3.3 16S Metabarcoding 

3.3.1 Microbial Community Analysis 

The microbial community analysis was undertaken for two purposes (see section 2.4.1); to 

determine relative proportions of host and bacterial DNA, and to identify any taxa of 
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concern to FSA. We specifically did not choose to bias the selection of samples for 

metagenomic sequencing based on the taxa present. Therefore, additional analysis and 

interpretation of the taxa identified was beyond the scope of this project. For this reason, 

and due to the large amounts of data generated by the metabarcoding analysis of 1001 

samples, the findings are presented in Appendix 5. Appendix 5 contains the following 

documents: 

• AMR_all_stats 

• Pie_charts 

• Genus_tables 

Additionally, we provide the interactive bar plots, representing taxonomic profiles, 

produced by the analysis. These files are large and so we provide them in a high-

compression format archive file (7-Zip, which requires the 7-Zip or compatible software): 

• Qiime2_bar_plots.7z 

3.3.1.1 AMR all stats 

The AMR_all_stats file contains summary statistics for all samples sequenced. The 

workbook is made up of two worksheets – Summary Stats and Complete Stats.  

The contents of the summary stats and complete stats worksheets are described in tables 

in the AMR_all_stats_key file in Appendix 5. 

Post Quality Filtering and Post Denoising headers are the most important stages. The 

number of reads retained after quality filtering represents the total number of good quality 

useable DNA sequences and is an indication of the overall quality of the dataset.  

The denoising step includes singleton removal, chimera removal, dereplication and 

minimum length filtering, which can substantially reduce the number of reads available for 

taxonomic assignment. This can be seen most clearly in milk-based products, where a 

large number of cow mitochondrial sequences are found and removed from the final 

dataset. We perform an additional chimera checking stage, thus the number of reads 



 

Page 84 of 206 

 

 

 

retained after chimera removal is the number of reads that will be used to make taxonomic 

assignments. 

3.3.1.2 Genus Tables 

The Genus_tables directory contains 52 .csv files – 1 file per food category. Each file 

contains a list of sample IDs, taxa assigned to that sample and some metadata columns 

(Table 6). Normally, taxonomic resolution cannot be expected at the species level. 

However, in some cases genus level assignment is not possible. 

Table 6. Description of the headers in the Genus tables files. 

Header Description 

index The sample ID. 

<Taxonomic assignments> 1 or more columns which contains the results of the 

taxonomic assignments. Each column header contains 

the taxonomic lineage of the assignment (D_0__ to 

D_5__, 0 representing Kingdom and 5 representing 

genus). The content of the columns shows the number of 

reads assigned to that taxon. 

Food_Group The food group (either Produce_Samples or 

Milk_Samples). 

Food_Category The food category. 

Raw_Reads The raw reads associated with that sample. This can 

indicate if a sample has sequenced poorly. 

 

3.3.1.3 Qiime2 Bar Plots 

The Qiime2_bar_plots directory contains 52 .qza files – 1 per food category. Each file can 

be opened by dragging the file into the designated area on the Qiime2 View website 

(https://view.qiime2.org/). Please use a compatible browser (Google Chrome) when 

https://view.qiime2.org/
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viewing these files. Once loaded, Taxonomic Level (Kingdom to Species) can be selected, 

and samples can be sorted based on Sample Metadata (Raw Reads is often useful) or 

Taxonomic Abundance. The bar plots provide an overview of what each food category 

looks like. (N.B. use of these files and Qiime2 View does not involve any data being 

uploaded to the qiime2.org website; all data resides solely within the browser on the user’s 

computer.) 

3.3.1.4 Pie Charts 

The Pie_charts directory contains 52 .png files – 1 per food category. Each file can be 

opened to reveal a pie chart and a summary table. An example is shown below, in Figure 

6. For each food category, the top 5 taxa (by total reads) are displayed, which provides an 

estimate of which taxa are found. This is indicative and should not necessarily represent a 

precise measure of proportional incidence. Generally, the pie charts are useful for an ‘at a 

glance’ view of each food category, but can also help to highlight foods that are dominated 

by one frequently occurring taxa (e.g chloroplast). These results are a useful indication of 

the food types which are most challenging in terms of obtaining non-host DNA. 
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Figure 6. Pie chart showing the top five taxa identified across all Cherry Tomato samples, 

in addition to an ‘other’ category which sums the reads for every other taxa identified, and 

their relative proportions. 

3.3.2 Priority Taxon Detection 
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This concerns the detection of 16S metabarcode reads which may indicate the presence 

of DNA from foodborne pathogens of concern, and is not part of the AMR research (refer 

to Section 1.2, Aims and objectives). 

None of the taxa present in the FSA’s priority list were able to be confidently identified in 

this analysis. Details of the determination of distinguishable taxa, the frequency of 

matched sequences and further inspection of selected taxa can be found in Appendix 4b. 

3.4 Metagenomic Sequencing 

3.4.1 Sample Selection for Metagenomic Sequencing 

Based on the 16S data presented in Appendix 5, food types were assigned to those which 

had high levels of host DNA present, low levels of host DNA present, and those which 

displayed a range or intermediate levels of host DNA:bacterial DNA (Figure 7, Table 7). 

Samples were then selected for sequencing as described in section 2.6.1. 

Figure 7. Proportion of the 16S amplicon reads in each sample, across all food types, 

which are of bacterial origin. 
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Table 7. Categories of bacterial DNA levels to which the different food types were 
assigned. 

Low Bacteria High Bacteria Range or intermediate 

Apple juice pasteurised Apples Black grapes 

Avocado Cheddar cheese Blueberries 

Bananas Corned beef Cherry tomatoes 

Carrots Double cream Cucumbers 

Grapefruit Fat spread Ham not smoked 

Kiwi fruit 

Lactose free semi skimmed 

milk Iceberg lettuce 

Mangoes 

Low fat unsweetened 

yoghurt Lettuce 

Melon Nectarines Semi skimmed milk 

Orange juice freshly 

squeezed Olives in brine Strawberries 

Orange juice pasteurised One percent milk Tomatoes 

Oranges Peaches Whole milk 

Pineapple Pears 

Raisins Plums 

Raspberries Probiotic yoghurt drink 

Small citrus Red peppers 

Soya milk sweetened Reduced fat spread 

Soya milk unsweetened Salted butter 

-

-

-

-

-

-
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Low Bacteria High Bacteria Range or intermediate 

Watermelon Skimmed milk 

White grapes Spreadable butter 

Unsweetened yoghurt 

Vanilla ice cream 

White onions 

Sequencing summary statistics for NovaSeq and PromethION sequencing are shown in 

Appendix 2. Sequences are deposited in the European Nucleotide Archive under 

accessions ERP128088 and ERP128787. 

3.5 Bioinformatic Analysis of Metagenomes 

3.5.1 Overview of metagenomic read data 

A total of 8.47 billion raw read pairs were generated in total from the 256 samples, thus a 

mean of 33.08 million per sample, with a median of 32.57 million (Table 

“metagenomics_sequencing_by_sample.xlsx” in Appendix 2). Three extreme outliers were 

the fat spreads, with only 30,336 to 40,747 read pairs. All other samples had more than 2 

million raw read pairs, with 247 in excess of 10 million pairs. In more detail, 6 samples had 

2-10 million pairs, 13 samples had 10-20 million pairs, 81 samples 20-30 million, 92

samples 30-40 million, 46 samples 40-50 million, 10 samples 50-60 million, 4 samples 60-

70 million and one sample of 71,816,590 raw pairs.

3.5.1.1 Basic quality control (QC) 

Few samples were problematic in terms of high proportions of read pairs being affected by 

poor quality (Table “metagenomics_sequencing_by_sample.xlsx” in Appendix 2). The four 

worst-performing samples had a pass-rate of 62% - 78% of read pairs (iceberg lettuce, 

-

-

3.4.2 Metagenomic Sequencing 

-

-

-

-

-

-
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corned beef, apple juice pasteurised and bananas), and were left with between 12 million 

to 30 million pairs post-QC. The next 18 worst samples in this regard had pass-rates of 

84% - 90% (highest 89.99%); thus the pass-rate was ≥ 90% for 234 of the 256 samples. In 

more detail, 142 samples have a rate 90% - 95%, and 92 samples have a rate 95% - 98% 

(highest rate 97.89%). In total, 7.87 billion read pairs remained, i.e. 92.93% of the raw 

pairs. 

The number of post-QC reads in each sample can also be seen in Figure 8 (x-axis).  

3.5.1.2 Host-read filtering 

The "host" is the food organism, whose DNA sequences may be present in the 

metagenomic data. 

Figure 8 shows the post host-filtering number of reads versus the original (i.e. post-QC) 

number of reads for each sample. 

For those samples where relatively few reads were removed, this could be either due to 

the original sample being low in host organism reads, or due to difficulties in detection of 

host reads (due to reference genome sequence quality, for example). 

In general, fewer host reads were detected and removed from the produce category than 

from dairy or meat. 
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Figure 8. Indication of host genome-originating reads. For each sample the number of 

reads after basic quality control (x-axis) is plotted against the number of reads remaining 

after reads identified as being of host origin were removed (y-axis). 

The numbers of read pairs remaining in each sample after host-filtering is provided in 

Table “metagenomics_sequencing_by_sample.xlsx” in Appendix 2, both as absolute 

numbers and as a percentage of the number of post-QC read pairs (not raw read pairs); a 

brief summary follows. 

There are many samples which have a very low "pass" rate, i.e. a very high rate of 

identified host read pairs. 90 samples had < 1% of post-QC read pairs remaining after 

host-filtering, but these number 13,000-420,000 read pairs, with 37 of these samples > 

100,000 pairs). The absolute numbers of remaining read pairs are the pertinent metric in 
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terms of the usefulness of the metagenomics data; these are summarised for all samples 

in Figure 9.  

Overall (all 256 samples), post host-filtering only one sample has < 10,000 read pairs, a 

total of 57 samples < 100,000, and 109 samples < 500,000. 

125 samples have > 1 million post host-filter read pairs, of which 12 samples > 30 million.  

The distribution is not unimodal and notably reflects different trends among the food types. 

Of the 30 samples with > 20 million reads, all but one (probiotic yoghurt drink) are of 

‘produce’ type. Conversely, of the 100 samples with the lowest post host-filtering read 

counts, only four are produce samples (watermelon, 63rd lowest; and three mango, 88th , 

93rd and 98th lowest counts), four are the meat samples (68th, 69th, 74th, 79th lowest) and 

the remainder are dairy. The two lowest read-count samples are the reduced fat spreads, 

and the fourth lowest is the other ‘fat spread’; with 8,938; 13,040 and 21,311 read pairs 

respectively. However, these represent respectively 32%, 46% and 55% of the post-QC 

read counts (the raw read counts were only 30,000 to 41,000 pairs). In contrast, the two 

spreadable butter samples have the 39th and 36th highest post host-filter read counts, with 

around 16 million and 18 million read pairs. 
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Figure 9. Frequencies of read-pair counts in each sample following the host-DNA filtering 

stage. 

These data highlight that: 

• there is a very large range in the number of suitable read pairs remaining for 

analysis, following firstly basic quality-control, and subsequently removal of reads 

identified as of host-organism origin 

• that the range appears not to be a random effect but depends on food type; this 

indicates that our efforts to obtain microbial DNA from the produce types has been 

quite successful, whereas this was not possibly for many dairy samples such as 

milk. 

3.5.2 Metagenome assemblies 
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Notwithstanding the previously noted limitations of N50 and L50, we have included these 

metrics in Appendix 6. 

Sample #2672718 (red peppers) contains the longest single contig, which is > 4.2 Mbp 

(more than twice the length of any other contig in any sample), and also 5 other contigs of 

> 1 Mbp (only 13 samples have any contigs of > 1 Mbp). However, the N50 is 3,041 bp, 

which is only the 56th best N50 of all 256 samples; its N50 is 6,142, which is the 60th 

lowest (best) value. This suggests a relatively long "tail" of low-abundance genomes in a 

metagenome dominated by one or a few taxa. The total post host-filter read count is 

unexceptional (23 million pairs).  

Conversely, #343701 is the sample with the highest N50 (125,295) and has an L50 of only 

8 contigs (there are only 184 contigs in the assembly). Its longest contig is 434,779 bp, 

one tenth of the longest contig in any sample (above). This is actually the joint-lowest 

(best) L50. This sample #343701 has around 31 million read pairs after host-filtering. This 

is neither exceptionally high nor low, but this sample is the sole 'probiotic yoghurt drink' 

and might be assumed to have a very skewed metagenome, dominated by one or a very 

small number of bacteria originating from a production culture. Notably, the other sample 

(#2672554) with L50 = 8 in fact has the worst N50 of any sample (390), but key to this is 

that there are only 19 contigs in the entire assembly, ranging from 203 bp to only 727 bp in 

length. This is indeed the sample (reduced fat spread) with the lowest read count of all 

(only 8,938 post host-filter).  

In summary, the two samples with the equal best L50 value consist of the sample with the 

best N50 and the sample with the worst N50. This illustrates the very different natures of 

these metagenomes, and how they cannot necessarily be anticipated from any single 

metric such as read counts, contig counts, mean contig lengths, N50, L50, etc. A further 

observation is that the highest N50 in any sample is not especially high, representing 

perhaps 2% to 10% of the length of a bacterial genome. There are therefore no 

metagenomes approaching "completeness" even if some may (possibly) be dominated by 

one or a few genomes which are individually near-complete. 
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3.5.2.1 Contig lengths in the context of ARG sequence detection 

A consideration of the contig lengths in relation to typical gene lengths is important, since if 

most of the contigs are shorter than ARGs, necessarily few ARGs can be found. Even 

contigs of approximately the same length as ARGs would often not enclose the entire ARG 

length (if an ARG were present) and would be more likely to represent only a segment of 

it. Ideally, our data would include a large number of contigs whose length is of an order of 

magnitude greater than ARG lengths. To mitigate this, we had run the detection software 

RGI MAIN in a mode which aims to predict partial genes for short contigs instead of 

requiring full-length matches (section 2.8.6.3). 

The nucleotide sequences in the principal section of CARD range from 162 to 4,359 bp 

(median 861 bp; mean 946.6 bp). In the 'wildcard' section of CARD, the nucleotide 

sequences are between 60 bp and 6,237 bp (median 1,194; mean 1,431.9). 

The highest median contig length of any sample is only 1,023 bp, which is in a sample 

(#343520) with a relatively short maximum contig length (71,534 bp) and 2,651 contigs in 

total. The next longest median is 860.5 bp, and in all only 8 samples have median lengths 

> 700 bp. A further 81 have a median between 500 bp - 700 bp, 129 between 400 bp - 500 

bp, and the remaining 38 between 348 bp - 400 bp. (For comparison, many read pairs 

have a combined length of 302 bp, i.e. two non-adjacent segments of 151 bp). 

Therefore, regarding the use of the assemblies as input data, it appears that the length 

distribution is not especially encouraging for the data set overall. Regarding finding 

matches with full-length gene sequences or even partial matches to segments which are 

long enough to identify the ARGs of origin, some samples are much more fragmented than 

others and so will be inherently likely to yield fewer positives. 

Looking at other aspects of the length distributions, Figure 10 summarises the lengths of 

the single longest contig in each sample; this is useful as it indicates the best case-

scenario within a sample regarding the ability to detect full-length gene(s). 49 samples lack 

any contigs > 10,000 bp (10 kbp). 87 samples have a longest contig > 100 kbp. Three 
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samples have at least one contig exceeding 1 Mbp (1,130,022 bp; 1,975,816 bp; 

4,213,328 bp). 

Figure 10. Frequencies of length-range of the single longest contig of each sample. 

Therefore, most samples could in principle harbour at least one full-length ARG sequence, 

if these genes happen to occur in the longer contigs, but clearly the maximum possible 

number of full-length sequences is intrinsically very limited in many samples. Again, the 

expectation is that detection of ARGs may be inherently much less likely in a considerable 

number of samples, compared to other samples. 

For the purpose of detecting co-located ARG sequences (or ARGs with other AMR-related 

moieties), the above considerations are accentuated. 

3.5.2.2 Assessing assemblies: back-mapping reads 

As part of its ARG-detection/prediction procedure, the RGI MAIN software predicts open 

reading frames (ORFs) in the input sequences (in this context, the assembled contigs). 
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Back-mapping is usually performed using the assembled contigs as the references. In the 

context of our analyses, it was also useful to back-map the reads using only the predicted 

ORF sequences as references. 

The proportion of reads which can be back-mapped to the sequences which arose from 

that collection of reads, indicates the quality of the assembly. Appendix 6 describes some 

detailed analysis of the back-mapping results, concerning both the mapping to contigs and 

mapping to ORFs, with the aim of evaluating the quality of the assemblies, as well as the 

amount of host (food-organism) DNA. 

3.5.2.3 Conclusions on assembly quality and host contamination 

Appendix 6 provides detailed analysis of the quality of the assemblies, since it is 

necessary to answer a fundamental question: are the assemblies of the 256 samples' 

metagenomes collectively suitable for the production analysis of ARG sequences? 

The data suggest that there are many samples which fall in each of these categories: 

• Poor-quality assemblies 

• High-quality assemblies with a low gene-density (probably due to host-DNA 

contamination) 

• High-quality assemblies with a high gene-density 

Our view is therefore that for this data set overall, prediction of ARGs from assemblies is 

not the ideal approach, even though some samples will be ideal for that. Our principal 

production data (ARG-identifications) are therefore the predictions from unassembled 

short-read data. 

Although we have thus not used RGI MAIN to generate production ARG-predictions, the 

results it produced regarding gene (ORF) predictions have proved useful as part of the 

assessment of the assemblies, as described in the previous sections. 

3.5.3 Assigning taxonomy by marker genes using Progenome Classifier 
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Given that a number of samples' assembled metagenomes include some long contig 

sequences, we investigated whether the long contigs could be reliably identified 

taxonomically, using a dedicated typing method to identify marker genes. At least one of 

the assembled contigs is large enough to be a complete bacterial genome. The 

Progenome classifier / SpecI (Mende et al., 2020, Mende et al., 2013) uses a database of 

40 universal marker genes to attempt to classify prokaryote genomes. The software 

reports the number of 'detected' genes, but relies on successfully 'mapping' marker genes, 

which is usually a smaller number. 

3.5.3.1 Samples with at least one assembled contig exceeding 500 kbp 

A taxonomic identification of a genome sequence should often be possible even if it 

represents only a fragment of the complete genome, if sufficient marker genes are 

present. The majority of known bacterial genomes exceed 1 Mbp in size, with many much 

larger than that (Mira et al., 2001), but some extreme examples are smaller than 200 kbp 

(Nakabachi et al., 2006). 

The 13 samples with at least one assembled contig exceeding 500 kbp, and therefore 

constituting a large portion of a bacterial genome, are listed in Table 8, along with details 

of the 54 such contigs which occur in them. Only three of these samples could be 

taxonomically assigned (whether analysing the long contigs collectively or individually) by 

Progenome Classifier, respectively with confidence levels of 64%, 91% and 91% (in the 

sample where the genes occurred on more than one contig, each contig has a lower 

confidence when analysed separately). 

The red peppers sample #2672718 has six contigs exceeding 1 Mbp, including a 4 Mbp 

contig (i.e. approximately bacterial genome-sized). However, there was no prokaryote 

assignment. We have not confirmed, but we suspect that at least some of these long 

contigs are of fungal origin, which may also apply to several of the other samples. Long 

contigs of plant origin may also be present. 
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The only sample with any contigs identified to a single named species is a yoghurt; this 

was from a relatively modest-sized contig, which is not unexpected for what is assumed to 

be a far less microbiome-diverse sample than the agricultural produce. 

Table 8. The assembled contigs of length > 500,000 bp. There are 54 in all, in 13 samples. 

The contig IDs where any marker genes could be reliably assigned by Progenome 

Classifier are in bold, with corresponding species verdicts in the final column. 

Sample 
ID 

Sample type Contig 
lengths 

Species designation (PROGENOME) 

6607 apples 747709 

636734 

Agreia sp. (either sp. Leaf244 or sp. 

Leaf283) 

6658 apples 568319 

2664457 pears 516924 

2664666 strawberries 617549 

2664679 apples 796483 

765582 

588918 

533808 

2664758 plums 826066 

750948 

650521 

611041 

520165 

-

-

-

-

-
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Sample 
ID 

Sample type Contig 
lengths 

Species designation (PROGENOME) 

2664783 apples 708764 

2664800 cucumbers 841083 

660100 

641658 

564539 

Agrobacterium or Rhizobium sp. (either 

genomosp. 3,  sp. LC34,  sp. SUL3 or 

Rhizobium sp. Root651) 

2672544 apples 578507 

513806 

2672611 low fat 

unsweetened 

yoghurt 

670317 Lactobacillus acidophilus 

2672718 red peppers 4213328 

1935613 

1655039 

1226349 

1182851 

1035342 

913111 

789740 

787135 

762392 

653185 

-

-

-
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Sample 
ID 

Sample type Contig 
lengths 

Species designation (PROGENOME) 

2672786 apples 1975816 

1082071 

1003947 

728338 

665947 

665053 

657523 

629483 

580652 

580212 

539651 

2685919 pears 1130022 

1048195 

1037017 

951853 

772916 

762013 

662510 

619694 

573615 

-

-
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Sample 
ID 

Sample type Contig 
lengths 

Species designation (PROGENOME) 

518886 

3.5.3.2 Additional samples analysed by Progenome Classifier 

We also analysed (collectively) all four of the > 100 kbp contigs of sample #2672455 

(longest is 231,090 bp). We selected this due to the corresponding Nanopore long-read 

sequences being identifiable with Progenome (see Section 3.5.9.6). However, no 

assignment was possible for these four sequences, indicating that few or no marker genes 

could be identified within the assembled NovaSeq data. 

Secondly, we analysed the long > 100 kbp contigs (9 in all; longest 434,779 bp) of the 

probiotic yoghurt drink sample #343701, since as noted previously this had the best N50 

and joint-best L50 values. 14 marker genes were mapped, and a species assignment of 

Lactobacillus casei/paracasei [Lactobacillus sp. HMSC25A02/Lactobacillus 

casei/Lactobacillus paracasei] resulted, with 98% confidence. This was the highest 

number of marker genes assigned in any of these 'long contig-only' tests, and twice the 

next best number. 

Finally, we made a small number of attempts at processing an entire set of contigs 

(irrespective of length) of a sample with Progenome Classifier. The software is designed to 

classify an isolate complete or near-complete genome rather than metagenomic data, and 

a lack of taxonomic assignment, or a "chimera" can thus be expected to occur in some 

cases. However, one sample, #2664700 (olives in brine; 30,362 contigs; longest 349,338 

bp), was assigned as Stenotrophomonas maltophilia, with all 40 marker genes found 

multiple times. 

3.5.4 ARG predictions from RGI 
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We processed all 256 samples' quality-controlled, host-filtered unassembled short read 

sequence data with RGI BWT. We also processed (with RGI MAIN) all the samples' 

assembled metagenomes which had been derived from those. 

For both the RGI BWT (short-read) and RGI MAIN (contigs) results, we also performed in-

house filtering of the results. 

As stated in Section 3.5.2, due to the nature of a significant proportion of the samples' 

assembled metagenomic data, we could not use the predictions from RGI MAIN as the 

production results. 

3.5.4.1 ARG predictions from RGI MAIN 

We could not use the RGI MAIN results (from assembled contigs) as the production data, 

due to issues with too many of the samples' assemblies (see 3.5.2).  

We have maintained the references to RGI MAIN here and in other sections, because this 

indeed provided the invaluable data for assessing the qualities of the assemblies in the 

first instance (3.5.2.2). As the ARG predictions were not used in burden assessment 

(section 2.9) or interrogated further after the decision to use short-read RGI-BWT ARG 

data, and have therefore not been subject to the same degree of assessment as the RGI-

BWT data, the RGI MAIN results are not presented further. 

3.5.4.2 Production RGI results of short-read analysis (RGI BWT) 

The following refers to the RGI BWT results after we had applied our in-house filtering 

(See section 2.8.6). The results are presented in Appendix 8. 

In terms of distinct ARG names , 179 of the 256 samples had at least one ARG detected. 

28 samples had only one ARG name present, and a further 159 samples had fewer than 

10 different ARG names. 

48 samples had between 10 and 49 ARG names; 34 samples had 50-99; 12 samples had 

100-149; and 3 samples at least150 (highest 193). 
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In terms of positive read pairs (where either or both of R1 and R2 are positive for an ARG), 

naturally the 77samples in which no ARGs were identified have a zero count. A further 121 

samples have fewer than 10 positive read pairs passing the filters in total, and a further 41 

samples 10-99 read pairs. 44 samples have 100 - 999 read pairs, 47 samples 1,000 - 

9,999 read pairs, 6 samples 10,000-19,999 and 3 samples > 20,000  (highest 25,049). 

In all, 478 different ARG names passed all the filters. However, there were 477 unique 

ARO terms for the gene names; ARO:3000556 was present both as ‘tet(44)’ and ‘tet44’. 

Note that many ARG names can correspond to multiple variant gene sequences in the 

reference database, but usually these have identical names (in fact there are 4 variant 

sequences of tet44, including the tet(44) sequence, in CARD/WildCARD).  More details of 

numbers of ARGs detected in different sample types are in Section 3.6. 

3.5.4.3 Evaluating the screening of variant/mutant-type ARGs 

We had applied screening (2.8.8) for good matches between the short reads and the 

reference ARG sequences, for all ARG types, to produce the data described in the 

previous section. As part of that production process, we had further applied a requirement 

for a very strict match (100% identity) to those matches to ARGs of the "antibiotic resistant 

gene variant or mutant" type (2.8.8). As this is an important aspect of dealing with putative 

sequence-based matches for ARG-prediction, we summarise the effect which this 

particular screen had on the results. 

After the general screening applied to all ARGs, 782 different ARG names appear 

collectively in the 256 samples. Only 6 of these are categorised under the "antibiotic 

resistant gene variant or mutant" (term ARO:0000031 in the hierarchical classification; 285 

of the genes in the reference database are annotated with this). Two of these in fact 

appear to be synonyms for the same gene. However, these appeared in a very large 

number of samples, but the great majority of samples became negative for these ARGs 

with the additional 100%-identity filter applied (Table 9). For simplicity, the  numbers of 

samples containing at least one read-pair, where both reads match the ARG, are shown. 
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Table 9. The effect of applying the 100%-identity requirement to matches to ARGs under 

the "antibiotic resistant gene variant or mutant" category. All six genes of this type that 

appeared in the study are shown. *Two very similar ARG names are present in the 

reference database for ARO:3004480. 

ARG name ARO 
succession 

Positive 
samples 
after 
standard 
filter 
without VM-
screen 

Positive 
samples 
after 
standard 
filter with 
VM-screen 

Positive 
samples 
after 
standard 
filter with 
VM-screen 
and 
minimum 
2-prs
filters

Bifidobacterium adolescentis 

rpoB conferring resistance to 

rifampicin (sic*) 

3004480 23 0 0 

Bifidobacterium adolescentis 

rpoB mutants conferring 

resistance to rifampicin (sic*) 

3004480 147 1 0 

rpoB2 3000501 122 3 1 

Bifidobacterium ileS 

conferring resistance to 

mupirocin 

3003730 87 0 0 

Streptomyces rishiriensis parY 

mutant conferring resistance 

to aminocoumarin 

3003318 79 0 0 
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ARG name  ARO 
succession 

Positive 
samples 
after 
standard 
filter 
without VM-
screen 

Positive 
samples 
after 
standard 
filter with 
VM-screen 

Positive 
samples 
after 
standard 
filter with 
VM-screen 
and 
minimum 
2-prs 
filters 

Pseudomonas aeruginosa 

soxR 

3004107 72 33 17 

one or more of the above 189 35 18 

Some of these genes such as the RNA polymerase B subunit (rpoB) and isoleucyl-tRNA 

synthetase (ileS) genes are essentially universal in bacteria, and so it is unsurprising that 

very similar sequences to these were found in many samples. Indeed, rpoB is one of the 

longest bacterial genes and so would be especially likely to be detected. 

As previously emphasised, our approach would be expected to still result in some false 

positives for such genes: if a short-read originated from a non-AMR variant of one of these 

genes, but did not encompass the critical sites which differ from the AMR variants, then 

this would pass our screen. However, for five of the above genes, even if all of the 

remaining matches were indeed false positives, this would add the spurious positive to 

only a very few samples. In the case of P. aeruginosa soxR, the worst-case scenario 

would be 7% of the total samples gaining a spurious additional positive ARG. The caveat 

is that some or even all of these positives could be true positives in any case. 
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The fact that so few "variant or mutant" type genes are involved is reassuring since, 

generally, genes whose AMR characteristics do not depend on these precise differences 

are expected to be more reliably identifiable, without insisting on an extremely high 

sequence identity (which would, indeed, certainly falsely discard some true ARG matches). 

Nonetheless, it is valuable to determine the overall characteristics of our data in terms of 

sequence identities. 

Overall, following the general screen and the variant/mutant-type 100% identity screen, 

both the mean and median identities of the short-read matches to the references 

sequences were 90.1% (total of 461,405 forward and 394,563 reverse reads). 96.4% of 

the reads match with a sequence identity of at least 75% (generally, this would be 

sufficient to infer a probably similar gene function). 51.6% of read-matches are of 90% 

identity or better; 31.5% of read-matches are of at least 97% identity, and 20.0% are of 

100% sequence identity. 

3.5.5 ARG predictions from DeepARG 

DeepARG is a tool published in 2018, which uses a novel deep-learning methodology to 

predict ARGs. Our default position was to treat RGI / CARD predictions as the standard 

and DeepARG predictions as more speculative. We ran it with a probability cutoff of P ≥ 

0.8, and subsequently applied a filter of P ≥ 0.9 to these results. As we consider DeepARG 

to be more experimental than RGI, and the results only used as a sense check of the RGI 

results (and not to inform burden analysis) we present a summary of the results in 

Appendix 11 for reference. As these results do not inform burden analysis, they are not 

considered further. 

3.5.6 Co-occurrence 

Quality filtered ARGs, identified by RGI, from the 256 assembled samples were inspected 

for evidence of co-location. Of these, 40 samples were identified as positive (where a 

positive is defined as 2 ARGs being present on the same contig) (Appendix 7). Overall, 

this resulted in 276 co-occurring ARGs. Interestingly, many ARGs flagged as co-occurring 

appear to belong to the same AMR gene family, which could suggest that the gene 
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detection software may be terminating gene detection early, possibly due to errors 

produced from low coverage assemblies. Thus, a number of these instances of co-

occurrence may be false positives. There are still a number of co-occurring ARGs from 

different gene families identified on the same contig, but it would be prudent to inspect 

results of interest in more detail before drawing conclusions. 

3.5.7 Priority Taxon Identification 

Details regarding initial screening of metagenomic samples, identification with MLST 

sequences and similarity searches with nucleotide databases can be found in Appendix 4 

and 4b. 

3.5.7.1 Conclusions from metagenomics analysis 

We conclude that there is strong evidence at the sequence level, both unassembled reads 

and assembled contigs, for the presence of K. pneumoniae DNA in sample #2672480 

(vanilla ice cream), and no convincing sequence-based evidence for any of the other taxa 

of concern. 

For sample #6412 (also vanilla ice cream), we conclude that there is strong evidence at 

the sequence level for the presence of DNA originating from Enterococcus faecalis, 

Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae and Yersinia 

enterocolitica, and no other taxa of concern. The first four of these are supported by 

evidence from both unassembled reads and assembled contigs; Y. enterocolitica is 

supported by evidence from contigs alone. 

We have analysed the contig sequences of these two samples carefully and have found 

no evidence to suggest that any of the MetaPhlAn3 positives (resulting from comparison of 

short reads to a relatively few marker sequences) are false positives; and have found 

evidence of only one false negative from MetaPhlAn (Y. enterocolitica in #6412). 

With the exception of K. pneumoniae in #6412, we found evidence for at least one MLST 

locus sequence for each of the MetaPhlAn3-positive taxa in these samples. 
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3.5.8 Assessment of the use of 16S Metabarcoding to Screen Samples prior to 
Metagenomic sequencing 

The 54 samples belonging to food types labelled as 'low bacteria' by 16S sequencing 

(Table 7) were analysed with Kraken2, to see if these same samples also had low 

bacterial concentrations when sequenced metagenomically. The average percentage of 

bacterial reads in these 54 samples was 14.4%, ranging from 77.3% to 1.3%, with a 

median value of 5.6%. Only 5 of these 54 samples had bacterial percentages of greater 

than 50%. For food types labelled as ‘not low bacteria’, the average percentage of 

bacterial reads was 44.2%, ranging from 99.9% to1.45%, with a median value of 38.9%. 

85 of these samples had bacterial percentages of greater than or equal to 50%. 

The 10 samples which had failed 16S sequencing QC steps and were selected for 

metagenomic sequencing (section 2.6.1) were also analysed. Total read numbers from 

metagenomic sequencing for all 256 samples were ranked from high to low, and the ranks 

of the 10 'failed' samples were inspected. The median rank was 104, the highest rank was 

35, and the lowest rank was 255. 

From the above, we can conclude that A) a sample with low bacterial percentages by 16S 

sequencing will most often produce a low number of metagenomic bacterial reads, and B) 

samples which fail 16S sequencing QC steps do not necessarily mean that the sample will 

fail when sequenced metagenomically. 

3.5.9 PromethION Data Analysis 

Note: The following results (3.5.9) were used to assess long read sequencing and its 

suitability for sequencing AMR. These results are NOT used for subsequent burden 

analysis outside of this section, and should be viewed as independent exploratory 

analysis. 

3.5.9.1 Assembly 

After assembly, polishing with both long and short reads, as well as the removal of host 

sequences, 14 of the initial 24 samples produced assemblies. The remaining 10 samples 
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did not produce enough data to form assemblies, so were not taken forward for further 

analysis. Assembly quality metrics can be seen in Table 10. 

Table 10. Assembly statistics for PromethION data 

Barcode_SampleID Contigs Bases Max Min Average Median 
barcode01_2664549 65 2075150 75551 6757 31925.4 29120 

barcode02_2664550 12 417086 58654 18909 34757.2 29740 

barcode03_2664719 225 3561435 85478 117 15828.6 11490 

barcode07_6574 31 1380426 113338 8565 44529.9 39810 

barcode09_2664798 125 5870589 800374 276 46964.7 7610 

barcode12_2664718 47 729356 49419 678 15518.2 10140 

barcode14_2672664 52 1624518 103721 188 31240.7 26540 

barcode15_2672455 37 3426904 2929534 309 92619 8220 

barcode16_2672718 108 4396925 147512 221 40712.3 33100 

barcode17_2664702 6 34344 13001 1279 5724 3820 

barcode21_2664788 19 735264 69365 18778 38698.1 29910 

barcode22_6620 11 198647 60673 1361 18058.8 14520 

barcode23_2672522 224 4123662 155565 75 18409.2 8100 

barcode24_2672512 51 2981855 1800200 228 58467.7 19520 

3.5.9.2 DeepARG 

DeepARG is a tool published in 2018, which uses a novel deep-learning methodology to 

predict ARGs. DeepARG results are presented unfiltered and can be seen in the 

DeepARG_summarised.tsv file (Appendix 9). Overall, 320 ARGs were identified across all 

samples, but when applying a filter such as an alignment length of 75 bases to an ARG in 

the database, the number of ARGs is reduced to the following 15 - BACA, 

COB(I)ALAMIN_ADENOLSYLTRANSFERASE, ROSB, VGAC, 

MULTIDRUG_ABC_TRANSPORTER, OQXB, ANT(3'')-IIC, MEXT, OMPR, MARR, ADEJ, 
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RPOB2, EFRA, MAJOR_FACILITATOR_SUPERFAMILY_TRANSPORTER and PENA. 

Reasons for this filter include the high error rate of nanopore data, which can usually be 

reduced by sufficient coverage (which unfortunately this data does not provide). 

Furthermore, errors in nanopore data can make ORF (open reading frame) detection 

difficult for commonly used tools such as prodigal (Hyatt et al., 2010).  

3.5.9.3 NanoARG 

The NanoARG web service was tested, and an example of the information provided can 

be seen in the barcode15_2672455_NanoARG word document in Appendix 9. Access to 

information for the remaining samples will be shared with FSA project officer, who can 

disseminate appropriately. The NanoARG web service provides bar plots for ARG (Anti-

microbial Resistance Gene), MRG (Metal Resistance Gene) and MGE (Mobile Genetic 

Element) hits, as well as providing some idea of which taxa are present in the sample. The 

biggest drawback to NanoARG is that analysis settings cannot be adjusted for sensitivity, 

and that the service is online (and thus will be slower than running the analysis on a high-

performance computer). The advantages include an adjusted approach to identifying 

ARGs (by removing the dependence on ORF detection tools) which is well suited to error-

prone nanopore data, and the easy to use nature of an online tool. Ultimately, for the 

flexibility of analysis required, NanoARG results were deemed to be too inaccessible and 

thus unsuitable in its current state. However, outputs are still reported here as something 

to explore when the tool is available offline. 

3.5.9.4 Co-occurrence 

Across all samples, there were a total of 218 instances where at least 2 ARGs were 

identified on the same contig. However, the absence of a strict definition of how closely 

located these genes must be to each other in order to be considered co-occurring results 

in this data being presented unfiltered. The median number of ARGs found on contigs 

which were positive was 2, with a mean, maximum and minimum of 5, 55 and 2 

respectively. Due to the variable length of the assemblies, longer contigs are more likely to 

contain more ARGs, thus it is important for future research to address the issue of 
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distances between ARGs in order for confident numbers of co-occurrence to be reported.  

Details of which contigs, the genes and identified ARGs can be seen in the attached files 

(DeepARG-cooccurrence_distances.tsv, DeepARG-cooccurrence.txt, Appendix 9). 

3.5.9.5 Mobile Genetic Elements 

Of the 14 samples inspected for MGEs, three reported no hits (2664718, 2664702, 

2664788). Across the remaining 11, samples there were 1760 MGEs identified when no 

filtering was applied. When filtering on percentage identity to an MGE in the ACLAME 

database of 85%, and a minimum alignment length of 200, 608 MGEs were identified. 

Unfiltered data is provided in the ‘aclame_summary.tsv’ file (Appendix 9). 

3.5.9.6 Metagenome-assembled Genomes 

With metagenomic sequencing, it is possible to assemble MAGs (Metagenome-Assembled 

Genomes). Sample barcode15_2672455, with its maximum contig size of 2.9Mb, is one 

such example where a MAG has been assembled. Extracting this 2.9Mb contig and 

running it through the ProGenome classifier  software (Mende et al., 2020, Mende et al., 

2013) suggests that this is a complete genome of Acinetobacter sp. TTH0-4/Acinetobacter 

albensis. Interestingly, a MAG of this size is not present in either of the Spades assemblies 

for this sample, highlighting the power of long-read sequencing for capturing genome-

sized contigs. 

3.5.9.7 Hybrid vs Meta: Assembly 

The 14 samples that produced long-read only assemblies were also assembled with 

Spades in meta mode (for metagenomic assembly of illumina short read data) and hybrid 

mode (for assembly using both long nanopore and short illumina reads), in order to assess 

the benefit of including longer PromethION reads in the assembly. Assembly quality 

metrics can be seen in Table 11, with more information available in the attached 

hybrid_vs_meta excel file (Appendix 9). Of note is the slightly increased average contig 

length achieved with the hybrid method, as well as a general decrease in the number of 

contigs in the assembly. This suggests that the long reads are helping to bridge gaps 
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present in the short-read data, which results in longer contigs. One of the main benefits of 

long read technologies is the ability to create longer unbroken sequences, resulting in 

longer contigs. Thus, as might be expected, the maximum contig length is on average 

greater in the hybrid assemblies – despite the low amount of data generated by the 

PromethION. If more data had been generated, this trend may have been observed more 

significantly. 

Table 11. Descriptive assembly statistics from the 14 samples that were analysed using 

Spades in hybrid and meta mode.   

Barcode_SampleID 
Spades 
Method Contigs Bases Max Min Average 

barcode01_2664549 Hybrid 2106213 1072419557 755356 55 509.2 

barcode02_2664550 Hybrid 1909648 792607874 916702 55 415.1 

barcode03_2664719 Hybrid 3822275 1019463650 233460 55 266.7 

barcode07_6574 Hybrid 265682 125321766 386306 56 471.7 

barcode09_2664798 Hybrid 1027472 349670351 208553 55 340.3 

barcode12_2664718 Hybrid 3204262 900853524 335541 55 281.1 

barcode14_2672664 Hybrid 52188 43574793 357638 56 835 

barcode15_2672455 Hybrid 43588 38109097 198979 56 874.3 

barcode16_2672718 Hybrid 330292 188217240 2704692 55 569.9 

barcode17_2664702 Hybrid 3482151 1253388657 243679 55 359.9 

barcode21_2664788 Hybrid 1524407 586972551 507384 56 385 

barcode22_6620 Hybrid 782242 237887275 351614 55 304.1 

barcode23_2672522 Hybrid 12171 11908796 553239 56 978.5 

barcode24_2672512 Hybrid 7027 5856950 543462 56 833.5 

barcode01_2664549 Meta 2111258 1072539964 407195 55 508 

barcode02_2664550 Meta 1912672 792828647 409368 55 414.5 

barcode03_2664719 Meta 3824450 1019298289 214163 55 266.5 

barcode07_6574 Meta 266413 125288122 293761 56 470.3 
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Barcode_SampleID 
Spades 
Method Contigs Bases Max Min Average 

barcode09_2664798 Meta 1030380 349279826 168723 55 339 

barcode12_2664718 Meta 3206281 900958430 408136 55 281 

barcode14_2672664 Meta 53373 43501696 330067 56 815.1 

barcode15_2672455 Meta 44172 38050101 192851 56 861.4 

barcode16_2672718 Meta 330879 188026695 2248934 55 568.3 

barcode17_2664702 Meta 3484131 1253429762 229457 55 359.8 

barcode21_2664788 Meta 1531437 586635892 441271 56 383.1 

barcode22_6620 Meta 782382 237849646 318351 55 304 

barcode23_2672522 Meta 12935 11702155 173071 56 904.7 

barcode24_2672512 Meta 7142 5823289 334730 56 815.4 

 

3.5.9.8 Hybrid vs Meta: DeepARG 

DeepARG was run on both the hybrid and meta assemblies for each sample. Without 

applying any filtering, the hybrid dataset identified 13859 ARGs, with the meta dataset 

identifying 13789 ARGs. When filtering the ARGs on an identity of 75% (a more liberal cut-

off to allow for Nanopore sequencing errors), 1034 and 1027 ARGs were identified for 

hybrid and meta datasets. It would appear that the number of ARGs identified by each 

assembly method are broadly similar, with slightly more identified in the hybrid dataset.  

3.5.9.9 Hybrid vs Meta: Co-occurrence 

3824 ARGs were identified to be co-occurring in the hybrid dataset, whilst 3372 were 

found in the meta dataset. Here, co-occurring is defined as ‘present on the same contig’. 

The data is provided unfiltered so that more stringent measures can be applied in the light 

of a definition of co-occurrence. Interestingly, there are 452 more ARGs identified as co-

occurring in the hybrid dataset than the meta dataset, which highlights the benefit of the 

long-read technology increasing the average contig length.  
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3.6 Estimation of UK population burden 

A total of 477 unique ARGs were identified in the RTE samples. For each of the specific 

priority groups of ARG, smaller numbers were detected, as shown in Figure 11 and Table 

12.  

 

Figure 11. Number of ARGs (belonging to a particular category) found in at least one of 

the sampled RTE foods. 

  

Table 12. Number of ARGs found in the sampled foods, within the defined sub-
categories of ARG 

ARG classification Number of ARGs of this type identified 
within the samples 

Fluoroquinolone resistance 90 

Carbapenem resistance 54 

Potential ESBL activity 54 

Vancomycin resistance 15 
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ARG classification Number of ARGs of this type identified 
within the samples 

Methicillin resistance 2 

Antibiotic resistant gene variant or mutant 2 

Colistin resistance 2 

Initially, we consider the prevalence in the diet for the full list of ARGs. In later sections, 

individual classes of ARGs (for example, methicillin resistant, colistin resistant or 

variant/mutant cases) are considered, leading to more targeted assessments. 

3.6.1 ARGs detected in duplicate samples 

11 duplicate samples (same product type, same batch code, bought at the one location 

during a single visit) were tested for ARGs Table 13. The aim of the duplicate analyses 

was to gain a first impression of the how consistently representative samples were of the 

"same product" (product, batch, location and time of purchase). While we do not expect 

representative duplicate samples to contain the same ARGs, representative unbiased 

samples can be expected to contain a similar number of distinct ARGs. The number of 

ARGs found in each duplicate sample was compared using a Poisson test.  Significant 

values for the Poisson test (blueberries, iceberg lettuce), suggest that factors other than 

those used to describe the sample are affecting the number of ARGs detected. These may 

be associated with variation in the product or variation in testing. This may be a topic for 

further study 

 

Table 13. Food categories for which duplicate samples were tested, showing the 
number of ARGs identified in each sample, the number shared in both 
samples, and the total number of different ARGs found across the pair of 
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samples. Poisson test (adjusted for multiple comparisons) significance 
values are shown. 

Food Category 

ARGs in 
each 
sample 

Number in 
both 
samples 

Number in 
either or both 
samples Poisson test 

Apples 85, 79 56 108 1 

Blueberries 57, 25 18 64 0.00535 

Cherry tomatoes 154, 109 99 164 0.059 

Double cream 1, 1 1 1 1 

Iceberg lettuce 9, 55 8 56 3.89E-08 

Lactose free semi 

skimmed milk 25, 21 18 28 1 

Oranges 27, 21 14 34 1 

Spreadable butter 10, 11 8 13 1 

Tomatoes 193, 168 149 212 1 

Unsweetened 

yogurt 7, 5 4 8 1 

White onions 107, 139 94 152 0.383 

 

3.6.2 Incidence summaries at sample/food level 

In Figure 12 we see that many produce items have larger number of unique ARGs than 

dairy products. Some have large variations between samples (for example bananas, 

tomatoes, milk). For example, there are two tomato samples (SampleID=2664549, 

2664550) with 193 and 168 distinct ARGs whereas other tomato samples have fewer than 

50 distinct ARGs. Pasteurised orange juice, pears, oranges appear to have similar 

numbers between samples, but have fewer samples.  The 77 samples that did not contain 

any of the ARGs, and not shown in Figure 1, were for semi-skimmed milk (39), whole milk 
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(20), bananas (1), skimmed milk (3), ham (3), melon (1), reduced fat spread (2), mangoes 

(1), kiwi fruit (3), fat spread (1), avocado (2) and watermelon (1). For melon, watermelon, 

fat spread and reduced fat spread these were the only samples collected, so no ARGs at 

all were found in these 4 types. However, the sample sizes were very small in this case 

(Table 14). 

This can also be shown as number of unique ARGs per food type, i.e. across combined 

samples within a food (Figure 12). 



 

Page 120 of 206 

 

 

 



 

Page 121 of 206 

 

 

 



 

Page 122 of 206 

 

 

 



 

Page 123 of 206 

 

 

 

Figure 12. For each sample, the number of unique ARGs found. The x-axis represents 

unique sample numbers, which have been omitted here to save space. Samples are 

displayed together per food type, showing the between-sample variation in the number of 

ARGs. Values are shown for 179 samples (of the original 256 samples, 77 were not found 

to contain any of the ARGs, see Table 14). 

Table 14. Summaries based on the number of ARGs per sample, by food type. The 
number of samples collected and the number of samples containing at least 1 
ARG are also shown. 
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Food 
category 

Mean 
number 
of ARGs 
per 
sample 

Median 
number 
of ARGs 
per 
sample 

Minimum 
number 
of ARGs 
per 
sample 

Maximum 
number of 
ARGs per 
sample: 
maximum 

Total 
number 
of 
samples 

Samples 
with 1 or 
more 
ARG 

Semi 

skimmed milk 

2.9 0 0 56 69 30 

Whole milk 3.3 1 0 49 42 22 

Bananas 13.5 5.5 0 68 16 15 

Apples 78.1 76 47 114 15 15 

Orange juice 

pasteurised 

31.3 36 3 45 7 7 

Tomatoes 63.0 26 3 193 8 8 

Skimmed 

milk 

7.6 1 0 30 7 4 

Cheddar 

cheese 

5.8 6 5 6 4 4 

Pears 82.4 76 58 129 5 5

Small citrus 36.8 30 7 80 4 4

Cucumbers 102.7 98 84 126 3 3

Oranges 27.2 27 12 44 5 5

Strawberries 29.0 29 29 29 1 1

Apple juice 

pasteurised 

61.5 61.5 27 96 2 2
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Food 
category 

Mean 
number 
of ARGs 
per 
sample 

Median 
number 
of ARGs 
per 
sample 

Minimum 
number 
of ARGs 
per 
sample 

Maximum 
number of 
ARGs per 
sample: 
maximum 

Total 
number 
of 
samples 

Samples 
with 1 or 
more 
ARG 

Ham not 

smoked 

6.0 0 0 24 4 1 

White grapes 80.5 80.5 46 115 2 2 

Melon 0.0 0 0 0 1 0 

Salted butter 10.5 10.5 3 18 2 2 

Soya milk 

sweetened 

4.5 4.5 3 6 2 2 

Carrots 22.0 22 22 22 1 1 

Lettuce 57.7 27 21 125 3 3 

Unsweetened 

yoghurt 

6.0 6 5 7 2 2 

Vanilla ice 

cream 

74.0 74 39 109 2 2 

Black grapes 47.0 47 43 51 2 2 

Reduced fat 

spread 

0.0 0 0 0 2 0 

Probiotic 

yoghurt drink 

1.0 1 1 1 1 1 
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Food 
category 

Mean 
number 
of ARGs 
per 
sample 

Median 
number 
of ARGs 
per 
sample 

Minimum 
number 
of ARGs 
per 
sample 

Maximum 
number of 
ARGs per 
sample: 
maximum 

Total 
number 
of 
samples 

Samples 
with 1 or 
more 
ARG 

One percent 

milk 

1.0 1 1 1 1 1 

Low fat 

unsweetened 

yoghurt 

5.0 5 5 5 1 1 

Pineapple 6.0 6 6 6 1 1 

Plums 68.0 68 51 85 2 2 

White onions 124.7 128 107 139 3 3 

Orange juice 

freshly 

squeezed 

2.0 2 2 2 1 1 

Nectarines 72.0 72 72 72 1 1 

Mangoes 2.3 3 0 4 3 2 

Kiwi fruit 0.8 0 0 3 4 1 

Cherry 

tomatoes 

131.5 131.5 109 154 2 2 

Fat spread 0.0 0 0 0 1 0 

Avocado 10.3 0 0 31 3 1 

Peaches 74.0 74 74 74 1 1 
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Food 
category 

Mean 
number 
of ARGs 
per 
sample 

Median 
number 
of ARGs 
per 
sample 

Minimum 
number 
of ARGs 
per 
sample 

Maximum 
number of 
ARGs per 
sample: 
maximum 

Total 
number 
of 
samples 

Samples 
with 1 or 
more 
ARG 

Raspberries 49.0 49 49 49 1 1 

Blueberries 41.0 41 25 57 2 2 

Red peppers 71.0 71 71 71 1 1 

Corned beef 29.0 29 8 50 2 2 

Spreadable 

butter 

10.5 10.5 10 11 2 2 

Soya milk 

unsweetened 

9.0 9 9 9 1 1 

Raisins 23.0 23 23 23 1 1 

Iceberg 

lettuce 

32.0 32 9 55 2 2 

Lactose free 

semi 

skimmed milk 

23.0 23 21 25 2 2 

Watermelon 0.0 0 0 0 1 0 

Double 

cream 

1.0 1 1 1 2 2 

Grapefruit 119.0 119 119 119 1 1 
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Food 
category 

Mean 
number 
of ARGs 
per 
sample 

Median 
number 
of ARGs 
per 
sample 

Minimum 
number 
of ARGs 
per 
sample 

Maximum 
number of 
ARGs per 
sample: 
maximum 

Total 
number 
of 
samples 

Samples 
with 1 or 
more 
ARG 

Olives in 

brine 

58.5 58.5 29 88 2 2 
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Figure 13. Total number of ARGs found per food type. These are displayed by food type 

(dairy, meat, produce) without accounting for sample size or population consumption. 
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Figure 14. Average number of ARGs detected per sample, by food type. Note that the 

calculation does not include multiple instances of the same ARG. So, for example if 2 

samples both contain the same ARG then the average is 0.5, not 1. The food types are 

arranged as in Figure 19, but highlight those food types for which the number of unique 

ARGs is high relative to the number of samples collected. 

In Figure 15, the bar widths are proportional to the total UK consumption of each item. 

Labels of food corresponding to 10% of the overall consumptions of these foods have 

been left out for readability. In Figure 16 they are instead split into an 80% and 20% slice 

of cumulative consumptions, so that the less consumed items are also visible. 
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Figure 15. Number of ARGs found per food type. These are ordered by overall 

consumption amounts. The x-axis values are related to those shown in Figure 13, although 
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when considering combined samples per food type the number of ARGs tends to be larger 

than that seen in individual samples. This illustration is an alternative visualisation of the 

same information that highlights the relative contribution of the different ready to eat items 

to the total UK consumption 
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Figure 16. Number of ARGs found per food type. These are ordered by overall 

consumption amounts. Top 80% consumption (top) and bottom 20% consumption (bottom) 

relative to total consumption for the selected items. 
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Figure 17. Mean number of ARGs found (per sample) within each food type. These are 

ordered by overall consumption amounts. Top 80% consumption (top) and bottom 20% 

consumption (bottom) relative to total consumption for the selected items. 

A similar process was applied to summarise the number of ARG families (rather than 

ARGs) per food type, and these results are presented in Appendix 12. 

3.6.3 Incidence: Total UK Diet 
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Examples of the frequency (relative number of samples) of a given ARG in a food specific 

dataset are shown for semi-skimmed milk (Figure 18), whole milk (Figure 19) and bananas 

(Figure 20). These food types were selected as the 3 most highly consumed ready to eat 

products included in the analysis. Analogous results for ARG families are provided in 

Appendix 12. 
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Figure 18. Number of semi-skimmed milk samples found to contain the named individual 

ARGs. (30 samples across a range of brands were found to contain one or more ARGs 

from a total of 69 measured original samples). For further information on each gene name, 

refer to the Antibiotic Resistance Ontology website.   

For a further 41 ARGs, not shown in the graph, each was observed in only one of the 30 

positive semi-skimmed milk samples: AAC(3)-Ia, AAC(3)-IIb, AAC(3)-IIe, aadS, adeK, 

amrA, bacA, baeS, catI, emrB, Enterobacter_cloacae_acrA, eptA, 

Escherichia_coli_ampC1_beta-lactamase, Escherichia_coli_mdfA, evgS, floR, kdpE, 

Klebsiella_pneumoniae_KpnF, Klebsiella_pneumoniae_KpnG, mdtO, MexB, mexI, mexN, 

https://www.ebi.ac.uk/ols/ontologies/aro/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FARO_0000031&viewMode=All&siblings=false
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mexP, mexW, MuxC, OpmB, OprN, OXA-280, PmpM, pmrF, QnrB8, SHV-11, smeB, 

smeD, smeE, smeR, SRT-2, sul2, tolC, TriB, ugd. 



 

Page 141 of 206 

 

 

 



 

Page 142 of 206 

 

 

 

Figure 19. Number of whole milk samples (from a total of 22) found to contain individual 

ARGs (22 samples were found to contain one or more ARGs from a total of 42 measured 

original whole milk samples) 

Another 44 were found in only one whole milk sample: AAC(3)-IIb, AAC(6')-Ib7, aadA17, 

aadA6, aadA7, abeM, Acinetobacter_baumannii_AbaF, acrB, adeG, adeI, adeK, ANT(3'')-

IIa, ANT(3'')-IIc, APH(6)-Id, bcr-1, CRP, dfrA17, emrB, emrY, eptA, ErmB, 

Klebsiella_pneumoniae_KpnG, Klebsiella_pneumoniae_KpnH, mdtG, mdtM, mdtO, MexC, 
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mexI, mexL, mphE, msbA, msrE, OpmB, OprJ, OprN, OXA-274, OXA-275, OXA-65, rmtF, 

SHV-11, TEM-157, tet(A), TriA, TriB. 
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Figure 20. Number of banana samples (from a total of 15) found to contain individual 

ARGs (15 samples were found to contain one or more ARGs from a total of 16 measured 

original banana samples). 

A further 55 ARGs were found in only one banana sample: AAC(6')-Ib7, aadA27, 

Acinetobacter_baumannii_AbaQ, acrB, adeJ, adeK, adeR, 

Agrobacterium_fabrum_chloramphenicol_acetyltransferase, APH(3')-Ia, baeS, catB3, catI, 

CTX-M-69, dfrA17, floR, fosA, FosA6, JOHN-1, kdpE, Klebsiella_pneumoniae_OmpK37, 
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lmrD, mdtN, mdtO, mdtP, MexB, MexD, mexN, mtrA, MuxC, novA, OKP-A-5, OpmB, 

OpmH, OprM, OprN, OXA-296, PER-6, pmrF, Pseudomonas_aeruginosa_CpxR, 

Pseudomonas_aeruginosa_emrE, Rm3, rmtF, SHV-11, smeB, smeD, smeE, SRT-2, TEM-

102, TEM-132, TEM-47, tet(A), tet(V), tet(Z), THIN-B, ugd. 

3.6.4 Prevalence Calculations, Population Level 

The 52 RTE foods sampled in this study are representative of food groups corresponding 

to over 90% of the total RTE intakes of the UK population. These food types are estimated 

to cover 96.9% of those foods classified as RTE and informative (Section 2.1). Prevalence 

estimates for the proportion of individual diets in which individual ARGs appear are shown 

in Figure 21. Results for ARG families are included in Appendix 12. 
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Figure 21. Estimated prevalence of ARGs in ready to eat foods, listing those that are 

estimated to occur in 95% or more of UK diets. The overall incidences per food were used 

here. We expect the ARGs found in milk and other high consumption items to be the main 

contributors with high prevalence, due to the frequency of consumption (see for example 

the list of most frequently observed ARGs for semi-skimmed milk). 95% confidence 

intervals are shown based on 100 bootstrap samples. For better readability, the plots have 

been divided into roughly equally numbers of points, with panels ordered from highest 

proportion of diets at the top to lowest proportion of diets at the bottom. 

3.6.5 Colistin Resistance ARGs 

A single colistin-resistant ARG (ICR-Mo) was found in 3 out of 15 samples of apple, 1 of 1 

sample of nectarine and 1 out of 2 samples of cherry tomatoes. The gene family of ICR-

Mo is ‘intrinsic colistin resistant phosphoethanolamine transferase’, and it appears to be a 
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chromosomally encoded determinant of colistin resistance (Wei et al., 2018). A second 

colistin resistant ARG (MCR-5.2) was found in the second sample of cherry tomatoes. The 

gene family of MCR-5.2 is MCR phosphoethanolamine transferase. The proportion of UK 

diets containing ICR-Mo is estimated as 46%, which is mainly driven by apple 

consumptions. The proportion of diets with MCR-5.2 is estimated as 7%. 

3.6.6 Methicillin Resistance ARGs 

A single methicillin resistant ARG was found in each of the 2 positive samples of pear 

(abcA in both samples). Similarly, a single case of methicillin ARG was found in the 1 

sample of cucumber (mecA) and in the 1 sample of raisins (abcA). This led to the 

estimated burden in the UK diet of 37% of UK diets for mecA (gene family = methicillin 

resistant PBP2) and 17% UK diets for abcA (gene family = ATP-binding cassette (ABC) 

antibiotic efflux pump). 

3.6.7 Antibiotic resistant gene variant or mutant 

These are ARGs for which resistance is conferred by the presence of a mutation (for 

example in the target site for an antibiotic), rather than by the presence of the gene itself. 

To identify these as present we required 100% sequence identity to the reference gene 

sequences. Numbers of samples found to contain one or more ARGs in this category are 

shown in Table 15. In fact, for all 18 of these samples a single relevant ARG was 

measured. In 1 apple sample this was rpoB2 (gene family = rifamycin-resistant beta-

subunit of RNA polymerase (rpoB)). In all other samples it was 

Pseudomonas_aeruginosa_soxR (gene family = ATP-binding cassette (ABC) antibiotic 

efflux pump;major facilitator superfamily (MFS) antibiotic efflux pump;resistance-

nodulation-cell division (RND) antibiotic efflux pump). The estimates of UK dietary burden 

are 80% of diets containing  Pseudomonas_aeruginosa_soxR and 41% of UK diets 

containing rpoB2. 
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Table 15. Foods and numbers of samples for which one or more ARGs, classed as variant 

or mutant, were measured 

Food Positive 
samples 

Total samples 
measured 

ARGs recorded 

Apples 8 15 rpoB2 (1), 

Pseudomonas_aeruginosa_soxR 

(7) 

Tomatoes 1 8 Pseudomonas_aeruginosa_soxR 

Skimmed milk 1 7 Pseudomonas_aeruginosa_soxR 

Pears 1 5 Pseudomonas_aeruginosa_soxR 

Cucumbers 1 3 Pseudomonas_aeruginosa_soxR 

Apple juice 

pasteurised 

1 2 Pseudomonas_aeruginosa_soxR 

White grapes 1 2 Pseudomonas_aeruginosa_soxR 

Vanilla ice cream 1 2 Pseudomonas_aeruginosa_soxR 

White onions 1 3 Pseudomonas_aeruginosa_soxR 

Iceberg lettuce 1 2 Pseudomonas_aeruginosa_soxR 

Olives in brine 1 2 Pseudomonas_aeruginosa_soxR 

 

3.6.8 Carbapenem Resistance ARGs 

Of the 52 RTE food types, 37 were found to contain one or more ARGs classified as 

carbapenem resistant, including all 15 of the apple samples (Appendix 10, Appendix 12) 

The total number of these ARGs found is often higher in the foods where fewer samples 

were taken, for example onions, cherry tomatoes. One of the most important dairy 
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consumption items (cheddar cheese) does not appear in this list, as there were no ARGs 

found in this category from the 4 samples analysed, and fewer ARGs were typically found 

in dairy products compared with produce samples. However, because the relative quantity 

of  bacterial DNA extracted from samples compared with sample product DNA is much 

lower for dairy products than for produce products, numbers of ARGS found in dairy and 

produce samples are not comparable.  The estimated proportions of individual diets 

containing ARGs and ARG families classed as carbapenem resistant are shown in 

Appendix 12.  

3.6.9 Vancomycin resistant ARGs 

Samples from 26 of the 52 RTE food types were found to contain one or more ARGs 

classified as vancomycin resistant (Figure 11 and Appendix 10). vanRO is the most 

frequently observed of these overall, and was found in many of the RTE produce samples. 

vanSA occurs in a high proportion of cheese, butter, yogurt but less frequently in milk 

samples. The distribution of van genes across food types is shown in Appendix 12. The 

relative frequencies of these and other ARGs, combined with the overall consumptions of 

all RTE foods, is reflected in the estimated dietary burden (proportion of individual diets) 

shown in Appendix 12.  

3.6.10 Potential ESBL Activity 

Of the 52 RTE food types 35 were found to contain one or more ARGs classified as having 

potential ESBL activity, including all 15 of the apple samples and 11 of the 16 banana 

samples (Appendix 10, Appendix 12). The total number of these ARGs found is often 

higher in the foods where fewer samples were taken, for example onions, cherry tomatoes. 

One of the most important dairy consumption items (cheddar cheese) does not appear in 

this list, as there were no ARGs found in this category from the 4 samples analysed. 

However, it is important to remember that ARG observations in dairy and produce are not 

directly comparable (see 3.6.7). The estimated proportions of individual diets containing 

potential ESBL ARGs or ARG families are also shown in Appendix 12.  

3.6.11 Fluoroquinolone resistant ARGs 
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Of the 52 RTE food types 46 were found to contain one or more ARGs classified as 

fluoroquinolone resistant, including a high proportion (or all) of the measured samples for 

most food types (Appendix 10). The total number of these ARGs found is often higher in 

the foods where fewer samples were taken, for example onions, cherry tomatoes. Results 

are displayed in Appendix 12. The food types with largest variety of fluoroquinolone 

resistant ARGs, relative to the number of samples measured, are apples (55) tomatoes 

(62), white onions (58), cucumbers (52), cherry tomatoes (47), pears (44), white grapes 

(36), grapefruit (44), and apple juice pasteurised (43). 

Overall the numbers of ARGs of this type are greater than for the other classes. The 

overall pattern of ARGs per food type are very similar to that seen for the overall ARG list 

(for example Figure 15 and Figure 16) although with fewer ARGs overall. The estimated 

proportions of individual diets containing fluoroquinolone resistance ARGs or ARG families 

are also shown in Appendix 12.  

4. Discussion 
This project was commissioned and designed to estimate the diversity of Antimicrobial 

Resistance Genes in selected ready-to-eat foods. What this project is not able to do is 

provide estimates about the risks to consumers of Antimicrobial Resistance itself in these 

foods. This may appear counterintuitive, but there are many reasons why the presence of 

ARGs does not mean that there are AMR bacteria present. For example; 

• An ARG might encode a gene product which is one component of larger molecular 

machinery which is essential for the AMR phenotype. If other components are 

absent, there will be no AMR. 

• Even with complete molecular machinery, an AMR phenotype may depend on other 

factors, such as particular metabolic conditions. That is, for a variety of reasons, the 
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ARGs may never be expressed; or under most conditions not be expressed to 

sufficient levels to cause an AMR phenotype. 

• Some ARGs may encode a gene product which disables a particular antimicrobial 

molecule which does not have (or has ever had) any clinical importance, even if it is 

quite similar to others which do. 

• Some ARGs may encode a gene product which breaks down a particular molecule 

which is not lethal to the bacterium at "natural" environmental levels, but may not be 

able to cope well with clinical concentrations of the same molecule, which may be 

lethal. 

• The detected ARGs may be present in dead bacteria, or on free DNA, and this is 

not distinguishable by a metagenomic approach. While this would mean that they 

weren’t generating a resistant phenotype in living bacteria when ingested they are 

still of interest, as free DNA can be taken up by living bacteria as a form of 

Horizontal Gene Transfer. 

Furthermore, any ARGs that are identified are not necessarily attributable to farming or 

manufacturing practises increasing the risks of AMR evolution. Many ARG types, including 

β-lactamases, evolved for reasons entirely unrelated to clinical or veterinary antibiotic use, 

and have been evolving with their hosts for millions of years (Aminov, 2009). ARGs have 

consequently been found in pristine habitats, including ancient permafrost (Kashuba et al., 

2017). That being said, it is well documented that anthropogenic factors can and do 

increase the prevalence of ARGs in particular environments (Aminov, 2009). What this 

project can therefore do is highlight potential areas for future work (see section 6) to better 

understand selective pressures driving ARG prevalence, to determine the extent to which 

the identified ARGs relate to phenotypic AMR, and what this might mean for consumers.  

4.1 Risk and Uncertainty Estimation 

4.1.1 Population Level Consumption 
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Based on the study design, which was agreed by the FSA in order to obtain an average 

picture of ARG consumption in the UK, we have insufficient sample numbers to allow 

comparison of exposure risk between foodstuffs (see section 4.1.3). As a consequence, 

despite some food groups appearing to contain more ARGs than others (for example, 

tomatoes appear to contain more ARGs than semi-skimmed milk in Figure 12), the sample 

numbers are relatively small, and the difference in ability to detect ARGs on these sample 

types may be very large. So, we deliberately and of necessity make no comment in this 

discussion on the different ARG levels present on different food products. However, 

considering the total sample set as a whole, the estimated proportion of individual diets 

containing the most frequently identified ARGs is extremely high. For example, adeF, a 

gene encoding the membrane fusion protein of the multidrug efflux complex AdeFGH 

(Coyne et al., 2010), is found in approximately 97% of individual diets in the UK. Indeed, 

the three ARG families found in the highest proportion of diets are all efflux pump families 

(RND, MFS and ABC pumps).  

Such high apparent consumption may be driven by at least two different factors. The first 

is the fact that this metagenomic approach has the potential to detect ARGs in any 

bacterium on the food sample, and indeed to detect ARGs present on free DNA. 

Furthermore, DNA sequences generated in this project can be compared against 

databases containing many hundreds or thousands of different ARG sequences. Very few 

metagenomic studies of RTE foods have been undertaken to date (Li et al., 2020), with the 

project presented here being by far the largest. This approach differs markedly from the 

more traditional, phenotypic or PCR-based techniques (as seen in the papers reviewed for 

this project, section 2.1.1). In these approaches, a bacterium or range of bacteria of 

interest are usually isolated from the foodstuffs in question, and assayed phenotypically or 

by PCR for the presence of antimicrobial resistance or ARGs to a specified, by necessity 

restricted, range of antibiotics. It is therefore not surprising that a metagenomic approach 

should yield apparently high AMR burden estimates. 

The second is that the burden estimates employed in this study use incidence of ARGs as 

their measures. That is to say, once an ARG is detected on a foodstuff it is considered 
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incident on that foodstuff and assumed that it will at some point be consumed by any 

consumer who eats that food type. This is because we did not assume any consumer 

brand loyalty to a particular sub-type or manufacturer brand, nor did we have sufficient 

data to capture brand-level variations to link to the NDNS consumption diaries. The result 

was conservative in the sense that any ARG detected in our samples were assumed to be 

in the diet of all consumers of a given food type. 

At the other end of the scale, many of the ARG families which are consumed in the lower 

proportion of UK diets are the more unusual beta-lactamase families such as OKP, PER, 

AER and CAU beta-lactamases. It would be interesting to investigate further which food 

items these were linked to, and whether particular dietary consumption patterns (for 

example vegetarians) would be consuming different classes of ARGs. Furthermore, if 

there were scientific reasons to believe that the number of eating events associated with a 

particular ARG would lead to greater AMR burden overall, then the model could be 

extended to estimate the number of individual eating events rather than just individuals. 

Both these points would likely require a modified sampling regime (see section 5).  

4.1.2 Antibiotics of Particular Concern 

Resistance to a number of antibiotics, or groups of antibiotics, were flagged by FSA as 

being of particular concern. These were colistin resistance, methicillin resistance, 

carbapenem resistance, vancomycin resistance, fluoroquinolone resistance and ESBL 

activity. The numbers of ARGs within each group are shown in Figure 11 and Table 12. 

Due to the complexities around assigning ESBL status to particular beta-lactamase alleles, 

any identification of beta-lactamase genes with known ESBL alleles (for example SHV, 

TEM) were flagged as potential ESBL activity. Of these six types of AMR activity, two were 

very infrequent. Only two colistin resistance ARGs were identified among all samples. ICR-

Mo, was found in three food types (section 3.6.5). ICR-Mo is chromosomally encoded (Wei 

et al., 2018) and as such is likely of less concern than a mobile colistin resistance gene, as 

it cannot be easily transmitted to other, more virulent bacteria. Another colistin resistance 

ARG, MCR-5.2 was identified in one cherry tomato sample. MCR-5.2 is likely of more 
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importance and interest, as it is a mobile (plasmid-borne) colistin resistance gene. MCR-

5.2 was first identified in 2011 in the intestinal contents of a pig, in Germany (Hammerl et 

al., 2018), however the mcr-5-carrying plasmids identified in by Hammerl et al (2018) did 

not themselves carry transfer genes involved in plasmid conjugation, meaning other 

conjugative elements must be present for plasmid transfer. As the current study identified 

ARGs from short reads, the genomic context of the MCR-5.2 detected here is not known. 

The MCR-5.2 ARG in this study was found in a sample of cherry tomatoes from Morocco, 

and mcr genes have been previously identified in Morocco (and many other countries) 

(Nang et al., 2019), but without detailed information about the production processes 

involved from field to retail sale it is unknown at what point in production this ARG was 

introduced. 

Methicillin resistance ARGs were also very infrequently found with only two different ARGs 

found in three food groups: abcA in pears and raisins, and mecA in cucumber (section 

3.6.6). Both abcA and mecA are found in S. aureus. abcA is a multidrug efflux pump that 

confers resistance to a range of beta-lactam antibiotics (Villet et al., 2014). mecA encodes 

a penicillin-binding protein, PBP2’, which is resistant to methicillin (Ubukata et al., 1989). 

mecA is part of the mobile SCCmec cassette (Deurenberg and Stobberingh, 2008), and 

therefore has the potential to be transferred to methicillin-sensitive S. aureus. However, its 

detection is perhaps not surprising, as since its discovery in the 1960s it has gone on to 

become globally distributed (Deurenberg and Stobberingh, 2008). 

The other four antibiotic resistance types of concern (vancomycin, fluoroquinolone and 

carbapenem resistance and potential ESBL activity) were much more frequently detected. 

Fluoroquinolone resistance ARGs were found in a wide range of foods, particularly fresh 

produce, including in all samples tested for 37 different food types. More than 50 different 

fluoroquinolone resistance ARGs were found in apples, cucumbers and white onions, and 

more than 60 in tomatoes. The proportion of diets containing fluoroquinolone resistance 

genes was also very high – 99%. This is almost entirely due to various kinds of efflux 

pumps and transporter (RND, MFS, MATE etc.). In fact, the only widely consumed 

fluoroquinolone resistance ARG family that isn’t an efflux pump is the quinolone resistance 
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protein (qnr). qnr genes were first identified in 1998 and have become increasingly 

widespread in a range of gram-negative bacteria. They are plasmid-borne, and encode 

pentapeptide repeat proteins that protect the DNA/DNA gyrase or DNA/topoisomerase IV 

complexes from the action of quinolones (Strahilevitz et al., 2009). 

Carbapenem resistance and potential ESBL beta-lactamases are also found in a high 

proportion of individual diets. The most common carbapenem resistance gene families, as 

with fluoroquinolone resistance, are efflux pumps and porins. Although efflux pumps can 

be plasmid-borne, for example (Lv et al., 2020), chromosomally encoded efflux pumps are 

common in gram-negative bacteria (Auda et al., 2020). Indeed, the high frequency with 

which efflux pumps were identified highlights another limitation around the techniques 

deployed here, and a reason why these measures are likely overestimates of resistance. 

Many of the efflux pumps identified are present in all members of a bacterial species and 

do not of themselves indicate resistance.  

A number of different van genes were identified in the samples analysed. These are found 

frequently, with all diets from the UK general population containing vancomycin resistance 

genes, mainly driven by vanSA which was found on products across dairy, produce and 

cooked meats. Vancomycin-resistant enterococci are increasingly isolated from clinical 

samples in Europe and around the world (Ahmed and Baptiste, 2018), and other 

organisms such as S. aureus demonstrate vancomycin-resistance which may be due to 

the presence of van genes (Shariati et al., 2020). However, it must be noted that, like 

many of the genes identified here for numerous antibiotics, van genes work as part of 

operons (Stogios and Savchenko, 2020, Ahmed and Baptiste, 2018), and the presence of 

one gene in the operon or gene cluster does not guarantee that the other genes are 

present, or that a vancomycin-resistant phenotype would be observed. This is a general 

consideration when working with sequence data rather than phenotypic screening. 

Also present in around 70% of diets are carbapenem-active beta-lactamases (SHV and 

ACT), with SHV genes also potentially conferring ESBL activity. Other beta-lactamase 

families present in >60% of individual diets which could confer ESBL activity are CTX-M, 
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OXA and TEM beta-lactamases. On the one hand it is perhaps not surprising that beta-

lactamase genes should be responsible for both carbapenem-resistance and ESBL 

activity, as carbapenems are themselves a group of beta-lactam antibiotics. However, 

there is no single definition of ESBL, and one published, commonly used definition 

specifically excludes carbapenem-resistance due to the different molecular structure of 

carbapenem and ESBL antibiotics: “A commonly used working definition is that the ESBLs 

are β-lactamases capable of conferring bacterial resistance to the penicillins, first-, 

second-, and third-generation cephalosporins, and aztreonam (but not the cephamycins or 

carbapenems) by hydrolysis of these antibiotics, and which are inhibited by β-lactamase 

inhibitors such as clavulanic acid,” (Paterson and Bonomo, 2005). This perhaps explains 

the fact that, despite the prevalence of beta-lactamase families, there is relatively little 

overlap in those that contribute to carbapenem resistance and potential ESBL activity (only 

SHV in our list). The lack of a consensus definition for ESBL activity, as well as the fact 

that ESBL and non-ES beta-lactamases are present in the same gene family, make it 

difficult to confidently assign ESBL activity to metagenomically identified sequences. 

Furthermore, many alleles of these genes may have been first identified based on their 

sequence similarity to known beta-lactamase genes, without experimental confirmation of 

their ability to cause an ESBL phenotype. The absence of robust and clearly accessible 

ESBL phenotype information in resistance gene ontologies is a limitation of our ability to 

predict the presence of ESBL genes from sequence data. 

4.1.3 Background and limitations 

The aim of the study was to estimate the burden of AMR genes in UK diets at the time of 

sampling i.e. across the population at a single instant in time. The information about diets 

used to make this estimate were collected in nine 4-day surveys over nine years. Burden 

was defined as the incidence of AMR genes in in these diets. In order to achieve an 

unbiased estimate of incidence we attempted to take and test a body of samples such that 

the test results would provide a representative sample of AMR genes in UK diets. 

Representative does not mean that all AMR genes present in UK diets appear in the body 

of samples, and test results, but it does mean that the probability of an AMR gene 
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appearing in the body of samples should be determined only by the true proportion of UK 

diets in which it appears (International Seed Testing Association, 2013): two genes 

present in the same proportion of UK diets should have the same probability of appearing 

in the body of samples irrespective of where in the UK and in what ready-to-eat food they 

occur. And that AMR genes which are present in a larger proportion of UK diets should 

have a higher probability of appearing in the body of samples, and in the results reported 

here, than AMR genes which only appear in a lower proportion of UK diets. Or to put it 

another way: those AMR genes which are reported in the study should, on average, make 

a larger contribution to the burden of exposure in UK diets than AMR genes that do not 

appear in the results. By focusing on the overall population burden, our results do not 

necessarily capture information about ready-to-eat items consumed by relatively few 

individuals (for example ready-to-eat chicken) even if those items contained many AMR 

genes and some individuals were consuming large quantities. Similar, future studies could 

be conducted to assess particular food types of concern. 

In order to achieve a representative body of samples, the number of samples of each food 

group was in proportion to their consumption in UK diets. In addition, the number of 

samples of each food group from each UK region was approximately in proportion to the 

population in the region. Hence, if both the distribution of AMR genes across portions of 

food, and the ease of extraction and detection of AMR genes is the same across food 

types then the AMR genes found in these samples should be a representative sample of 

AMR genes in the diet at the time of sampling. However differences in the factors that 

affect the probability of inclusion between AMR genes in different food groups: for example 

the extent of clustering of prevalence of AMR genes in food items (for example between 

locations and over time), and differences between dietary portion size and analytical 

sample size may lead to differences in the probability of detecting different AMR genes 

which are associated with different foods. 

Ideally, all of the AMR genes in a sample should be detected and identified when each 

sample is tested, however, the probability of detection may vary between different AMR 

genes due to a number of factors such as whether AMR genes are present in high or low 
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quantities of DNA, the presence or absence of substances that inhibit amplification of 

DNA, or the presence of different quantities of DNA from other sources such as the food 

matrix. Finally, the identification of an AMR gene rests on the presence of the appropriate 

sequence in a database. 

Given that we can expect that many of the factors that affect whether an AMR gene which 

is incident in UK diets is both present in the body of samples and detected in those 

samples in which it is present to be strongly correlated with food type, it is likely that the 

results may provide  

1) a representative sample of the AMR burden in each food type;  

2) a somewhat representative sample across groups of similar food types;  

3) but one that is biased towards AMR genes in those food types in which it is easier 

to extract and amplify bacterial DNA (for example produce such as apples) and 

away from those food types in which it is more difficult (notably milk). 

So, while we do find a higher diversity of ARGs in produce types than in milk, this may be 

an artefact of the fact that it is easier to detect ARGs metagenomically in produce rather 

than milk. Given the non-quantitative nature of ARG detection, we also can’t say anything 

about the number of ARG copies per mass of fruit vs milk. 

The design of the sampling strategy deliberately focused on those food types which are 

highly consumed (for example semi-skimmed milk, bananas), and as a consequence few, 

sometimes only single samples were analysed metagenomically for low-consumed product 

types. This approach allowed a more confident estimation of burden based on a limited set 

of food samples. However, combined with the observations above, it means that it is 

difficult to draw conclusions about the relative contribution of different food items to this 

burden. The selected samples are heavily skewed towards a few food types based on the 

overall UK consumptions. These food types are therefore driving the overall burden 

calculation. The variations/uncertainties associated with the ARGs detected per food type 

are large, so the overall uncertainties are also large. To produce estimates of AMR 

presence in different individual food types we would need a sampling scheme designed for 
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that purpose. For comparing AMR presence between food types, better quantification of 

the detection uncertainty is required. Where observations have been made about the 

underlying sources of exposure to particular ARGs, for example colistin resistance genes 

in apples, this is based on our ability to measure ARGs, taking into account everything 

discussed above, and we cannot definitively say that apples contain more colistin 

resistance genes than other food types. This project raises the possibility of higher 

presence of colistin resistance genes in apples compared with other products as a 

hypothesis that can be tested in a study designed for that purpose. 

Potential sources of unquantified uncertainties are present throughout all stages of the 

analysis. A number of potential sources of uncertainty are highlighted in Table 16. 

Table 16. Potential sources of uncertainty in ARG detection. 

Step Potential sources of uncertainty 

Sample selection in supermarket AMR genes may be present or absent 

in individual items of nominally the 

same product. Hence they may be 

present or absent on randomly selected 

samples analysed in this project. This is 

a common feature of representative 

sampling. If there are temporal 

variations (within year) these may be 

missing from the data, because dairy 

samples were collected in the first half 

of year and produce in the second half. 

Couriering sample to Fera The microbiome may change over time 

leading to different prevalences of AMR 

and non-AMR genes. If storage time 

and conditions for samples taken in this 
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Step Potential sources of uncertainty 

project is representative of storage 

between purchase and consumption of 

RTE foods in the UK then these 

changes should be representative of 

changes in the diet. 

Receipt at Fera Some samples were rejected, due to 

incorrect or damaged/out-of-date 

products. These were resampled. 

Subsampling – either rinsing exterior, 

peeling and rinsing, dissecting and 

rinsing, centrifuging (juice), total 

subsample for extraction (milk and 

cheese) 

Different subsampling methods may 

cause different ratios of bacteria:host 

cells for different sample types, for 

example we would expect more bacteria 

for externally rinsed types, such as 

apples, than for total DNA extraction 

samples, such as milk. This means that 

AMR genes present at the same level in 

milk and produce (at the same quantity 

per mass, in the same proportion of 

samples) may be less likely to be 

detected in the milk samples. Hence, 

while the AMRs found in produce and 

dairy may each be representative of 

AMRs in each of those product types, 

we do not expect the between-product 

relationship in AMRs that we detect to 

be representative of the between-

product relationship in AMR presence. 
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Step Potential sources of uncertainty 

Different subsample types may not 

reflect as accurately the actual risk of 

consumption, for example some 

bacteria may have been internalised in 

exterior-rinsed fruit, some external 

bacteria may be ingested by the 

consumer while eating peeled fruit, or 

some bacteria may be washed away by 

consumers prior to consumption. 

DNA extraction – either pellet 

extraction, cheese extraction or milk 

extraction 

Different DNA extraction methods might 

be more or less effective at extracting 

DNA from bacterial cells than from host 

cells. DNA-extraction is not completely 

without taxonomic bias: some bacterial 

species’ DNA is harder to extract than 

others. However, the methods 

employed are regarded as relatively 

unbiased. 

Sample selection (n=256) for 

metagenomic sequencing, based on the 

results of the 16S metagenomic 

sequencing for bacterial 

communities/organelles (n=1000) 

These samples were selected on the 

basis of that would provide a relatively 

large bacterial signal compared with 

samples that were not selected. Given 

that our endpoint is an estimate of AMR 

incidence rather than prevalence this 

non-random sample selection is unlikely 

to affect representativeness, unless 

there are particular AMR genes that are 
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Step Potential sources of uncertainty 

associated with lower bacterial loads 

which are not found in higher bacterial 

loads 

Nextera XT library prep (all 256 

samples prepared as a single, 

multiplexed library, which was then run 

across two NovaSeq flowcells) 

Possibly extracts from different sample 

types may have different inhibitors, 

which may affect DNA library 

preparation 

Sequencing on NovaSeq Different flowcells may stochastically 

produce more or fewer DNA sequences 

(which was mitigated by sequencing all 

samples on both flowcells). 

Comparison of reads sequence data 

with reference ARG sequences 

database 

Although the reference sequence 

database we used is a principal 

standard in the field, it (like all 

alternatives) is unlikely to be completely 

comprehensive or error-free. However, 

we have confidence that the most 

clinically important ARG classes, as well 

as many other classes, will be very 

well represented and curated. 

Precision of matches with ARG 

sequences 

Some types of ARG encode molecular 

machinery with resistance functions and 

whose gene/protein sequences are 

relatively straightforward to identify. 
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Step Potential sources of uncertainty 

More problematic are genes whose 

general forms are not ARGs, but only 

particular sequence variants confer 

ARG status. For these types, we have 

taken care to identify exact matches, to 

avoid false positives - whose presence 

would have greatly increased the risk of 

our ARG table not reflecting actual 

prevalence. The downside is that some 

particular sequence variants which are 

ARGs, but not yet present in the 

database, will be missed. 

Bioinformatics detection of ARGs: 

general 

Our methods involved comparison of 

short-read data with the reference 

sequences (due to some of the samples 

having unsatisfactory sequence 

assemblies). All sequence-matching to 

identify sequence entities have some 

level of false positives and false 

negatives, but these are unlikely to have 

affected particular ARGs systematically, 

and so high-prevalence ARGs will not 

have had their presence in our table 

compromised for this reason. Our 

expectation is that this table is overall 

an accurate reflection of the presence of 
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Step Potential sources of uncertainty 

ARGs known in the reference database, 

but is unlikely to be a perfect reflection. 

Length of surveys and linking 

consumption data to ARG presence 

data 

The dietary consumption survey is an 

estimate of the UK diet based on the 

diet of each surveyed individual over a 

4-day period. This may affect estimates 

of AMR incidence. For example, the 

proportion of UK individuals consuming 

apples during the 3-day survey was 

41%, leading to an estimate of 41% of 

diets containing rpoB2. However, it is 

likely a large proportion of other 

individuals will include apples in their 

diet at some time. This issue will apply 

to all food types, to varying degrees, 

therefore the impact on the relative 

ranking of the burden of different ARGS 

should be limited. 

The selected foods only cover 90% of 

total consumption of ready to eat foods. 

For some foods, with relatively low 

consumption, only 1 or 2 samples were 

analysed. Absence of AMR genes 

reported for these foods is less reliable 

than in other foods. 
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4.2 Metagenomic Analysis of short-read data 

4.2.1 A priori considerations of the food microbiomes 

The microbial communities (microbiomes) of each sample are likely to differ greatly both 

between and within food categories, in terms of not only types but also relative 

abundances of the microbes. The collective genomes of these communities 

(metagenomes) can accordingly be expected to have very different characteristics. 

Hypothetically, if a metagenome were sequenced to a sufficient depth and accuracy then 

the complete genomes of all organisms present could be assembled. However, this 

required depth (usually infeasible) will be very variable depending on the number of 

different organisms present and their relative abundance. In the simplest case, equivalent 

to a single isolate, if only one species is present (assume one strain) and has a small 

genome (such as a bacterium) then the required depth will be relatively low. However, 

even with two species/strains present, the ideal depth depends hugely on the relative 

abundance. If one organism is present in vastly greater abundance than the other, then a 

vastly greater sequencing depth would be required to sample all of the minority genome 

sequence. 

In reality, almost all metagenomes are much more complex than this, consisting of many 

species and with very different relative abundance distributions from one metagenome to 

the next. These characteristics are the subject of a branch of microbial ecology, and in 

brief, the distributions can be considered as "even" (flat) or very uneven (different 

organisms have huge differences in relative abundance), or something between. The more 

that a metagenome is dominated by a small number of organisms (and thus, few genomes 

and therefore sequence fragments thereof), the nearer to complete it should be when 

assembled, and the more long assembled (”contig”) sequences should result. In extreme 

cases, contigs representing an entire bacterial chromosome may result, and / or there may 

be a small number of very long, sub-chromosomal sequences. 

However, even those metagenomes can differ greatly in their contig-length distribution, 

because some may have a long "tail" of many very low abundance species leading to very 
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many, diverse short contigs; while others may have a very short tail, with few other taxa 

besides the dominant one(s). 

A further consideration is that many bacterial genomes consist of one or more plasmid(s) 

as well as a chromosome. The number of plasmids varies a great deal between species 

and can also be variable within one species but is essentially invariant for some. There is 

also a very broad range of plasmid sizes, typically spanning from 1% to 10% of the 

chromosome (Clark et al., 2019); but at extremes, plasmids may be very small encoding 

no genes, or can be larger than many chromosomes (Smillie et al., 2010). Some bacterial 

genomes always consist of what are in effect two chromosomes, with one having a 

plasmid origin (Clark et al., 2019). Therefore, even in a metagenome dominated by a very 

few species, hypothetically-complete sequencing may result in multiple contigs of a range 

of sizes. 

We briefly address plasmid-located ARGs here, since this does have a particular 

significance in terms of some forms of AMR proliferation. Some ARGs are by nature 

plasmid-associated, and this is reflected in the formal annotation of the gene in the AMR 

databases; in some cases, "plasmid" is indeed part of the name itself (for example 

"plasmid-encoded cat (pp-cat)"). It is also possible that some plasmids would be 

completely sequenced and recognised as such, forming circular assemblies (depending on 

the assembly software used). More generally, the plasmid origin versus chromosome 

origin of particular contigs could in many cases be resolved by standard sequence 

similarity searches of appropriate databases. 

4.2.2 Metagenome assemblies obtained 

Despite the overall success of the NovaSeq sequencing, a significant number of samples 

generated assembled metagenomes that were deemed unsuitable for ARG analysis. In 

some cases, these comprised relatively few assembled sequences (contigs) of non-trivial 

length, either as a result of the low number of short reads remaining after host DNA-

removal, or otherwise failure to incorporate many of the reads into the assembly. In other 
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cases, more impressive assemblies were created in terms of longer contigs, but some of 

these appeared to also have problems with quality, as assessed by the number of reads 

from each sample that mapped back to the contigs assembled from those reads. For 

example, the presence of distinct but very similar sequences in the genomic DNA can lead 

to chimeric contigs if the sequencing depth is insufficient to resolve them. These various 

considerations suggest that in essence we were not generating enough reads for those 

samples to effectively sample the DNA sequence that was present. 

4.2.3 Implications of the metagenome assembly results 

Crucially, the above assessment necessitated a move from an assembly-based approach 

to a read-by-read ARG detection approach. This preserves the sequence information in 

the short reads which would be lost in a poor assembly, and means that we can have a 

more uniform high confidence in our ARG predictions for all samples. However, it does 

mean that we might lose some information about which specific ARG allele of a particular 

gene is present. It also means that all genomic context information is lost, as the analysis 

of individual reads prevents the identification of the genetic element on which the ARG 

sits, or the identification of flanking genes.  

The fact that suitable assemblies for analysis were not obtained from all samples also has 

implications for the depth of sequencing required. In this project we aimed for an average 

depth of 25 million reads per sample, and in the end an average depth of 33 million reads 

per sample was achieved. For many samples, this was sufficient to provide a good 

assembly, but for others it did not. By the back-mapping assessment at least 100 of the 

256 samples can be viewed as having an unsuitable assembly. This was usually, but 

notably not always, caused by a low number of input reads for the assembly process. 

4.2.4 Metagenome assemblies in relation to types of food-organism 

Interestingly, and predictably, this varied to some extent with food type. Produce samples 

generally showed a higher number of reads remaining after host-derived reads were 

removed, which meant that the samples that had the highest number of reads going into 

assembly were also produce samples. There are a number of potential reasons for this. 
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On the one hand, the large number of reads left over after removal of host-derived reads 

could be an artefact of the host read removal process. To remove host reads, all reads 

from a sample are mapped against a host reference genome, and those that do map are 

removed. Produce sample types represent a greater variety of host organisms than meat 

or dairy types, which in this project are only cow (dairy foods, and corned beef) and pig 

(ham). Some of these produce organisms did not have a reference genome available, so a 

close relative was used, for example nectarine sequences were mapped against peach, 

small citrus sequences were mapped against orange. Further, for some organisms where 

a genome sequence was available, it may have been in an early state of release or were 

incomplete. As a consequence of having a lower quality or less closely related reference 

genome, the host sequence removal step could have been less effective. 

An alternative reason for higher read counts after host-DNA removal in produce samples 

could be due to the sample treatment themselves. The majority of produce samples 

underwent rinsing of the surface, to sample bacteria but avoid sampling host DNA and 

cells. This rinsing was not possible for any dairy samples, and a total DNA extraction was 

necessary. The higher read counts for some produce samples after host sequence 

removal could therefore reflect the fact that there is genuinely a higher ratio of 

bacteria:host present in produce rinsate than in total dairy samples. The fact that produce 

samples can be seen to cluster into both high and low host contamination sets may be 

reflective of the fact that some produce types were surface rinsed (presume high bacteria), 

and some were peeled and the peeled surface rinsed (presume low bacteria), in an effort 

to sample the parts of the foodstuff that are actually consumed. 

4.2.5 Implications of short reads for ARG-identification 

For identifying genes of a particular function, in normal circumstances relatively low 

sequence identity thresholds are sufficient. At the protein sequence level, the same 

function would normally be inferred from around 40% sequence identity or greater, with 

functional classes inferable from somewhat lower identity levels (Wilson et al., 2000). 

Further, due to the redundancy of the genetic code, gene sequences are generally less 
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conserved (still lower sequence identity) than the proteins they encode. However, such 

thresholds apply to full-length sequences, and rather higher identity levels would be ideal 

for inferences made from short fragment matches, such as the metagenomics data. 

We designed a post-processing screen to the ARG matches, which for the metagenomics 

reads in general did not involve an explicit percentage identity threshold but applied a 

number of rational filters. We did however also apply an identity-based additional screen 

on a particular category of ARGs as addressed below. As expected, the full procedure did 

result in a profile of generally high sequence identities in the screened data overall. 96% of 

all of the matches between the metagenomic reads and the reference ARG sequences 

had a sequence identity of 75% or higher. 31% of the matches had an identity of at least 

97%, and 20% of all matches were exact. Therefore in general, we regard the matches of 

high confidence regarding the likely gene function. This also is in the light of the special 

treatment we applied to matches to ARGs of a particular character, as follows. 

For the purpose of this discussion, ARGs can be considered broadly as those which are 

(relatively) "straightforward" to identify by sequence similarity, and those which require 

great care because their resistance phenotype is conferred by a very small number of 

mutations (usually point mutations). An advantageous feature of the CARD database and 

RGI software is that these "mutant variants" are curated and categorised as such. This 

meant that we were able to treat these differently, insisting on 100% sequence identity 

between the read segments and the references with which they matched. As a result, one 

kind of false positives will be avoided, involving a very high similarity match which 

nonetheless is non-identical and lacks the resistance mutations; but this will be 

recognisable only where the gene segment sequenced in the short-read pair 

encompasses at least one of the mutations. If the reads' sequences span only a region 

that is identical between the susceptible and resistant forms, then a false positive can still 

result. Conversely, discarding such matched regions would risk false negatives for these 

resistant variants. This is an inherent drawback of using short-read data. 
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However, we assessed the difference that was made to our results by this additional 

screen for "mutant/variant" type of ARGs, in terms of the numbers of positive samples. A 

key result was that in the screening without the additional special screen, there were only 

6 (of almost 800 remaining at that stage of the analysis) named ARGs of this type, i.e. 

where the AMR function arises from the mutation(s) relative to a non-AMR counterpart 

gene. Between them, these 6 were positive in the majority of samples, however. This was 

unsurprising given that several of these are universal bacterial genes, such as an RNA 

polymerase subunit, and so would be expected to have a high detection rate. However, 

our additional screen eliminated 3 of these genes from all samples, while the other 3 

remained in 1, 3 and 33 samples respectively (the final read-count stage of filtering 

reduced these further to 0, 1 and 17). Therefore in the worst-case scenario (assume all 

matches are false positives in these samples), a small percentage of all samples would be 

affected by having one or a very few number of spurious ARGs counted as positive. 

From these results we conclude that this additional screening approach was worthwhile, 

as it made a difference to most samples. The counterpoint is that the difference made to 

these samples was very small in terms of the numbers of additional genes, and so 

changed the general ARG-incidence profile only a little. 

Where curated resistance-conferring mutations are matched exactly, it is still possible for 

these to be false positives, as potentially these could arise by sequencing errors (which 

would not affect the identification of various other kinds of ARGs in the same way). In 

theory it is possible to assess the probabilities of such errors, by examining the quality 

score of the relevant base-call(s) as well as the context of other overlapping reads. 

However, given that we require 100% identity for these point mutation-dependent ARGs, it 

is very unlikely for any given read pair that the error(s) occur in - and only in - the relevant 

mutation site(s). In a data set as large as this, such situations might well occur, but with 

low frequency. 

For reference, we note the error rates of the sequencing platform. This is not 

straightforward to evaluate, but for the Illumina platforms generally the rate of incorrect 
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basecalls is often stated as around 1 in 1,000, i.e. 0.1% per-base error rate (Shendure et 

al., 2017), with some variation between reports; for example 1 in 417 on average (0.24%) 

by a more recent study (Pfeiffer et al., 2018).Our quality-control removed all bases with a 

quality-score indicating a rate of 1% or worse probability of error. 

In summary, the overall success rates of ARG-detection, in terms of avoiding false 

positives (and false negatives), cannot be known without the ground truth of which ARGs 

were actually present in each sample. Although some false positives will inevitable be 

present, the results of our analyses indicate no evidence of large-scale over-prediction of 

ARGs. 

4.3 Metagenomic Analysis of long-read data 

The primary factor affecting the effectiveness of the long-read sequencing was the volume 

of data output by the sequencing itself. The two PromethION flowcells used in this 

experiment produced 2.8Gb and 3.3Gb of sequence data, compared with 100-300Gb per-

flowcell estimate from the PromethION specifications (Oxford Nanopore Technologies, 

2021). This represents 1-3% of expected sequence output and is therefore an extreme 

limiting factor on the utility of this dataset. 

Despite the low output of the Nanopore data, for 14 out of the 24 samples sufficient data 

was obtained to produce an assembly. The primary predicted benefit of using the long 

nanopore reads was the assumption that they would provide an improved ability to identify 

co-located ARGs. These ARGs would be present on the same genetic element 

(chromosome, plasmid, insertion sequence etc.), and would therefore be likely to be co-

inherited, either vertically (through bacterial replication) or horizontally (through horizontal 

gene transfer). These might then represent a higher risk to the consumer, if bacteria that 

are resistant to multiple antibiotics are considered riskier. As this work was not used for 

burden analysis, we were free to use DeepARG (as opposed to CARD) to identify ARGs. 

This was both faster, and was an opportunity to utilise its more experimental, deep-

learning nature. For the 14 samples with sufficient data, ARGs were detected by 
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DeepARG in both the Meta (short read) and Hybrid (long read) assemblies. Interestingly, 

very similar overall ARG numbers were seen between Hybrid and Meta assemblies, but 

more ARGs identified as co-occurring in the hybrid assembly, i.e. when the long reads are 

used. This suggests that the long reads are indeed useful for identifying co-located ARGs, 

a trait which would probably be more impressive with greater depth of sequencing. 

However, in the absence of a strict definition of co-located ARGs, ARGs are reported as 

co-located if they are present on the same contig. Given the low sequencing depth for 

Nanopore data in this study, combined with the higher error rates, the co-located ARGs 

should be inspected manually to avoid false positives. 

The long-read data also enabled the assembly of a MAG ("metagenome-assembled 

genome") identified as Acinetobacter sp., in a single contig of 2.9Mb, which was not 

identifiable in the Illumina data for this sample.  Indeed, the Illumina data resulted in only 

three contigs of 500 kb length of bacteria identifiable with the Progenome classifier (these 

were between 670 and 841kb). Generally however, there was a dearth of assemblies, both 

from the Nanopore and Illumina data, which contained contigs which were both of 

sufficient length and contained sufficient marker genes (universal genes present in all 

bacteria, whose sequence variation aids species-identification) to achieve such a result.  

We note that the per-base error rate of raw Nanopore reads is estimated at 5%-25% (Wick 

et al., 2018), with rapid improvements seen in the last few years. A rate of 3% was claimed 

in 2020 (Oxford Nanopore Technologies, 2020). 

4.4 Amplicon Sequencing 

16S rRNA metabarcoding was performed for the dual purpose of identifying samples rich 

in bacterial DNA and also for screening for evidence of the presence of some foodborne 

pathogens; necessarily it can provide no direct information about ARGs. 

4.4.1 Limitations of 16S V4 metabarcoding 

Metabarcoding of microbiomes using 16S rRNA gene amplicons is in general of limited 

use for discriminating between bacterial species, but can have much more resolving power 
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in some branches of the bacterial taxonomy than others. The amplicons we have used (V4 

region) are a standard approach for general bacterial 16S rRNA metabarcoding, but if 

such a technique were to be used for systematic detection of priority taxa of concern 

(foodborne pathogens in this case), then a more taxonomically directed approach using 

different primer pairs (perhaps several, directed at different taxa) would be necessary. The 

limitations of using the 16s rRNA gene - even when sequenced in its entirety - for resolving 

between some closely-related species, are well established (Fox et al., 1992, 

Stackebrandt and Goebel, 1994). When using the shorter V4 region, the situation is worse, 

with difficulties in distinguishing bacteria from closely related genera such as those in the 

Enterobacteriaceae, which have identical V4 sequences in some cases. Conversely, some 

particular V4 sequences can uniquely identify the species; indeed, this region can vary 

between different strains of the same species (including in some of those same 

Enterobacteriaceae). 

There are further difficulties regarding the establishment of ground truth for reference 

sequences. One approach would be to use only the sequences of type strains, the strains 

which have been used to describe a bacterial species, but this means that the reference 

data could be relatively sparse, with many of the experimentally observed query 

sequences absent. The approach we have taken is to use a database where some of 

those gaps are filled, by the incorporation of non-type strains and also some 

environmentally-derived samples (for example sequence data from other metabarcoding 

experiments), which have been expertly curated, but taxonomy not usually assigned at 

species-level, for the above reasons. In those cases, judicious use of the source 

annotations at species level (if any) can identify reference sequences which are very likely 

to represent particular species. However, any resulting identifications of priority taxa by 

these methods must be examined carefully before a positive can be declared at the in 

silico level. Furthermore, the presence of a DNA sequence consistent with or even 

diagnostic of a bacterial species does not guarantee that the bacterium is alive in the 

sample, and results should be interpreted as with other molecular assays such as targeted 

PCR. 
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4.4.2 Metabarcoding to inform selection of samples for metagenomic sequencing 

To maximise the usefulness of the metagenomic sequencing data generated for detecting 

ARGs, we wanted to focus sequencing effort on those samples with higher bacterial DNA 

levels, and lower amounts of host DNA. This was one of the reasons behind employing a 

16S metabarcoding screen of all 1001 samples. This data was then used, in conjunction 

with consumption data, to select the subset of 256 samples for metagenomic sequencing 

The factors considered in the screen were i) whether the sample had sufficient bacterial 

DNA to successfully undergo 16S sequencing, and ii) the proportions of bacterial DNA (as 

opposed to organellar DNA) that were generated in 16S sequencing. To assess the 

relevance of point i) for deciding on samples for metagenomic sequencing, ten randomly 

selected failed metabarcoding samples were taken forward for metagenomic sequencing. 

When sequenced metagenomically, these ten samples produced read numbers distributed 

throughout the total range of read numbers, indicating that 16S failure is not a good 

indicator that a sample will fail metagenomic sequencing. This should perhaps not be 

surprising, as there could be a number of reasons for PCR failure that might not affect the 

metagenomic library preparation process (for example inhibition of 16S PCR reaction). 

Fortunately, in this project only 8% of samples failed 16S sequencing so this is not 

considered to be problematic. To address point ii) the food types classified as having low 

bacterial read numbers by 16S sequencing were examined after metagenomic 

sequencing, and the median percentage of bacterial reads was 5.6%, compared to 38.9% 

in non-low bacterial samples. The remaining reads were attributed to host (plant or 

mammalian) DNA or potentially from non-bacterial microbes, for example fungi. This 

indicates that the 16S metabarcoding may be a useful indicator of the proportion of 

bacterial reads a samples will produce in metagenomic sequencing. Given the importance 

of bacterial reads for assembly and ARG detection discussed above, this may be an 

important area of further study. Furthermore, 16S results could be used to look at the 

complexity of a microbiome for particular sample types. For example, cheese and probiotic 

yoghurt drinks were dominated by bacteria from the Lactobacillus genus, suggesting that 

microbiomes from these samples will be less diverse. With further work, the diversity of the 
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microbiome and the host to bacterial DNA ratio could be used to adjust the concentrations 

of input DNA in sequencing pools to ensure optimum metagenomic sequencing output 

across samples. 

4.5 Detection and Identification of Antimicrobial Resistance Genes 

Even if completely error-free DNA sequence data were available, there is no definitive 

route to identifying and correctly classifying the antimicrobial resistance genes (ARGs) 

sampled in that DNA. As in many fields of the biosciences, the complexity of the subject 

matter and the history of its development means that no single nomenclature, classification 

scheme, reference catalogue or data analysis methodology is universally utilised. 

Crucial to identifying ARGs are the reference sequence databases, and just as with the 

computational approaches to comparing experimental data with them, there are many 

alternatives available (Hendriksen et al., 2019). This is partly due to the intrinsic nature of 

the data. New instances of known gene types are often discovered first at the DNA 

sequence level in the bacterial genomics field, and frequently will have been annotated 

automatically. Others are subject to expert curation but will often have not had the precise 

function confirmed at the experimental level. Sequence-based annotation of newly-

discovered sequences can lead to ambiguities, since quite similar sequences can differ 

significantly in their clinically-relevant function (Antonopoulos et al., 2017). Therefore 

intensive curation by maintainers of the databases is ideal (McArthur and Wright, 2015), 

but the ARG databases vary considerably in this degree, with some being substantially 

reliant on automated computational compilation. 

Even if all new sequences were classifiable automatically or by curators to a precise 

functional level, there are still obstacles regarding differences in nomenclature and 

classification of those functionally-defined genes. There is no overarching ARG-naming 

scheme, and nomenclature tends to be steered within the different ARG-classes by 

recognised groups of experts on those types. In biology generally, issues with gene 

synonyms and homonyms constitute a long-standing and ongoing problem and this does 

affect the AMR field, necessitating dedicated rationalisation efforts by expert researchers 
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(Faltyn et al., 2019 PREPRINT). Further, besides the names of the ARGs themselves, the 

classification into broad functional types is also far from definitive. For example, there is no 

consensus of the precise definition of extended-spectrum β-lactamases (ESBLs) (Paterson 

and Bonomo, 2005). 

Consequently, it is unrealistic to expect that analyses of the same experimental data (even 

using the same methods) using different published ARG reference databases would not 

differ in some tangible way, both at the functional class level and especially on the level of 

particular genes. Nonetheless, unless databases or methodologies are particularly 

deficient or incorrect, broad consensus of incidence of ARGs and classes would be 

expected. 

Indeed, anything approaching unification of the reference sources in the near-future is also 

an unrealistic expectation to demand of the experts in this field. 

The reference databases of the two software systems involved in this study respectively 

include around 150,000 (CARD, including the sequence variants component of the smaller 

hand-curated section) and 12,000 (DeepARG) reference sequences. The CARD and 

DeepARG databases involve around 2,600 and 1,900 different ARG names. The CARD is 

long-established and widely used and in our view, is the single most suitable to use and 

also benefits greatly from the associated ARO ontology, with which the ARGs are 

systematically annotated. We note that due to the above standardisation aspects, it was 

not tractable to attempt a systematic comparison of the results of two independent 

analyses on an ARG-by-ARG, or class-by-class basis within the scope of this project. 

Even with a single source of reference sequences, there of course exist many different 

computational approaches and software tools to compare experimental sequencing data 

with those references (Hendriksen et al., 2019). These differences can include aspects of 

how both short-read data and assembled sequences are analysed. Short reads are 

intrinsically limited in that they will almost always represent fragments of genes rather than 

the whole length. However, the paired-end DNA sequencing approaching effectively 

doubles the amount of each biological fragment that is sequenced, albeit with a gap in the 
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middle. A single pair might thus represent two ends of one gene, and should be analysed 

in that context, rather than treated as two independent fragments. The paired context is 

observed by the RGI/CARD system but not by DeepARG, although post-processing of the 

latter can add this context. Nonetheless, depending on the nature of the particular gene 

involved, it is possible in some cases for very short segments of DNA to uniquely identify 

an ARG. That is, the incompleteness will sometimes but not always prevent precise 

identification of a gene. 

Related to this are particular problems which apply to only some types of ARG. In the 

general case, the sampled DNA fragments need not be identical to a reference sequence 

in order to be identifiable as an instance of that gene, and this applies to many ARG types, 

where what matters is the ability to recognise the correct functional type (such as an 

enzyme which breaks down an antibiotic, or an efflux pump). In contrast, some non-AMR 

genes (which code for molecules which are antibiotic targets, for example) may have near-

identical counterpart genes which are ARGs. Crucially, these ARGs may differ in only one 

or a very few nucleotide positions, which ultimately compromises or prevents the antibiotic 

from binding to it. For these particular cases, which are recognisable in the RGI/CARD 

context by particular ARO ontology annotations, it is possible to insist (as we have done) 

on identical sequence matches with the reference ARG. Using short-read (thus 

incomplete) sequences only, it is however not possible to discriminate between such 

ARGs and the associated non-ARG variants if the resistance-conferring mutation(s) are 

not present in the sequenced fragment. An additional layer of analysis at the individual 

nucleotide-coordinate level would be possible to at least identify which fragments 

represent these ambiguous cases and which do not. That would still leave a problem, 

whichever view was taken of the ambiguities: to discard them all would result in some false 

negatives, while including them all would result in some false positives. We took the latter 

approach, which is in the context that these variant/mutant types are a small minority of 

the ARGs overall. 

The availability of more complete DNA data for analysis would of course be ideal for 

identification of ARGs and any genes in general. As noted in the previous sections, short-
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read sequencing at very great depth in order to facilitate very high-quality assemblies, or 

indeed assemblies of long-read data, would achieve this, but was beyond the scope of this 

project. We note that for a subset of our samples only, the metagenome assemblies we 

have obtained should indeed be suitable for more detailed analysis, in the sense that they 

will contain a reasonable sampling of the full-length or near-complete sequences of the 

ARGs present in the sample. More complete assemblies will be especially helpful for 

elucidating the presence of complex AMR operons. For example, emrB was found in 

whole and semi-skimmed milk and is counted as an AMR gene. However, it is only 

functional and able to confer resistance to carbonyl-cyanide m-chlorophenylhydrazone and 

nalidixic acid when combined with the other two elements of the EmrAB-TolC efflux 

complex (Yousefian et al., 2021). This highlights a difficulty in inferring phenotypes based 

on complex systems from short-read data. 

4.6 Summary of AMR Gene Findings 

In summary, we attempted to provide an estimate of the burden of AMR genes in RTE 

food in the UK diet that was an unbiased sample of the total burden. We defined burden as 

incidence in the diets of UK consumers. In general we expect that observations of 

presence AMR genes are reliable and that observations of absence may occur because 

either an AMR gene is not present in the diet or, if it is present that it is at a level 

(prevalence in samples, copies per mass of food in samples) which is below the limit of 

detection associated with the sampling plan and analytical methods. We identified a 

number of factors which may mean that AMR genes in different food types may be over or 

under-represented among those that we detected, and some features of the analytical 

method that may lead to false positive observations of AMR genes. Given the caveats 

identified previously around inferring the phenotype of the bacteria within which these 

genes are found, especially for individual components of complex operons, it may be more 

helpful to consider the genes identified as genes which may contribute to AMR. 

We detected a total of 477 distinct AMR genes from 111 distinct AMR gene families in the 

samples of ready to eat food analysed in this project. We estimate that all UK consumers 
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in the general population as defined by the UK NDNS are exposed to AMR genes from 

ready to eat foods. Looking at the incidence of particular classes of AMR genes in UK 

diets, with all incidences referring to consumers in the general population as defined by the 

NDNS: 

• Colistin Resistance ARGs: 2 distinct AMR gene detected; estimated incidence 46% 

of UK diets for ICR-Mo and 7% of UK diets for MCR-5.2. 

• Methicillin Resistance ARGs: 2 distinct AMR genes detected; estimated incidence 

37% of UK diets for mecA and 17% UK diets for abcA. 

• Antibiotic Resistant Gene Variant or Mutant: 2 distinct AMR genes detected; 

estimated incidence 80% of diets containing Pseudomonas_aeruginosa_soxR and 

41% of UK diets containing rpoB2. 

• Carbapenem Resistance: 54 distinct AMR genes detected; estimated incidence of 

at least one Carbapenem ARG is 100% of UK diets. Incidence for individual ARGs 

was estimated to lie between approximately 100% (Klbsiella_Pneumoniae_KpnH) 

and less than 1% (mdsB) 

• Vancomycin Resistance: 15 distinct AMR genes detected; estimated incidence of at 

least one Vancomycin ARG is 100% of UK diets. Incidence for individual ARGs was 

estimated to lie between approximately 94% (vanSO) and less than 3% (vanRC) 

• Potential ESBL Activity: 54 distinct AMR genes detected; estimated incidence of at 

least one Potential ESBL Activity ARG is 100% of UK diets. Incidence for individual 

ARGs was estimated to lie between approximately 100% (CTX-M-50) and less than 

1% (OXA-114a) 

• Fluoroquinolone Resistance: 90 distinct AMR genes detected; estimated incidence 

of at least one Fluoroquinolone resistance ARG is 100% of UK diets. Incidence for 

individual ARGs was estimated to lie between approximately 100% (adeF) and less 

than 1% (evgA) 
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Estimates of the incidence of the individual AMR genes from RTE foods in the UK diet are 

provided in the report. 

We also gained a large amount of information about the numbers of AMR genes in food 

types and in individual samples.  For example, Table 17 shows consumption, the mean 

number of distinct AMR genes found in each sample, and the number of samples in which 

each at least one distinct AMR gene was detected. Figure 22 shows the average 

consumption against the average number of ARGs for each food type.  There is 

considerable between-food variation in both consumption of food, and the number of AMR 

genes observed in samples. However, because for many foods the number of samples 

tested was small, and there may be between-food bias in the detection of AMR genes 

(notably between dairy and fruit and vegetable products), apparent differences between 

AMR gene presence in different food types found in this study serve more as hypotheses 

that may be tested in studies designed for examining between-food variation in AMR 

presence rather than as reliable estimates of difference. 

Table 17. For each food type tested, the mean consumption, number of samples 
tested, samples positive for one or more ARGs, and the mean number of 
ARGs per sample. 

Food Mean 
Consumption (g 
/ kg bodyweight) 

Samples Samples with 
at least 1 ARG 

Mean ARGs 
per sample 

Semi skimmed milk 76386 69 30 2.9 

Whole milk 45612 42 22 3.3 

Bananas 21746 16 15 13.5 

Apples 17725 15 15 78.1 

Orange juice 

pasteurised 12156 
7 7 31.3 

Tomatoes 9431 8 8 63 
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Food Mean 
Consumption (g 
/ kg bodyweight) 

Samples Samples with 
at least 1 ARG 

Mean ARGs 
per sample 

Skimmed milk 8332 7 4 7.6 

Cheddar cheese 7080 4 4 5.8 

Pears 5998 5 5 82.4 

Small citrus 4800 4 4 36.8 

Cucumbers 4715 3 3 102.7 

Oranges 4838 5 5 27.2 

Strawberries 4369 1 1 29 

Apple juice 

pasteurised 4165 
2 2 61.5 

Ham not smoked 4252 4 1 6 

White grapes 3049 2 2 80.5 

Melon 2048 1 0 0 

Salted butter 1916 2 2 10.5 

Soya milk 

sweetened 1981 
2 2 4.5 

Carrots 1919 1 1 22 

Lettuce 1911 3 3 57.7 

Unsweetened 

yogurt 1684 
2 2 6 

Vanilla ice cream 1851 2 2 74 

Black grapes 1584 2 2 47 

Reduced fat spread 1633 2 0 0 

Probiotic yogurt 

drink 1345 
1 1 1 
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Food Mean 
Consumption (g 
/ kg bodyweight) 

Samples Samples with 
at least 1 ARG 

Mean ARGs 
per sample 

One percent milk 1325 1 1 1 

Low fat 

unsweetened yogurt 1291 
1 1 5 

Pineapple 1288 1 1 6 

Plums 1170 2 2 68 

White onions 1117 3 3 124.7 

Orange juice freshly 

squeezed 1009 
1 1 2 

Nectarines 1031 1 1 72 

Mangoes 819 3 2 2.3 

Kiwi fruit 938 4 1 0.8 

Cherry tomatoes 762 2 2 131.5 

Fat spread 932 1 0 0 

Avocado 791 3 1 10.3 

Peaches 804 1 1 74 

Raspberries 789 1 1 49 

Blueberries 605 2 2 41 

Red peppers 697 1 1 71 

Corned beef 729 2 2 29 

Spreadable butter 654 2 2 10.5 

Soya milk 

unsweetened 641 
1 1 9 

Raisins 645 1 1 23 

Iceberg lettuce 616 2 2 32 
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Food Mean 
Consumption (g 
/ kg bodyweight) 

Samples Samples with 
at least 1 ARG 

Mean ARGs 
per sample 

Lactose free semi 

skimmed milk 563 
2 2 23 

Watermelon 507 1 0 0 

Double cream 539 2 2 1 

Grapefruit 458 1 1 119 

Olives in brine 445 2 2 58.5 
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Figure 22. Average consumption against the average number of ARGs for each food type 

5. Conclusions  
A very high proportion of individual diets contain ARGs from RTE foodstuffs, based on the 

estimates of burden presented here, with some ARGs, such as those encoding certain 

efflux pumps being found in approximately 97% of diets of UK consumers in the general 

population. However, genes that may be involved in conferring resistance to an important 

last-resort antibiotic, colistin, was found at very low levels. Genes that may confer 

resistance to methicillin were also found very infrequently. Genes potentially involved in 

resistance to other import antimicrobials (fluoroquinolones, carbapenems, vancomycin and 

potential ESBL activity) were much more widely detected, driven by the presence of efflux 

pumps and beta-lactamases. Across all samples, 477 different ARGs were detected. 
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However, as noted previously (see section 4) the presence of these genes does not 

necessarily mean that phenotypically antibiotic resistant bacteria were present. 

Technically the methods used in this project were successfully able to detect ARGs in 

dairy, produce and meat food types. The rinsing methodology appears to have been 

effective at removing bacterial DNA from the surface of produce type food; for some 

produce (and dairy) samples, high read numbers post-host filtering, and high-quality 

assemblies are obtained. For others, lower quality assemblies are produced.  

The 16S metabarcoding screen prior to sequencing was effective at identifying samples 

which had high levels of bacterial DNA relative to host DNA. However, the samples which 

failed 16S sequencing altogether did not necessarily go on to fail metagenomic 

sequencing. While this means that some samples may have been screened out 

unnecessarily, only a low percentage (8%) of samples failed 16S sequencing. 

Furthermore, these and all other DNA extracts remain available for further sequencing. It is 

possible that a measure such as DNA yield may be more appropriate for determining the 

likelihood of a sample failing metagenomic sequencing, although in this instance the DNA 

yield of many samples was below the limit of quantification of the spectrophotometer used, 

and as such the maximum input volume of DNA was used. 

This overall objective of this project was to provide an overview of the burden of ARGs 

from RTE foods in average UK diets. This was achieved by sampling according to 

consumption and sequencing according to consumption weighted by food types which 

were more likely to generate larger amounts of bacterial DNA sequence. While this means 

that we have robust estimates for the burden in terms of incidence of ARGs in the diet 

derived from RTE foods, there are a number of limitations to this approach, outlined below. 

The approach used to measure ARGs in each sample in this project was non-quantitative. 

While measures were taken initially to normalise read counts of ARGs to give within-

sample relative abundance, this data was not relevant to exposure expressed as incidence 

and prevalence in food types and diets, and presence/absence incidence data was used 

instead.  
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The lack of quantification also contributes to the difficulty of commenting on the relative 

contributions of different food types. While for example certain food types (for example 

apples) display high ARG richness in terms of numbers of different ARGs identified, the 

lack of quantification data means that it is impossible to distinguish between apples having 

genuinely higher levels of ARGs than milk, or the techniques applied (for example rinsing) 

giving a lower limit of detection for ARGs on apples than on milk. Improvements to the 

DNA extraction methods for non-rinsable food types, and the incorporation of quantitative 

data suggested above, will improve this situation.  

Because the study was designed for the specific purpose of estimating the burden across 

the UK diet as a whole we don’t estimate the relative contribution of different foodstuffs nor  

the ARG content of specialist diets, for example vegetarian or vegan, whose intakes of 

food types may differ drastically from the averages in the NDNS. The revised sampling 

plan (2.1.2) led to increased sample numbers of highly consumed food, but at the expense 

of less highly consumed food. Many food types had only single samples sequenced 

metagenomically, and an entire food category (seafood) proposed for sampling was 

omitted from sampling based on low consumption rates.  

6. Recommendations for Further Work 
6.1 Understanding the relevance of ARG exposure and associated AMR risk 

Given the great diversity of ARGs identified in the samples, and the specialism of AMR 

experts, it is unlikely that any single expert will be suitably equipped to address the risks 

that may be associated with all of these ARGs. The high prevalence ARGs/ARG families 

identified here could form the basis of a review by a specialist(s), on the risks posed by 

ARGs in RTE foods. If high risk, high consumption ARGs are identified, these would make 

good targets for both surveillance and reduction measures. 

Larger sample numbers for many food items, combined with qPCR-based normalisation, 

may allow much more to be said about the risk of different food types. A plausible starting 
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point would be the 745 DNA extracts retained from the current project, which could be 

metagenomically sequenced and analysed with qPCR (in addition to the 256 already 

sequenced), to increase sample numbers for many food types. However, given the low 

sample numbers of some of the least consumed food items (as few as five samples), 

some additional sampling may be beneficial. Larger sample numbers would also help 

elucidate the level of variation in ARG content within food types, as we observed 

significant variation between duplicate pairs of samples for some foods (blueberries and 

iceberg lettuce in this case). 

Additionally, as this project has highlighted, there is a difference between understanding 

ARG exposure and AMR risk. Future projects could include an element of phenotypic AMR 

screening of one or more bacterial species to help elucidate the connection between the 

two. 

6.2 Technical improvements to methods 

In order to achieve the depths of sequencing required to create assemblies of the 

completeness required for future ARG analyses, either larger per-sample read numbers 

should be generated, or a method for removing host cells or DNA prior to sequencing 

should be developed for dairy and meat type products. An examination of Figure 7 

suggests that produce types which were peeled prior to rinsing (being types which are 

usually eaten peeled, for example bananas, oranges) had in general less bacterial DNA 

than produce types which were not peeled prior to rinsing (produce types which are 

generally not peeled prior to consumption for example apples, blueberries). Although the 

experiment was not structured to assess this directly it would appear a logical trend, with 

higher levels of bacteria present on the exterior than the interior of the food item. However, 

future consideration should be given to assessing the exterior surface (prior to peeling) of 

produce types which can be peeled, as these may still represent a potential reservoir of 

ARGs. For example, it is difficult to envisage peeling and eating an orange without 

ingesting at least some microbes originating on the exterior. Calculating the relative risk 



 

Page 188 of 206 

 

 

 

posed by interior and exterior ARGs on such produce types would likely be a significant 

undertaking. 

The incorporation of quantitative data sources, for example quantitative PCR (qPCR) 

assays for selected, common ARGs, would potentially enable normalisation of 

metagenomic data, allowing quantitative comparison of metagenomically identified ARGs 

among samples. If a measure of the uncertainty could be attached to the presence of an 

ARG within a sample (e.g .the probability of presence, given the available data) then this 

could be combined with the analysis of the NDNS data to provide a more complete 

probabilistic model of AMR burden per food type and in the UK diet overall. qPCR data 

could be used to estimate false positive rates for selected ARGs/ARG families. 
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