PATH-SAFE WS3a

Rapid diagnostic technologies for foodborne pathogens

PathSafe webinar series 15th June 2023

Ashleigh Elliott Barbara Agstner

The team

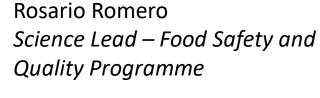
Ashleigh Elliott Molecular scientist

Jenny Tomlinson *Molecular biologist*

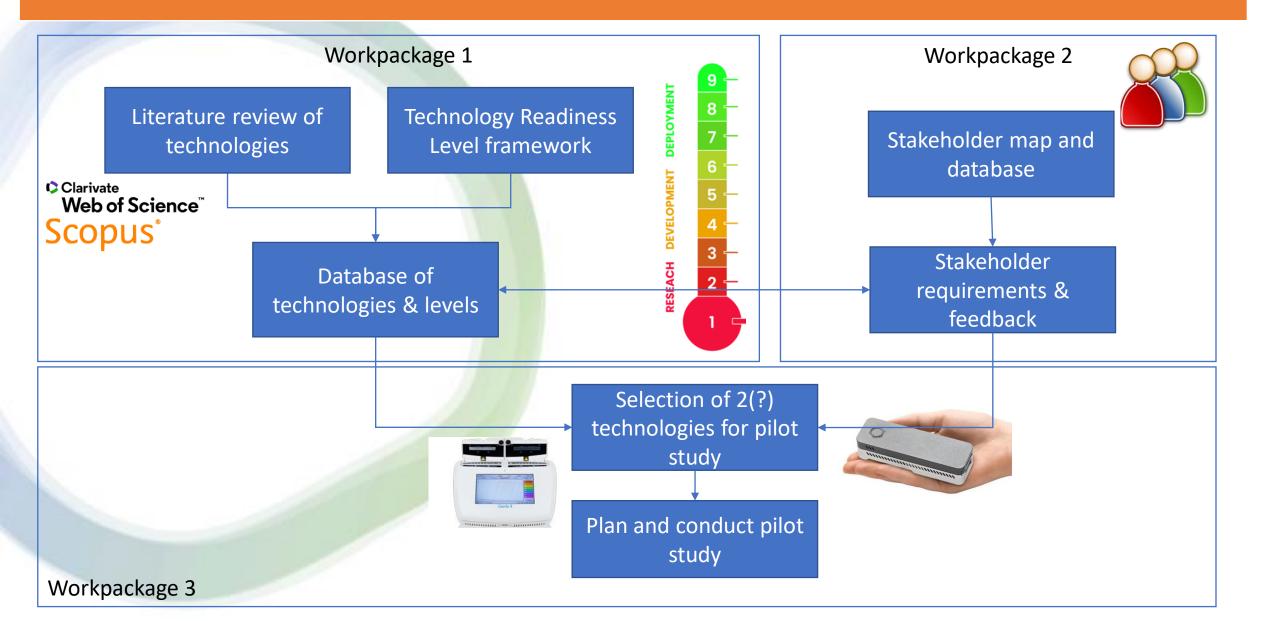
Catherine Harrison *Molecular biologist*

Manisha Gupta Molecular scientist

Ines Vazquez Iglesias Project manager, molecular scientist


Bukola Onarinde – Associate Professor – Food Microbiology and Molecular Biology

Barbara Agstner Social scientist


Emiline Quill

Microbiologist

Pathsafe - Workstream 3a Technology Readiness Level (TRL) study

WS3a - Scope

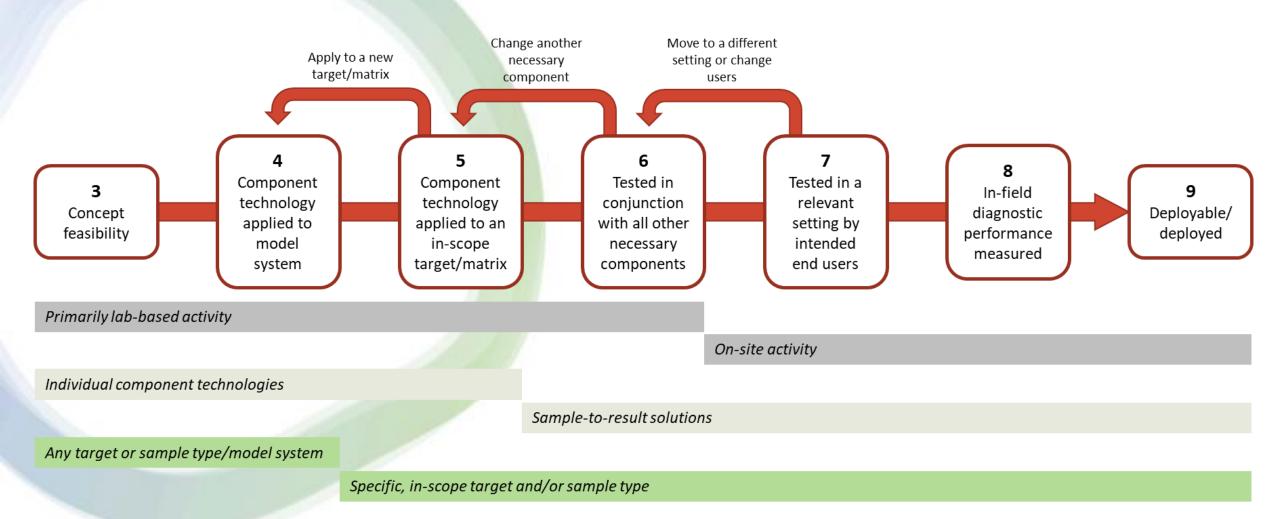
Horizon scanning and technology readiness level study, with in-field testing of rapid diagnostic technology

Target pathogens:

Norovirus, Campylobacter, Salmonella, Listeria, Clostridium, Indicator organisms

Sample matrixes:

Water, Meat, Shellfish, Dairy, Swabs, Animal feed, Fish, Fresh produce, RTE (Ready to Eat products)

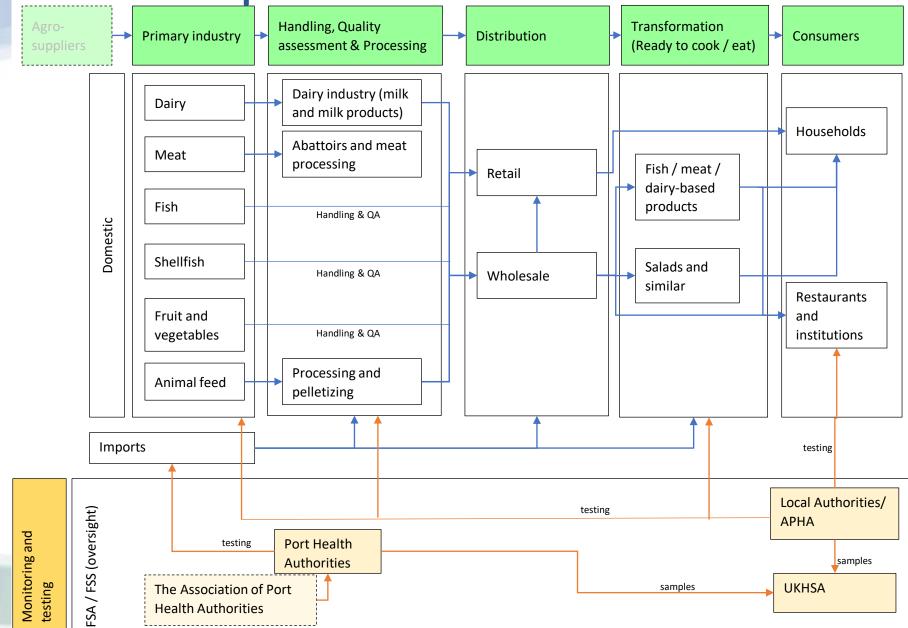

Overview of Literature Review

- Broad scope which returned 28142 Papers .
- 8489 eliminated due to duplication.
- 16485 eliminated due to lack of relevance or no additional content.
- 3168 papers collated into categories of technologies for full review.

Results Technology Review

Technology	References per pathogen									
	Norovirus	Campylo- bacter	Clostridium	Listeria	Salmonella	E. coli	TOTAL			
Polymerase chain reaction (PCR)	1	1	3	1	11	7	190			
LAMP/Loop mediated Isothermal amplification	1	5	1	9	33	31	314			
Other isothermal amplification methods	5	0	1	12	23	17	455			
Lateral flow tests	0	1	1	6	11	11	185			
Biosensor	11	5	2	14	27	45	677			
Crude extraction method	2	5	5	3	21	22	129			
Aptamers	5	2	1	8	24	24	168			
CRISPR (Clustered regularly interspaced short palindromic repeats)	2	2	0	4	11	10	163			
ATP bioluminescence	0	0	0	1	1	6	14			
Nanopore sequencing	0	1	0	0	0	1	26			

Summary of TRL framework



Database with TRLs assigned

• TRL assessment tool was used to answer questions about each technology we were assessing to guide the TRL assignment.

Technology	Highest TRL for any target/matrix (including out of scope)	TRL for in- scope target <i>Norovirus</i>	TRL for in- scope target Campylobacter		TRL for in- scope target Listeria	TRL for in- scope target Salmonella	TRL for in-scope target E <i>. coli</i>
Portable real-time PCR 1	6	4	5	5	6	6	5
Portable real-time PCR 2	9 (FDA approved for SARS-CoV-2 testing)	4	4	4	5	5	5
Real-time LAMP (fluorescence)	6 (instruments are commercially available but testing by relevant end users generally has not been demonstrated)	5	5	4	5	5	5
LAMP with LFD read out	6	4	5	5	5	5	5
LFDs with antibodies	9	9	9	4	9	9	9
Chemiluminescent probes	8 or 9	4	4	4	8 or 9	8 or 9	8 or 9

Stakeholder map

Engagement approach

2 focus groups & 3 interviews (FSA, DEFRA, APHA, CEFAS, UKHSA)

Operational feasibility & need

7 end-user interviews

Engagement approach

2 focus groups & 3 interviews (FSA, DEFRA, APHA, CEFAS, UKHSA)

7 end-user interviews (primary industries, processing, retail, import, testing)

Needs and opportunities

Statutory testing

- Pen-side testing
- Product testing (production & port health)

Non-statutory / additional testing

- Customer assurance (e.g. norovirus in shellfish)
- Hygiene testing (e.g. counter-tops)
- Production decisions (e.g. irrigation water)

Test requirements (scenario specific)

- Test performance:
 - Pathogen viability
 - Presence / absence (specific strain) vs count

VS

- Presumptive results & false positives
- Cost(!) vs speed
- Ease of use: training possible (issue: live cultures)

Technologies for pilot study

Lab-on-a-chip and biosensor devices may be promising future technologies.

- Currently only in the prototype stage for in scope pathogens.

Nanopore sequencing

- TRL 4 or 5 for in-scope pathogens
- High complexity for end users
- Long time to result

Portable real-time PCR

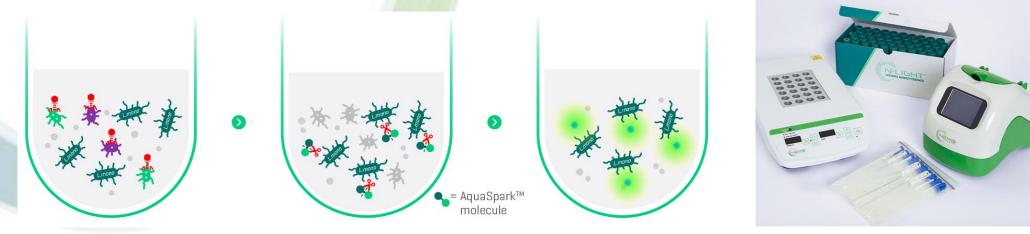
- Many portable real-time PCR devices are now commercially available.
- Advantages: can give rapid results ~ 30-60 minutes, could be used with other PCR assays in the literature, can include test controls for more confidence in results. Equivalent analytical sensitivity and specificity to laboratory tests. Can be quantitative. Commercial kits available.
- **Disadvantages:** Relatively complex protocol including pipetting steps. High costs, including buying the instrument.
- Next steps: TRL 6 Assessing the available kits in the lab with all necessary components, and optimise performance (with/without enrichment). TRL 7 demonstrate the technology in an in-scope setting with relevant end users.

+ cheaper (\$5 a test,\$10,000 instrument)+ faster

+ simpler workflow
+ remote control though
mobile phone app.
- Expensive (\$10 a test,
£20,000 instrument)

LAMP

- LAMP has multiple formats with different advantages. Real-time LAMP with fluorescence (or turbidity); LAMP with simple readout (LFD or colorimetric).
- Advantages: analytical sensitivity and specificity equivalent to laboratory PCR. Assays available in the literature for all target pathogens.
- **Disadvantages:** Relatively complex protocol including pipetting steps. High costs, including buying the instrument. Sample to answer commercial kits are less readily available.
- Next steps: real-time kits: TRL 6/7/8 lab validation/verification and then field validation with end users. Other formats: TRL 5/6/7: further optimising performance in the lab, testing both colorimetric and LFD readout methods. Test the performance in a relevant setting with end users.


+ Higher sensitivity
+ real-time results
and no post
amplification steps
+ Some commercial
kits available.

+ Lower initial costs
(no instrument
required)
+ Simple result
interpretation

Chemiluminescence kits

- Chemiluminescent probe technology for the detection of live bacteria currently used for surface swab samples.
- Advantages simple protocol with closed system so low chance of cross contamination. Relatively cheap test (\$7 & 2500 capital), high sensitivity. Detects only live bacteria. Commercial kits available.
- **Disadvantages:** requires enrichment so not a rapid test.
- Next steps : TRL 7/8/9: measure diagnostic performance of the tests in an in-scope scenario and get end user feedback, identify any specific logistical barriers to deployment. OR TRL 5/6: adapt tests in the lab for different matrices such as food, optimise and test performance.

Lateral flow tests

- Advantages: Simple protocol and interpretation of results. No instruments needed and relatively low test cost (£8). Commercial kits available for most in-scope pathogens.
- **Disadvantages:** low sensitivity unless combined with an enrichment step. Qualitative results.
- Next steps: TRL 7/8/9: generating performance data for an in-scope setting where LFDs are not currently used but could be useful. Assessing the generated data to see whether they are a useful test.

Technologies combined with scenarios

- *Listeria* swabs for environmental monitoring LFDs or Chemiluminescent tests.
- *E. coli* as a faecal indicator in shellfish, meat, irrigation water with LAMP or real-time PCR
- *Norovirus* in shellfish and water with real-time PCR or LAMP

Acknowledgements

- PathSafe programme
- FSA
- Martin Boughtflower
- Neil Taylor
- Femke van den Berg
- Nik Tzanotis
- Chris Conyers
- Eleanor Jones
- Edward Haynes
- Valeria Orlando
- Sarah Carrol
- Lucy Brown

- Abi Fisk
- Joy Kaye
- Chris Field
- Yue Lin Lon
- Marco Benucci
- Kinda Alraiss
- Jen Clemens

THANK YOU FOR YOUR ATTENTION

