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The goal of this document is work towards a more coherent rational approach to assessment
factors, one which should have the potential to be practically helpful in relation to carcinogens
and hopefully also to other risk assessment contexts.

At a foundational level, this report is strongly influenced by the experience of members of the
project team, by interactions with Professor Michael Goldstein of Durham University, by the
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writing of De Finetti (the founder of subjective Bayesianism) and by three main threads of
literature on probabilistic approaches to assessment factors (also known as uncertainty or safety
factors):

• Cooke (2010): article in Risk Analysis and associated discussion, giving a probabilistic
perspective on a number of apparent contradictions or paradoxes arising from ways in
which people have in the past combined uncertainty factors;

• articles by Kodell and Gaylor (henceforth referred to as “K&G”) on combining assess-
ment factors for non-carcinogens: references Kodell and Gaylor (1999), Gaylor and
Kodell (2000), Gaylor and Kodell (2002).

• articles by Slob and various co-authors (henceforth referred to as “Slob+al”): selected
references Slob and Pieters (1998), Vermeire et al (1999), Bosgra et al (2005).

K&G and Cooke draw on a lot of earlier literature [including Slob+al, Renwick and co-authors,
etc].

At a more practical level, this report is influenced again by the experience of members of the
project team but also by many others with whom members of the team have collaborated in a
variety of areas of risk assessment.

1 Introduction

Although the motivation for undertaking this work comes from the context of carcinogens and
the “margin of exposure” idea, the majority of what follows is intended to be more general.
Occasional links will be made to carcinogens and other potential applications.

In many areas of risk assessment, one or more assessment factors are applied to a measurement
(the point of departure) of some quantity in order to provide a number (the point of arrival) which
is felt to be sufficiently conservative relative to some important (target) quantity for which more
direct measurement is difficult or impossible1.

Example 1: In aquatic ecotoxicology, the point of departure might be a laboratory measurement
of the 24 hour LC50 for a particular test species exposed to a chemical substance and the target
quantity might be the environmental concentration which would cause no meaningful disruption
to real ecological communities; the point of arrival is obtained by dividing the LC50 by a num-
ber of assessment factors to account for inter-species variation, differences between acute and
chronic tolerances, differences between laboratory and field outcomes, etc. The intention is that
the point of arrival can be used as a threshold to determine if an exposure scenario is acceptable.

Example 2: For carcinogens, the point of departure might be a BMDL10 for an experimental
animal population while the target quantity might be the dose which corresponds to a human
population excess lifetime cancer risk of 1 in 100,000. The point of arrival might be obtained
by dividing the BMDL10 by a total assessment factor of 10000; the result is a dose which might
be considered to be acceptable in some jurisdictions, although not in the UK.

Example 3: The context explored by K&G is the derivation of safe human exposure levels
for non-carcinogenic toxicants starting from an animal sub-chronic LOAEL or BMD10 (the
point of departure) and applying 4 assessment factors: AFH to account for uncertainty about
variation in sensitivity between humans; AFA to account for uncertainty about difference in
sensitivity between humans and animals; AFS to account for uncertainty in extrapolating from
sub-chronic data to chronic exposure; and AFL to account for uncertainty in extrapolation from
a “low-risk” animal measurement (the LOAEL or BMD10) to the target level of negligible risk
to humans. They use the term uncertainty in each case although they subsequently use empirical
information about various kinds of variability to derive values for the assessment factors. They

1The difficulty of measurement of the target may arise for a variety of technical, financial or ethical reasons.
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use the notation UH etc rather than AFH ; the change in notation here is to make it possible to
distinguish the assessment factor itself from the uncertainty/variability it addresses.

The title of this part of the “margin of exposure” project is “Examine the theoretical basis for
how assessment factors should be combined2 in risk assessment”. In reality, as indicated in the
project proposal, it will also be necessary to explore the theoretical basis underlying the use of a
single assessment factor in order to understand what constraints should apply to the process of
combining assessment factors.

In what follows, the notation PoD will be used for the point of departure, T for the target, PoA
for the point of arrival and AF for a single assessment factor. Where multiple assessment factors
are involved, they will be subscripted as AF1, AF2 and so on.

2 Foundational basis for the use of assessment factors

The starting point of the need for assessment factors is uncertainty about the target T. It will
be assumed that the uncertainty is not about the definition of the target but about its numerical
value. Thus, in the context of carcinogens, it will be assumed that doubts have been resolved
about such issues as whether the relevant level of excess risk is 1 in 100,000 people or 1 in
1,000,000 people or which human population should be considered; these are policy issues.
The remaining uncertainty to be addressed is about the dose giving rise to the specified level of
excess risk in the given population.

The target T is by definition not going to be measured directly. Instead a different number, the
point of departure PoD, will be obtained or has already been obtained. The definition of the
PoD should also be unambiguous. The reasons for obtaining the PoD are (a) that it is possible
to do so; (b) that it is conceptually related to the target T; and (c) that experts feel able to make
some quantitative judgements about the difference between PoD and T. Those quantitative
judgements may be empirically founded or be based on expert synthesis of evidence or be a
combination of both.

Supposing that a single assessment factor AF is being applied so that

PoA = PoD/AF,

several questions immediately arise if we want to rationalise the value chosen for AF:

1. What does AF represent here?

2. What are we trying to achieve: what relationship do the experts want between PoA and
T?

3. Why are we dividing by a constant AF rather than (say) subtracting some constant?

4. How should we choose a value for AF? What considerations should we taken into account
and how should we go about quantification?

In reality, the answers to these questions are not completely independent. However, taking them
one by one:

3. Implicitly, these are contexts where T is positive and where 0 represents complete safety,
although it may be impossible or impractical or uneconomic to achieve it. Moreover,
the contexts generally deal with doses or concentrations and it tends to be natural to
think about the effect of halving a dose or concentration rather than reducing it by a fixed

2In practice, for carcinogens, this is not to derive a “safe” dose, but rather to help interpret the level of concern
associated with the margin of exposure.
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amount; in particular, at lower doses and concentrations, subtracting a fixed amount would
lead to the impossible situation of having negative doses and concentrations.

There is a basic scientific intuition that ratios of doses (or concentrations as appropriate)
are more likely to be stable between chemicals than other possible ways of comparing two
doses, whether the doses correspond to different effect levels in the same species or to the
same effect level in different species or to various other differences which are covered by
assessment factors.

Moreover, in the carcinogen context (and others), the linear dose-response relationship
lurks in the background as a default possibility. For the linear dose-response, dividing by
a fixed factor has the same relative size of effect on the response at all doses.

1. The AF represents both our ability to extrapolate from the point of departure PoD to the
target T and our uncertainty about that extrapolation.

By extrapolate, we mean the possibility that experts judge that PoD and T will have similar
orders of magnitude, or that T is likely to be a couple of orders of magnitude smaller than
S, without being able to make a precise prediction. In other words, the experts have some
idea about the size of the ratio T/PoD but are aware that it varies from assessment to
assessment and hopefully are able to say something quantitative about the variation and
about their uncertainty.

2. Implicitly, we are in situations where lower values of PoA involve less harm.

Thus, the goal is to have sufficiently high confidence that the point of arrival PoA is
lower than the unknown numerical value for the conceptually well-defined target T. By
confidence, at this point, it is not meant necessarily to imply quantification in terms of
frequency or probability although it seems difficult to avoid some degree of such a quan-
tification if one wants to construct assessment factors rationally.

A key here is that the goal is one-sided in two ways. One is not looking for a precise level
of confidence nor to hit the target precisely; instead one wants some minimum degree of
confidence that PoA is lower than T. However, it is also the case that there is a penalty
(economic or otherwise) for obtaining too low a value for the PoA; otherwise the value 0
would surely suffice from the safety viewpoint.

A simple example of the benefit of the one-sidedness is to think about being asked by
a visitor when the next bus will go past; without detailed knowledge of the timetable,
most of us would find it hard to specify a precise time with any confidence but in many
places could say with considerable confidence that the waiting time would be less than an
hour. Moreover, one would probably be more comfortable expressing one’s certainty in
the prediction by giving a lower bound for one’s probability than if one had to specify a
precise probability for the event happening3

4. It seems natural that the most basic quantitative goal in determining an AF to use should
be to require that

Prob(PoA > T) < γ (1)

for some probability γ which is likely to be small. Note that PoA > T if and only
if PoD/AF > T and that PoD/AF > T if and only if PoD/T > AF. Consequently,
Prob(PoA > T) = Prob(PoD/T > AF) and so one way to understand the assessment
factor AF is as a value which PoD/T is unlikely to exceed. However, this does beg many
issues.

– What kind of probabilities are these? We incline towards the subjective motiva-
tion/interpretation of probability despite some difficulties: objections on principle

3Some statisticians see this as a failure to adequately engage with specification of probablities but it certainly
matches the instinctive attitude of many scientists and others.
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from some quarters; the individual as opposed to group nature of the theory; and
difficulty of elicitation/specification especially for one-off binary outcomes.
However, there may be situations in which the probability could be partially or com-
pletely frequency based which would be more comfortable for many people.

– Is γ explicit or just implicitly small? In practice, γ has rarely been explicitly speci-
fied in risk assessments using assessment factors. However, we shall see that com-
bining assessment factors rationally almost certainly requires an explicit value for γ
along with many other probabilities.

– One of the reasons for use of assessment factors is the difficulty of quantifying
probabilistic arguments in these kinds of risk assessments. Moreover, the assessment
factor is usually specified not for a single risk assessment but to cover many risk
assessments.

Thus it seems that the assessment factor has two possible goals: one is frequency based
which is to ensure that PoA ≤ T for most applications of the assessment factor and the
second is to achieve a high probability that PoA ≤ T in each individual application.

Now these are in fact related goals: the latter can imply the former in the sense that if one
judges that equation (1) holds for each assessment, then one also judges that PoA will only
exceed T in at most proportion γ of applications. The proviso is that the assessments must
be independent in a certain sense; if there is a shared component of uncertainty, the law
of large numbers need not apply4. On the other hand, in the absence of other information
specific to a particular application of the assessment factor, the frequency property leads
many to conclude that (1) holds as a judgement for that application. Again, the difficulty
is that one can only mathematically derive a frequency property for a statistical procedure
if certain independence assumptions hold.

So what does this all boil down to? Fundamentally, we are suggesting that experts make limited
probability judgements about

PoA
T

=
PoD/AF

T
=

PoD
T

/
AF = U/AF (2)

where U = PoD/T. To be precise, the experts need low probability that the ratio in (2) ex-
ceeds 1. Since PoA > T if and only if PoD/T > AF, (1) becomes

Prob(PoD/T > AF) = Prob(U > AF) < γ (3)

It seems likely that, informally, this is pretty much exactly what is going on. The experts are
of course thinking about how large the ratio PoD/T might be and are choosing a larger value
for AF to compensate. In fact this is obvious. So why labour the point in this way? Because
rational combination of uncertainty factors requires sophisticated reasoning about uncertainty
from the experts and experience from a variety of contexts shows that that in general this is hard
and may well not be done to a high standard.

3 Trajectories

Now let us start to think about situations where more than one assessment factor ends up being
applied.

We shall assume that, conceptually, the link between PoD and T is a “trajectory” from PoD to
T via a number of “way-points” W0, . . . , Wm:

PoD = W0 ↔W1 ↔W2 ↔ · · · ↔Wm = T (4)
4Both mathematically and in practice, the issue of what constitutes sufficient independence is important and needs

more consideration at some point in the future.
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and where the advantage of introducing the way-points is that (i) the conceptual links are
stronger between adjacent pairs than across longer spans and/or (ii) it’s easier to think about
quantifying each Wi−1/Wi than directly quantifying PoD/T. Note that m is the number of
steps in the trajectory and that m will vary from context to context.

We already have a trajectory in our carcinogen “example” by taking PoD = W0 to be the
BMDL10 and W1 to be the BMD10 for the experimental animal population. This leads to two
areas for potential quantification: (i) the animal experiment which links the measurement PoD =
W0 = BMDL10 and population benchmark dose W1 = BMD10 for animals; (ii) the relationship
between W1, the animal BMD10, and W2 which is T, the target dose for humans. The former has
been well-studied and the procedure for quantification is essentially determined by the statistical
model and the experimental design.

However, we could further insert W2 to be the BMD10 for the human population and have W3

be the usual target T. If this helps, what was previously the second area of quantification would
be subdivided into quantifying the difference between human and animal BMD10s and the dif-
ference for humans between BMD10 and the target dose. We do not wish to imply here that this
is a sensible approach to the carcinogen context; the purpose is only to illustrate the concept of
“way-point”. This approach was considered in more detail during the expert elicitation exercise
conducted as part of Sub-task 03/02 of the project.

In the K&G example, we have m = 4 steps in the trajectory. Depending on the order in
which the assessment factors are applied, one might define the way-points differently; we will
consider just one possible version where we apply them in the order AFS , AFA, AFH , AFL. The
PoD = W0 is the animal sub-chronic LOAEL or BMD10; W1 is the animal chronic LOAEL or
BMD10; W2 is the typical human chronic LOAEL or BMD10; W3 is the sensitive human chronic
LOAEL or BMD10; and T = W4 is the sensitive human “negligible-risk” dose.

The purpose of the diagram in (4) is to emphasise the idea that each step along the “trajectory”
has to be quantified in some way. Please note that it is not being suggested that successive steps
are necessarily independent although experts might make such a judgement in any particular
context. The purpose of the way-points is really to break the journey from point of departure to
target into manageable pieces.

3.1 Multiple assessment factors

Once we have trajectories, we have the possibility of introducing more than one assessment
factor where each assessment factor covers one or more steps in the trajectory. The idea is
that the whole trajectory is covered by assessment factors and that assessment factors shouldn’t
overlap.

So when faced with a problem with two intermediate way-points:

PoD = W0 ↔W1 ↔W2 ↔W3 = T

we could have

• a single assessment factor taking us from PoD to T; or

• an assessment factor taking us from PoD to W1 and a second from W1 to T; or

• an assessment factor taking us from PoD to W2 and a second from W2 to T; or

• an assessment factor taking us from PoD to W1, and a second from W2 to W2 and a third
from W2 to T

The appropriate way to approach this depends on our understanding/knowledge of the steps and
how they relate.
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An issue which might arise is that there could exist more than one plausible trajectory: for the
carcinogen “example”, we suggested the possibility of taking W2 to be the human BMD10; an
alternative would be to take W2 to be the dose causing an excess 1 in 100,000 lifetime risk in
the animal population. We are not asserting that either proposal makes any sense nor that one is
better than the other; the intention is simply to illustrate possibilities.

3.2 Multiplying assessment factors

The natural reaction to a situation with more than one step in the trajectory and where assessment
factors have been provided for individual steps is to multiply the assessment factors. This is
obviously motivated by

U =
PoD

T
=

W0

Wm
=

W0

W1

W1

W2
. . .

Wm−1

Wm
= U1 × U2 × · · · × Um

where we define Ui = Wi−1/Wi. If each AFi is large relative to the corresponding ratio Ui

it seems intuitively obvious that the product AF1 × · · · × AFm would be large compared to
the product of the individual ratios U = PoD/T. Consequently it would seem sensible to take
AF = AF1 × · · · × AFm in calculating PoA = PoD/AF.

Although it is intuitive to multiply assessment factors in this way, the detailed consequences are
unclear. Over the last 15 years, several authors have argued that a more detailed rationale is
needed and some have provided alternative calculations which do, however, require additional
information to be obtained/provided.

3.2.1 Cooke’s criticism

Cooke (2010) argues that, in any situation where there is more than one assessment factor being
applied and where the values of the assessment factors are fixed, very strong constraints are
being imposed in relation to the steps in the trajectory. For example, if using three fixed size as-
sessment factors in the hypothetical two intermediate way-point situation considered, he argues
that there is an implied judgement that U1 = W0/W1, U2 = W1/W2 and U3 = W2/W3 are
judged to be completely dependent whereas most of us would have the instinctive feeling that the
reason for introducing three steps would be a judgement of independence or near-independence
of the three ratios.

Cooke’s is a quite sophisticated probabilistic argument; it is mathematically valid given a num-
ber of assumptions. Slob (2011) has strongly questioned those assumptions in his comment
on Cooke’s article but it is not clear that Slob’s objections are entirely well-founded. However,
Cooke’s argument ignores two key features of the use of assessment factors. The first is the
one-sidedness discussed earlier which means that we are often trying just to get a “safe enough”
outcome rather than to get a “just safe enough” outcome. The second (related) feature is that
assessment factors are usually round numbers such as 100, 10, 5, 3 and 2 rather than being spec-
ified to high precision. Both features act to limit the strength of the conclusions one can draw
about experts’ judgements on the basis of how they combine uncertainty factors. Nevertheless,
Cooke’s argument shows considerable insight and indicates the potential for serious difficulties
with the practice of multiplying assessment factors.

3.2.2 Other criticisms

Both K&G and Slob+al5 have also criticised the multiplication of standard assessment factors
as being insufficiently based on evidence and likely to lead to excessively conservative com-
bined assessment factors. Further discussion of their proposed solutions is deferred to the later
“random chemicals” section.

5There are probably other papers in the literature
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3.2.3 Analysis from a probabilistic perspective

The major limitation is that the kind of quantitative judgement expressed in (1) may not be
strong enough to be useful when combining assessment factors.

Suppose we are in a situation with a single way-point and two assessment factors AF1 and AF2

which have been arrived at separately and which we now wish to combine. The equivalents of
(1) to be satisfied by the individual assessment factors are

Prob(PoD/W1 > AF1) ≡ Prob(U1 > AF1) < γ1 (5)

and
Prob(W1/T > AF2) ≡ Prob(U2 > AF2) < γ2 (6)

Mathematically the only conclusion we can now draw involving the product of the assessment
factors is that

Prob(PoD/T > AF1AF2) ≡ Prob(U1U2 > AF1AF2) < γ1 + γ2 (7)

From a precautionary perspective, this is of course fine if the probabilities γ1 and γ2 used to
derive the individual assessment factors were small enough that γ = γ1 + γ2 is small enough
for our overall goal in (3). Then it is reasonable to take overall assessment factor AF in (3) to be
AF = AF1AF2. However, we shall see in the next section that there are grounds for considering
it to be excessively conservative in many situations.

Why is (7) the only conclusion we can draw from (5) and (6)? At one extreme, we could have
U2 just at or below AF2 whenever U1 > AF1 and vice versa; this leads to PoD/T > AF1AF2

whenever either of the individual ratios exceeds its corresponding assessment factor and yet the
individual ratios cannot simultaneously exceed their assessment factors. At the other extreme, it
could be that U2 is small whenever U1 > AF1 and vice versa; then the probability in (7) would
actually be zero.

Note that in both extreme situations, U1 and U2 are far from independent. However, adding
an assumption of independence of the ratios does not help by itself; we need more information
about the ratios than independence if we are to make more precise probability statements about
their product.

3.3 Being overcautious

The analysis in section 3.2.3 conceals a more serious issue which is that the procedure obtained
by multiplying assessment factors may actually be much more cautious than the individual as-
sessment factors appear to be. Moreover, this is not just a possible issue but is one which is
likely often to arise.

Suppose that instead of simply choosing the individual assessment factors to be certainly large
enough to satisfy (5) and (6), the individual factors were actually chosen to be calibrated in the
sense that

Prob(U1 > AF1) � γ1 (8)

and
Prob(U2 > AF2) � γ2 (9)

where by � we mean that each probability is less than or equal to γi but not very much smaller
than γi. This can be seen as retaining the key one-sidedness property but informally restricting
the degree of one-sidedness. The intention is to exclude situations where an assessment factor is
being set very much larger than would actually be needed for most chemicals. Such assessment
factors might be described as “approximately calibrated”.
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Then about the only thing we can deduce mathematically is that

Prob(PoD/T > AF1AF2) = Prob(U1U2 > AF1AF2) ≤ γ1 + γ2 (10)

Note that the symbol in (10) is ≤ not �. In other words, we retain the one-sidedness but we
lose the restriction on one-sidedness that protects us from being excessively conservative; the
probability might actually be zero or very nearly so. This could be a problem if our reason for
approximately calibrating the original assessment factors was to avoid a harm that comes from
being over-cautious in the risk assessment.

Interestingly, it does not help very much to assume/believe/know that U1 and U2 are indepen-
dent; it simply replaces γ1 + γ2 by γ1 + γ2 − γ1γ2 which is likely to be very similar to γ1 + γ2
since each γi will be near 0. The lower bound is not precise due to the � for the individual
assessment factors but is of order of magnitude γ1γ2. The reason independence doesn’t help
is that the probability in (10) still depends on the detail of the probability distributions for U1

and U2. Any fixed positive value of U2 can lead to U1U2 > AF1AF2 but the chance of this
happening depends on the distribution of U1 for every value of U2 and then the overall chance
also depends on the distribution of U2.

If we actually know the distributions of U1 and U2 and that U1 and U2 are independent, we can
then compute Prob(U1U2 > AF1AF2); however, in that situation we can do better by simply
calculating the distribution of U = U1U2 = PoD/T and then finding a single assessment factor
AF satisfying

Prob(U > AF) = γ (11)

for our chosen value of γ. This is discussed further in the next section.

At this point, we have two extreme possible ways of proceeding: (i) to multiply assessment
factors which is guaranteed to be semi-conservative and may well be over-conservative; or (ii)
to specify independent probability distributions for the ratios U1 and U2 in order to obtain an
overall assessment factor offering the desired level of protection. Is there any possibility in
between? One limited possibility is to build in correlations when using log-normal distributions
for individual ratios. There is certainly no immediately available more general technology; it
might be possible to build one based on imprecise probability, where exact distributions would
not need to be specified, but it is not clear at this time that the resulting methods would be any
easier to apply or would yield more reliable results.

4 Modelling scaling and variability — the “random chemicals” approach

Cooke uses the term “random chemicals” for what he describes as the methodological approach
advocated by K&G, Slob+al and many others. In reality, these authors’ approaches differ in
quite fundamental ways. K&G use distributions based on data analysis to describe only vari-
ability whereas Slob+al are happy for distributions also to represent uncertainty, whether it be
formally statistical or a representation of expert judgements or even just a “what-if” representa-
tion which combines both variability and uncertainty. This section is confined to consideration
of distributions representing variability.

The core of the K&G method is that there may be existing data on Wi−1 and Wi for chemicals
considered relevant to the chemical(s) for which the assessment factor is being developed. This
data may then be used to infer a specific distribution for Ui, often some log-normal distribution.
The term “random chemicals” arises because the chemical(s) for which the assessment factor
is being developed are then assumed to be sampled from a population of chemicals and the
chemicals for which there was data are assumed to have been sampled from the same population.
The sampling need not be (and almost certainly isn’t) random; a more realistic requirement
which yields the same mathematics is that the experts judge potential toxicity measurements for
the new chemicals to be exchangeable with the ones for which data has been obtained.
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If one additionally assumes that U1,U2, . . . are independent, one can then calculate the distri-
bution of their product. This is particularly straightforward in the case where each Ui has a
log-normal distribution, i.e. log Ui ∼ N(µi, σ

2
i ). Then log U ∼ N(

∑
µi,
∑
σ2i ). However, if

the individual ratios have specific distributions other than log-normal, there is no great difficulty
in numerically computing the distribution of U and software support exists for this operation,
for example in the distr add-on package (Ruckdeschel et al , 2006) for the free statistical
software R (R Development Core Team , 2011). Departures from independence are more diffi-
cult to handle and, as suggested earlier, the most straightforward approach would be to assume
multivariate log-normality as is the case for some examples in the numerical exploration which
comes later.

In the log-normal case, we can give clear and distinct meanings to the parameters µi and σi
of the distribution for Ui. µi is both the median and the mean of the distribution for log Ui =
log Wi−1−log Wi and therefore µ̃u = exp(µi) is both the median and the geometric mean of Ui.
The quantity µ̃i will be referred to as the “scaling”6 involved in the step along the trajectory from
Wi−1 to Wi; it is the part of the step which is predictable. The term “scaling” will continue to be
used, along with the notation µ̃i to refer to the geometric mean of Ui, when other distributions
are used.

σi then represents the amount of variability in the same step in the trajectory. This separation of
scaling from the amount of variability generalises to other distributions by defining variability as
the distribution of Ũi = Ui/µ̃i. The separation is important as we shall see in the later numerical
exploration that relative contributions of scaling and variability to the assessment factor seem
to have a particularly large effect on what assessment factor we derive when we combine the
distributions of individual ratios in order to determine the distribution of U = U1 × · · · × Um.
Note that

U = U1 . . .Um = (µ̃1Ũ1) . . . (µ̃mŨm) = (µ̃1 . . . µ̃m)(Ũ1 . . . Ũm) = µ̃Ũ

which separates the overall ratio U into a single combined scaling µ̃, which is the geometric
mean of U, and a single combined variability component Ũ.

As indicated earlier, having computed the distribution of U, the assessment factor is then ob-
tained by replacing the inequality in (3) by equality to obtain

Prob(U > AF) = γ (12)

and then solving to find the value of AF given a value of γ to be specified by the experts. If plenty
of uncontroversial good quality relevant data are available, much of the effort in specifying
assessment factors is reduced to specification of an appropriate value of γ. However, in practice,
there is a paucity of such data.

Another way of understanding (12) is that AF is the 100(1− γ)th percentile of the distribution
of U. In general this means that AF is the product of µ̃ and the 100(1 − γ)th percentile of the
distribution of Ũ . In the case where each Ui is log-normal, U is log-normal as described earlier
and we compute the overall assessment factor as

AF = µ̃ exp[σΦ−1(1− γ)]

where µ̃ = µ̃1 . . . µ̃m, σ =
√
σ21 + · · ·+ σ2m and Φ(.) is the standard normal cumulative distri-

bution function.

Kodell and Gaylor (1999) apply this idea to the example described in the introduction. They
use earlier studies to infer a distribution for each of UH , US , UL and UA and then compare
the standard products of powers of 10 to the assessment factors which would be needed to

6This term is not ideal as it does not immediately suggest the capacity to predict that one way-point is smaller
than the other, although that is what it really means. However, a better alternative has not been found.
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achieve various particular value of γ in (12). They also consider individual steps in the trajectory,
replacing the tight inequalities in (8) and (9) by equalities so that we require

Prob(Ui > AFi) = γi

and compare the individual powers of 10 to the individual assessment factors which would be
required for various values of γi. They conclude that the individual assessment factors are
probably less protective than intended but that the result of multiplying them is conservatism,
possibly rather extremely so. Gaylor and Kodell (2000) take the matter further and compute
the value of γ corresponding to each of the standard powers of 10 and also make comparison to
earlier Monte Carlo studies reported by Baird et al and Swartout et al.

K&G’s assumption of log-normality greatly simplifies the numerical calculation of the overall
assessment factor relative to the use of other distributions but this is not crucial. The crucial
components of the process are the specification of γ and the determination, without uncertainty,
of independent distributions for the ratios. K&G derive those distributions reasonably explicitly
from data but some or all could simply be specified by experts, an approach taken by Slob+al.
Experts may however find it difficult to provide precise values for µi and σi; this is clearly
a more demanding task than the informal specification of an individual assessment factor to
satisfy some version of Prob(Ui > AFi) < γi.

The consequences of unjustified log-normality and independence assumptions may be to com-
pute overall assessment factors in which one has little trust. This point is implicit in the final
sentence of Gaylor and Kodell (2002) which calls for an investigation of sensitivity to the
assumption of log-normality and to values of parameters used.

4.1 Uncertainty

Kodell and Gaylor (1999) briefly discuss the issue of uncertainty about the parameters of the
log-normal distribution. They consider the possibility that some allowance should be made for
uncertainty but do not see a good way to proceed taking into account uncertainty for more than
one ratio. They suggest instead that a smaller value of γ should be used in determining the
assessment factor but provide no rationale for how to choose the smaller value. They consider
neither the possibility that the log-normal model is inadequate nor consequences.

Various authors have found log-normal distributions to be an adequate approximation to the
distribution of various ratios and have provided parameter estimates and derived individual as-
sessment factors for those ratios. But consideration of the consequences of model uncertainty
and parameter uncertainty has been neglected. One difficulty in relation to these studies is that
the log-normal fit has been assessed using data-sets of moderate size, large enough to make
some assessment of normality in the centre of the distribution but not large enough to guarantee
normality in the tails; of course, it isn’t possible to guarantee normality in the extreme tails but
we should at least try to assess sensitivity of the assessment factor calculation to the choice of
distribution family.

Assessment of dependence between different ratios is more difficult as there is less data avail-
able. Calabrese and Gilbert (1993) demonstrate a dependence between two ratios but this is
actually deduced from the fact that the two ratios share a segment of the trajectory and is not
obtained from analysis of data. There may be empirical studies of this issue but we are not
presently aware of them.

In the absence of such studies, independence is an appealing starting point but should not be
taken as given. Consequently, establishing the sensitivity of AF to dependence assumptions is
important.
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4.2 Cooke on independence

One of the assertions made by Cooke is that independence is unlikely to be a reasonable as-
sumption; the denominator of Ui is the numerator of Ui−1 and he argues that this alone makes
it unlikely that Ui and Ui−1 can be independent. This argument is not totally convincing. There
are two different aspects to the problem: one is whether independence is conceptually incorrect
and the second is whether it is incorrect when data are involved.

The conceptual issue really depends on fundamental judgements about the relationships between
things. If Wi is a way-point between Wi and Wi+1 but one would judge that Wi−1 provides
information about Wi+1 which is additional to that provided by Wi, then independence of Ui

and Ui+1 is not an appropriate assumption. If one judges that Wi−1 does not provide additional
information, independence of Ui and Ui+1 may well be reasonable. Note that the language here
is deliberately of judgements rather than of inference based on data as it is relatively unlikely
that there will be many chemicals for which the three way-points involved will all have been
measured.

The issue about independence when data are involved is that the data are often not directly
about Ui (or Ui+1) but actually involve the empirical relationship between some measurement
of Wi and (some measurement of) Wi−1. Then the same measurement(s) of Wi may be used in
assessing the distributions of Ui and Ui+1; if so, the measurement variability is common to the
information about Ui and Ui+1 and should induce a negative correlation between them although
this correlation may be small. Essentially, in the trajectory, the conceptual quantity Wi has been
replaced by a measurement Ŵi of it and this introduces some overlap between the step from
Wi−1 to Ŵi and the step from Ŵi to Wi+1.

In the later part of his paper, Cooke essentially argues that the only way forward is some form of
multivariate modelling of the target, way-points and point of departure; he suggests possible use
of Bayesian belief networks but does not offer a concrete example. This is certainly theoretically
correct but may not actually differ from what is described here. Useful BBNs tend to involve
substantial numbers of (conditional) independence assumptions in order to simplify learning
from data and other computations.

5 Incorporating uncertainty

Although K&G avoid dealing with the issues, there will surely be uncertainty about both the
log-normal model and specific parameter values for the model. The approach taken by Slob+al
is just to combine scaling and variability of Ui with associated uncertainty to make a single
distribution for Ui and then use that distribution in the calculation of the distribution of U.
Mathematically, this requires approaching uncertainty from a Bayesian perspective although
this is not explicit in their work.

One could of course object to the Slob+al approach on the grounds that it would be better to
separate uncertainty from variability so that one would actually deal with uncertainty at the end
of the process by arriving at either a distribution for AF given a choice of γ or a distribution
for γ given a particular value for the AF; in either case, the distribution would purely repre-
sent uncertainty. However, this is only really necessary if we want to separate uncertainty from
variability. Provided the ratios U1, . . . ,Um have independent variability, and uncertainty about
each ratio’s variability is also independent of other ratios, mathematically we obtain the same
overall distribution for U, combining uncertainty and variability, regardless of whether we in-
corporate uncertainty into each individual Ui distribution and then combine them or we first
combine variability distributions and then incorporate uncertainty.

What we should not do is derive a separate assessment factor for each Ui allowing for uncer-
tainty and then simply multiply them.

In principle, incorporating parameter uncertainty for the log-normal distribution is relatively

12



Number of ratios m
1 2 3 4 5

Sc
al

in
g

1 10 26 54 100 170
2 10 39 130 400 1200
5 10 67 420 2500 15000
9 10 94 870 8100 75000

Table 1: Assessment factors (2 significant figures) for independent identically log-normally
distributed ratios.

easy if the distribution is inferred from data. Unless the sample size is very small, using the
standard Jeffreys independent prior will not be very influential or contentious and the con-
jugate update means that the predictive distribution for Ui will be a re-located and re-scaled
t-distribution.

6 A numerical exploration

Studying the practical implications of all this is scheduled for later in the project. The numerical
study here will be confined to doing some illustrative calculations of how the final assessment
factor depends on the number of steps m in the trajectory, the distributions being used and the
value of γ chosen.

The examples directly explore sensitivity of the assessment factor to distributional choices and
γ and how this depends on m and also indirectly explore a little of the uncertainty issue. Six
different scenarios are considered for the type of distribution used for the log Ui: normal, t (10
degrees of freedom), t (5 df), t (2df), skew-normal (skew=0.8) and skew-normal (skew=−0.8).
This means, for example, that in the first scenario the distribution of Ui is log-normal.

Each scenario consists of a number of examples varying: (a) the number of ratios m; (b) the
value of γ; and (c) the scaling µ̃i used for each Ui. Each example has the same basic structure:
within the example, the same distribution is used for each Ui and that distribution is obtained
by taking the basic log-ratio distribution and changing its location and scale to: (i) give the
required scaling for Ui; and (ii) make the 100(1− γ)th percentile of Ui be 10. The distribution
of U = U1×· · ·×Um is then computed numerically and used to find the 100(1−γ)th percentile
of U which is the required AF assuming that the same γ is of interest.

The purpose of (ii) is that 10 (the most common standard assessment factor for a single source
of uncertainty) is then the AF for all single-step (m = 1) trajectories in all examples for all
scenarios. The purpose of (i) is to enable us to explore how changing the balance between
scaling and variability affects the AF which would be required for a multi-step trajectory. The
scalings considered are 1, 2, 5 and 9; the first is a situation where there is no predictable scaling
and there is just variability while the last is a situation where most of each AF addresses scaling
rather than variability.

The t-distribution scenarios provide some exploration of the consequences of both some excess
kurtosis in the variability and some uncertainty about parameters for log-normal variability.

Table 1 shows the outcomes (values of AF) for the log-normal scenario. Note that γ does not
appear; it is one of the many unusual special features of the normal distribution that the ratio
of the pth percentile for a convolution of m standard normals to the pth percentile of a single
standard normal does not depend on p. Consequently, the AF does not depend on γ, provided
that the same γ is used when determining the distribution used for each ratio. When there is no
scaling, we see that the the AF grows much more slowly than the 10, 100, 1000, 10000, 100000
that would be obtained by multiplying individual assessment factors. On the other hand, when
most of each single assessment factor addresses scaling, the final AF is not much smaller than
the product of the individual assessment factors.
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Table 2 shows the outcomes for all 6 distributional scenarios. Entries for m = 1 have been
omitted as they are all equal to 10. Again the effect of scaling is striking but we can also
see substantial differences between distributions, with high kurtosis (5 degrees of freedom t-
distribution) and negative skew at opposite extremes. The differences are more noticeable when
there is less scaling. The results might seem counter-intuitive7. What one must remember is that
the distribution for an individual ratio is set up to have 10 as the required percentile. The effect of
multiplying ratios is to add log-ratios which means that the log-ratio distribution moves towards
normality as m increases. Consequently, the right tail gets longer for the negatively skewed log-
ratio distribution, which leads to a higher AF than for the normal log-ratio case, while it shortens
for the positively skewed distribution. Similarly, both tails shorten for the excess-kurtosis cases.
We can see that the percentile chosen does have an effect and that the nature of that effect
depends on the distribution scenario but in general is larger when there is more variability and
less scaling.

The effects of adding correlation to the scenario with log-normal ratios are also investigated. The
individual ratio distributions are as in the previous study but correlation is introduced between
each adjacent pair of log-ratios: log Ui−1 and log Ui. There is no correlation between log Ui and
log Uj for |j − i| > 1. Table 3 shows results for 5 different correlation scenarios ranging from
−0.5 (the minimum possible) to 0.5 (the maximum possible). As in the original log-normal
scenario, the AF does not depend on the value of γ chosen. One sees that correlation can have
striking effects, especially when there is less scaling. When the correlation is −0.5, effectively
there are m scaling components but only one component of variability regardless of m.

7 Case Study

7.1 Introduction

We now give closer attention to the non-carcinogen setting discussed by Gaylor and Kodell
(2000). They consider moving from the point of departure which is an animal sub-chronic
LOAEL to the point of arrival which is a reference dose (RfD). Adapting their notation slightly,
their fundamental scheme is

RfD =
LOAEL

AFA × AFH × AFS × AFL × AFD ×M
where: AFA, AFH , AFS , AFL are assessment factors addressing uncertainty about correspond-
ing ratios UA, UH , US , and UL; AFD is an assessment factor covering uncertainty due to an
inadequate database; and M is a “modifying factor” to cover any additional uncertainty. Gay-
lor and Kodell (2000) are not completely precise about the definitions of the ratios, stating:
AFA represents a dose reduction factor due to the uncertainty of using animal data for human
effects, AFH represents the variable sensitivities in a human population, AFS represents the un-
certainty of predicting chronic effects from sub-chronic studies and AFL represents the ratio of
the LOAEL to the NOAEL when a LOAEL is used instead of NOAEL. They consider only the
first four assessment factors in the rest of their article and we shall do the same.

A possible trajectory from PoD, being the measured animal sub-chronic LOAEL, to our cho-
sen point of arrival, the chronic NOAEL for a sensitive human, is the following sequence of
way-points: animal sub-chronic NOAEL, animal chronic NOAEL, chronic NOAEL for typical
human, chronic NOAEL for sensitive human. There are clearly many other possible choices
but fundamentally we have to make a step from LOAEL to NOAEL, a step from sub-chronic to
chronic, a step from animal to human and a step from typical human to sensitive human. For
the trajectory given:

(i) UL is the ratio of the measured sub-chronic LOAEL (the PoD) to the first way-point: the
unknown sub-chronic NOAEL for the same chemical in the same animal species;

7The behaviour for t (2df) relative to t(5df) really is counter-intuitive; something strange happens for df< 5.
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Number of ratios: 2 3 4 5

Sc
al

in
g

1

C
or

re
la

tio
n

ρ = −0.5 10 10 10 10
ρ = −0.2 18 30 47 70
ρ = 0 26 54 100 170
ρ = 0.2 35 89 190 370
ρ = 0.5 54 170 440 1000

1

C
or

re
la

tio
n

ρ = −0.5 20 40 80 160
ρ = −0.2 31 87 240 620
ρ = 0 39 130 400 1200
ρ = 0.2 48 180 630 2000
ρ = 0.5 65 290 1100 4000

5
C

or
re

la
tio

n
ρ = −0.5 50 250 1200 6200
ρ = −0.2 60 350 2000 11000
ρ = 0 67 420 2500 15000
ρ = 0.2 73 480 3000 19000
ρ = 0.5 83 590 3900 25000

9

C
or

re
la

tio
n

ρ = −0.5 90 810 7300 66000
ρ = −0.2 93 850 7800 72000
ρ = 0 94 870 8100 75000
ρ = 0.2 95 900 8300 77000
ρ = 0.5 97 920 8700 81000

Table 3: Assessment factors (2 significant figures) for correlated log-normally distributed ratios.

(ii) US is the ratio of the sub-chronic NOAEL to the chronic NOAEL for the same species;

(iii) UA is the ratio of the animal chronic NOAEL to the chronic NOAEL for a typical human;

(iv) UH is the ratio of the chronic NOAEL for a typical human to the chronic NOAEL for a
sensitive human.

Gaylor and Kodell (2000) cite Dourson et al (1996) saying that the latter “note from the exam-
ination of databases that uncertainty ratios for UA, UH , US and UL appear to be approximately
log-normally distributed”. They go on to choose parameters for each log-normal distribution as
follows:

(a) UL: for 24 chemicals in Abdel-Rahman and Kadry (1995), median of LOAEL/NOAEL is
3.5 with 96% of ratios below 10; from this they deduce that ln UL is normal with mean 1.25
and standard deviation 0.60.

(b) US : for 149 chemicals in Pieters et al (1998), they obtained ln US is normal with mean
0.53 and standard deviation 1.72.

(c) UH : median is 1 on principle and for 490 chemicals in Dourson and Stara (1983), 10 is
92nd percentile of UH ; from this they deduce that ln UH is normal with mean 0 and standard
deviation 1.64.

(d) UA: median is 1 on principle and (for an unspecified number of chemicals) they interpret
Calabrese and Baldwin (1995) to conclude that 26 is 97.5th percentile of UA; from this
they deduce that ln UA is normal with mean 0 and standard deviation 1.66.

7.2 Source of data, models and uncertainties

In all that follows, we follow the random-chemicals approach (as do Gaylor and Kodell (2000));
the four ratios are well-defined (unobserved) quantities for a chemical and, as a core form of
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uncertainty about their values for a new chemical, we wish to quantify inter-chemical variability
in the ratios and in their product. We also wish to quantify uncertainty about that variability.
The calculations made by Gaylor and Kodell (2000) address only inter-chemical variability and
make no allowance for uncertainty about either distribution shape or parameter values.

Pieters et al (1998) do justify log-normality for US , saying that quantile-quantile plots for log
data are consistent with normality. We take the estimates of log-normal parameters provided
by Pieters et al (1998) and attach sampling uncertainty to them in the usual way for a random
sample from a normally distributed population.

Dourson and Stara (1983) make no such claim for UH : they do not present the data as numbers
but the histogram presented is quite misleading about the shape of the distribution. Careful re-
plotting of the approximate data extracted from their histogram suggests that log-normality is
not appropriate but that log-log-normality is an adequate fit. UH is the ratio of typical human to
sensitive human (and is related to human dose response slope). Therefore it has median greater
than 1 and the data provided by Dourson and Stara (1983) should be seen as data directly on
inter-chemical variation of UH . We fit the log-log-normal distribution carefully to their data and
obtain corresponding sampling uncertainty.

For UL, Abdel-Rahman and Kadry (1995) make no distributional claim and again the data are
presented as a histogram. The approximate data were again extracted from the histogram and
careful formal statistical testing shows that log-normality is just about acceptable. The data
provided by Abdel-Rahman and Kadry (1995) are data directly on inter-chemical (and inter-
animal-species) variation of UL. We fit the log-log-normal distribution carefully to their data
and obtain corresponding sampling uncertainty.

For UA, it is not clear that Gaylor and Kodell (2000) correctly interpreted Calabrese and Bald-
win (1995); moreover, a careful reading of Calabrese and Baldwin (1995) and their source
Barnthouse et al (1990) suggests that the interpretation made by Calabrese and Baldwin (1995)
was not itself sound. For that reason we revisited and made a new interpretation of the data pro-
vided by Barnthouse et al (1990). UA is the ratio of typical animal to typical human. Each
line in the relevant part of table 3 of Barnthouse et al (1990) gives us an estimate for a pair of
taxonomic orders of the mean difference in LC50s (intercept column) and, indirectly, an esti-
mate of the magnitude of inter-chemical variation in the difference (Prediction interval column).
We can turn the latter into the usual estimate of the error variance in a regression by dividing
by the 97.5th percentile of the relevant t-distribution and by the usual factor depending on the
sample size. We then model the inter-pair-of-orders variation in the mean differences using a
log-normal distribution and carefully model the corresponding variation in the underlying true
regression error variances by log-normality, in both cases also obtaining sampling uncertainty.
Note that for UA, there are two fundamental sources of uncertainty: firstly about the model for
inter-pair-of-orders variability and then that variability is itself a source of uncertainty about
inter-chemical variation. These must be carefully propagated when arriving at uncertainty about
inter-chemical variation in UA.

We now have models and sampling uncertainty for inter-chemical variation in each of the ratios.
We do not compare our results to those of Gaylor and Kodell (2000) because some of our
models are fundamentally different to theirs and we believe our choices to be preferable. We
have not considered uncertainty about distribution family for any of these ratios.

7.3 Results

Following the pattern introduced by Gaylor and Kodell (2000), we focus for each ratio on two
things: the inter-chemical 95th percentile of the ratio and the proportion of chemicals for which
the ratio is less than a standard assessment factor of 10. To be precise, the following panels
show for each of the four ratios:

• A histogram showing uncertainty about the inter-chemical 95th percentile of the ratio.

17



The overall (sampling uncertainty and inter-chemical variability combined) 95th per-
centile of the ratio for a new random chemical is shown as a dashed red line. The green
line is naive estimate of the 95th percentile obtained using simple point estimates of pa-
rameters. The dotted black line corresponds to the standard assessment factor of 10.

• A histogram showing uncertainty about the proportion of chemicals for which the ratio is
less than 10. The dotted black line highlights the situation where the proportion is 95%.
The overall (sampling uncertainty and inter-chemical variability combined) probability
that the ratio is less than 10 for a new random chemical shown as a dashed red line. The
green line is naive estimate of the same probability obtained using simple point estimates
of parameters.
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We also show results for the overall ratio U = UA×UH×UL×US . The left panel below shows
uncertainty about the 95th percentile of the overall ratio and about the proportion of chemicals
for which the overall ratio is less than 10× 10× 10× 10 = 10000:

• A histogram showing uncertainty about the inter-chemical 95th percentile of the overall
ratio. The overall (sampling uncertainty and inter-chemical variability combined) 95th
percentile of the ratio for a new random chemical is shown as a blue line. The dotted
black line corresponds to the standard overall assessment factor of 10000.

• Uncertainty about the proportion of chemicals for which the ratio is less than 10000.
The dotted black line highlights the situation where the proportion is 95%. The overall
(sampling uncertainty and inter-chemical variability combined) probability that the ratio
is less than 10000 for a new random chemical is shown as a blue line.
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There are many interesting features to this case study. Some of the more important are:

• We have demonstrated that it is possible to model inter-chemical variability and associated
sampling uncertainty for individual ratios. However, it requires careful evaluation and
modelling of existing data.

• Individual models can be used to evaluate the effectiveness of individual assessment fac-
tors.

• When combining inter-chemical variability and uncertainty to provide uncertainty for ran-
dom new chemical, although the individual assessment factors of 10 tend not to reach
the 95th percentiles of their corresponding ratios, the overall assessment factor of 10000
actually reaches the 97th percentile. However, there is considerable uncertainty about
performance if used for many chemicals although it is unlikely that 10000 covers fewer
than 90% of chemicals..

• We have made no allowance for uncertainty about the family of distributions to be used
for each model. It is unclear whether such uncertainty would make a large further contri-
bution.

• The entire case study lives in the context created by Gaylor and Kodell (2000). We have
not tried to re-evaluate the literature in relation to choice of datasets. It is likely that such
a re-evaluation would affect the numerical results.

8 Conclusions

The principal conclusion is that we have only two practical choices at this time.

One is to continue to multiply assessment factors, accepting that this process may be exces-
sively conservative when several factors are combined; doing so is undermined by K&G’s work
suggesting that some standard individual factors are likely to be too small for the ratios they
deal with. A further problem is the lack of transparency; the assessment factors used in many
areas lack a detailed technical justification. This could of course be rectified but would involve
a careful analysis of the relevant data and scientific knowledge; it would also require some
formalisation of the degree of confidence required.

The alternative is that we must follow the process proposed by Slob+al and K&G of using data
(and biological insight) to determine distributions for individual ratios. However, we must go
beyond K&G by addressing the uncertainties involved which include: (i) parameter uncertainty
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when fitting distributions to data; (ii) uncertainty about the appropriate family of distributions
to use; (iii) uncertainty about dependence between steps in the trajectory. This is quite a strong
theme in the discussion of Cooke (2010). In doing so, we are following a fairly standard
scientific procedure: we build a (Bayesian) statistical model which relates the uncertain and/or
varying quantities which we can measure to the ones about which we wish to make inferences;
we use the model as the basis for the decision we wish to make, in this case to determine the
AF.

Some will be concerned that considering all the uncertainties will lead to unnecessarily large
final assessment factors AF. However, the numerical and case studies provided suggest that
the increase in size of the AF due to consideration of uncertainty may be counter-balanced by a
reduction in size due to correct combination of distributions for individual steps in the trajectory.

It is expected that expert judgement will have an important role, especially in relation to the
treatment of dependence between steps in the trajectory and in bringing understanding of the
underlying science to bear on the question of what would be reasonable distributional assump-
tions.

9 Future work

We need to move further to the practical side and find out whether or not we can apply these
ideas in the context of carcinogens and whether or not the framework needs revision.

Applying the methodology specifically to the context of carcinogens would need considerable
effort, especially to assess the literature and relevant data. However, it would clearly be well
worth doing if sufficient resource was available.
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