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Notes on the need for microsimulation modelling for 
quantitative risk assessment for Norovirus in foods 
Paul R Hunter  

Quantitative Microbial Risk Assessment (QMRA) has become a commonly used tool 
to assess the risks associated with consumption of microbially contaminated food 
and water. In a previous European Framework Programme “MicroRisk” we set the 
framework for QMRA for European drinking water 
(https://www.kwrwater.nl/en/projecten/microrisk-microbiological-risk-assessment/) 
and directly led to the World Health Organization’s current guidance on QMRA [1]. 
According to the current WHO guidance QMRA has four key steps: 

• Problem formulation: where the pathogens, exposure pathways and health 
outcomes of interest are agreed along with any particular hazardous events to 
be considered. 

• Exposure assessment: where the dose of each chosen pathogen likely to be 
consumed by an individual is estimated. For drinking water this will include an 
estimate of the concentration of pathogen in the drinking water/food and an 
estimate of the volume of unboiled water/amount of food product to be 
consumed. Exposure per day is effectively the product of the concentration of 
pathogen and the volume/amount of water/food. 

• Health effects: where the probability of the chosen adverse health effect 
under varying exposures is determined by identifying an appropriate dose-
response model. 

• Risk characterization: where a quantitative estimate of risk is derived from 
the exposure assessment and the health effects dose-response model.  

Since the completion of the MicroRisk project there have been many advances in 
risk assessment most notably in improved detection methods for pathogens as well 
as better understanding of the appropriate dose-response models. As well as the 
recent WHO document, a QMRA Wiki website has been established at the University 
of Michigan (http://qmrawiki.canr.msu.edu/).  

Any literature search on QMRA is likely to find a considerable number of papers on 
appropriate dose response curves for different pathogens but also on issues relating 
to estimates of exposure, most notably uncertainty in the concentration of pathogen 
in the matrix. However, the initial risk characterization produces an estimate of daily 
risk. However, most risk assessors and policy makers are primarily interested in risk 
per annum as this then is comparable to epidemiological measures of disease risk. 
Such annualization of risk is essential for estimating disease burden. In contrast with 
other aspects of QMRA methodology the processes of using daily outputs of risk 
estimates has not been studied in that much detail. Over the past two decades the 
most frequently used method has been to simply annualize each daily risk and then 
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take the arithmetic mean of these annual risks to equate to population risk. This is 
shown in equation 1. 

Equation 1:     𝑃𝑃𝑇𝑇 = 1 − (1 − 𝑝𝑝)365   

 

However, this approach to annualising risk was called naïve by Karavarsamis and 
Hamilton [2]. The reason why Karavarsamis and Hamilton called this approach 
naïve, was that this equation effectively assumes that daily risk is constant for any 
individual for every day of the year. Given that pathogen concentration in food 
product or drinking water is not constant but varies from one day to the next such an 
assumption is clearly wrong. Karavarsamis and Hamilton then went onto propose the 
use of equation 2 which estimates annual risk by taking a random selection of 365 
daily risks and then repeating this 10,000 times to generate a mean annual risk and 
its distribution [2]. They called this approach the gold standard approach. 

Equation 2:   

𝑃𝑃𝐾𝐾 = 1 −�(1 − 𝑝𝑝)
365

𝑘𝑘=1

 

 
 

However, Karavarsamis and Hamilton were not the first to propose and alternate to 
equation 1. Teunis et al had some years previously used a bootstrap approach to 
estimate annual risk (3). However, this approach seems not have become popular 
until relatively recently. 

Both these latter approaches assume that daily risk will vary randomly from one day 
to the next even within an individual. It was clear to us that far from being a “gold 
standard”, this latter approach was equally naïve. Consider the situation of two 
people, one an elderly lady who only uses tap water to brush her teeth and never 
drinks tap water, preferring tea, and a the second a professional athlete who drinks 3 
to 4 liters of tap water per day. Daily risks of waterborne illness will not be randomly 
between the two but there will be substantial autocorrelation of risks within an 
individual. Consider risk associated with take-home meals, clearly risks will not be 
random between someone who only never buys a take-home meal from one year to 
the next and someone who has a take-home two or three times a week. Now in any 
QMRA model some variables will be random for everyone such as the concentration 
of pathogen in the food, other variables such as amount of water drunk, or size of 
meal, or number of meals eaten each year that will vary between people but not so 
much within the same individual. 

So why should this matter? In both approaches, the assumption is made that the 
annual disease burden is at most one infection per person per year. This is a 
reasonable assumption, as multiple symptomatic infections due to the same 
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pathogen within the same year are uncommon, though not unheard of. So, consider 
again our high and low exposure individuals. In a low exposure individual (say one 
exposure per very 10 years) each exposure would give rise to one episode of illness. 
Whereas in the high exposure individual (say 10 exposures every year) each 
exposure would on average give rise to 0.1 episodes of illness. 

Now consider a hypothetic town composed of 3,000 individuals. Let’s say that a 
particular food was rationed depending on to which social class an individual 
belonged. The lowest 1000 got 10 meals a year, the next 1000 got 50 meals a year 
and the top 1000 got 200 meals a year. Let us assume that a serving of this food is 
contaminated randomly with norovirus but defined by a log normal distribution with 
mean of 10 viable gene copies per meal and a standard deviation of 10.  

Doing a simple QMRA on this population would yield a daily risk of 2.23x10-3 with a 
standard deviation of 7.13x10-3. However, the annual disease burden estimates 
would be very different depending on which annualization method was used. For 
equation 1, the annual risk would be 1.70x10-1 but using equation 2 the estimated 
annual risk is more than 3-fold greater at 5.55x10-1. So which one is correct. Given 
that we know that one variable is constant within an individual (number of meals 
eaten each year) we can repeat the risk assessments for each of the three social 
groups. The annual risks for low, medium and high consumption rates by equation 1 
are 2.29x10-2, 1.10x10-1 and 3.69x10-1 and by equation 2 are 8.96 x10-2, 3.75x10-1 
and 8.44 x10-1. Equation 2 still generates estimates that are quite a lot higher than 
equation 1. However, in this context the assumptions underpinning equation 2 are 
sound within a social class and equation 1 estimates are still not. A more valid way 
to estimate the mean risk for the population as a whole would be to average the risks 
for each social class which gives 4.36x10-1 which is between the original estimates 
of annual risk given by equations 1 and 2.  

In this simple hypothetical population, it is possible to estimate risk by looking at risk 
in subpopulations. However, in more complex models this is no longer possible. For 
these reasons we developed a microsimulation approach to annualising risk in 
QMRA.  A more formal definition is that “Microsimulation modelling is a simulation-
based tool with a micro unit of analysis that can be used for ex-ante analysis” [4]. 
Microsimulation modelling has gained widespread use across multiple disciplines 
including economics, transport, health and the environment. In the context of QMRA, 
the unit of the modelling process is the individual rather than the population. As the 
modelling is done at the level of the individual this allows a much greater flexibility to 
deal with variables that are correlated within an individual. So, for example rather 
than each day randomly selecting a volume of water to be consumed one can 
specify the amount of water likely to be drunk by that person or the probability that a 
certain meal will be eaten.  Using the microsimulation approach on the above 
hypothetical example we get an estimate of annual risk of 4.37x10-1 which is 
extremely close to the mean of the risks in the three classes.  
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Essentially the model would estimate risk for each of 365 runs for a single 
‘individual’. In a food consumption assessment with a microsimulation model with 
two food types, exposure would be modelled by initially randomly allocating a mean 
number of meals with each food type for that ‘individual’. This would then be used to 
estimate the mean daily probability of each consuming a meal of each of the two 
food types. For each of day of the year simulation, the number of meals consumed 
would be randomly allocated give the known mean probability for that ‘individual’. 
The size of the meal and the concentration of virus on each meal would also be 
randomly allocated. After 365 iterations the mean annual risk for that ‘individual’ 
would then be estimated. This would then be repeated 10,000 times to come up with 
a mean population risk. 

As a real-world example, we present results of a reanalysis of a QMRA of 
cryptosporidiosis in private water supplies. This model is based on cryptosporidium 
counts obtained from six different private water supplies (that varied in quality from 
one to another) and water consumption behavior from the Drinking Water 
Inspectorate. We assumed that the amount of water consumed each day was 
constant for an individual and that each individual only drank water from his or her 
home water supply. By contrast we assumed that within a single supply the 
concentration of cryptosporidium in the water varied randomly from day to day but 
within a predefined distribution. Finally, we repeated the analysis assuming a 
treatment step was in place that reduced the counts by one or more logs. The results 
are shown in table 1.  

Table 1. Estimated mean annual risks for Cryptosporidiosis in private water 
supplies using different approaches. 

Log Reduction in count due to 
treatment  

Equation 
1 

Equation 
2 

Microsimulation 

0 (Raw)  5.76E-01 1.00E+00 8.52E-01 

-1 3.26E-01 9.99E-01 6.38E-01 

-2 1.39E-01 7.55E-01 3.47E-01 

-3 4.31E-02 1.92E-01 1.04E-01 

-4 1.04E-02 2.68E-02 1.60E-02 

-5 1.85E-03 3.09E-03 1.71E-03 

-6 2.45E-04 2.89E-04 1.82E-04 
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It is clear both from the hypothetical example and from the private water supply that 
equations 1 and 2 can give very different estimates of annual risk with equation 2 
(Karavarsamis and Hamilton’s “gold standard” method giving much higher estimates. 
However, as can been seen in table 1 the two estimates converge as annual risk 
gets small (less than 1 per 1000-person years). Given that for drinking water 
supplies a generally accepted tolerable risk of infection level is 1.0x10-4 differences 
in equation 1 and 2 would not have any meaningful impact on risk estimates. 
However, at risks greaten than 1.0x10-2 (10/1000 per person years) equation 1 
would appear to systematically under-estimate risk and equation 2 over-estimate risk 
and a microsimulation model is most appropriate.  

An additional advantage of microsimulation modelling is that it is easier to model 
multiple transmission pathways such as when one is interested in multiple food 
sources. Currently published QMRA models have focused almost exclusively on 
single transmission pathways. Indeed, it is not clear how well standard QMRA 
approaches would handle such multiple transmission pathways   

The disadvantage of microsimulation modelling is that it is substantially more 
demanding on computing power than standard approaches, especially when multiple 
transmission pathways are included. In most QMRA models there are relatively few 
variables (nodes) to be estimated typically less than 12. However, in microsimulation 
models with multiple transmission pathways there may be several thousand such 
nodes. A relatively recent development within QMRA has been the rise of Bayesian 
Belief Networks which do have a number of advantages over standard Monte Carlo 
modelling [5]. However, Bayesian Belief Networks can be very computationally 
intensive [5]. The integration of Bayesian Belief Networks with microsimulation 
models is likely to be so computationally intensive that results would not be 
generated within a reasonable time. Bayesian Belief Networks may also suffer from 
other issues especially when large number of variables are included in the model [5].    
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