Report FD 10/05

FSA PROJECT C01048

Determination of phthalates in foods and establishing methodology to distinguish their source

PROJECT INFORMATION

FD 10/05
E. L. Bradley
January 2012
Determination of phthalates in foods and establishing methodology to distinguish their source
Food Standards Agency Aviation House 125 Kingsway London WC2B 6NH
C01048
R6NN
FLN 8904
K. Bentayeb, M. Driffield, N. Harmer, I. Leon D. R. Speck, J. Ticha and E. L. Bradley
E. L. Bradley
 D. Mortimer (FSA) Fera Library

The Food and Environment Research Agency

Sand Hutton

York

YO41 1LZ

SUMMARY

This report describes the development and validation of methodology for the determination of 17 phthalate diesters (dimethyl phthalate (DMP), diethyl phthalate (DEP), diisopropyl phthalate (DiPP), diallyl phthalate (DAP), diisobutyl phthalate (DiBP), di-n-butyl phthalate (DBP), di-n-pentyl phthalate (DPP), di-n-hexyl phthalate (DHexP), benzyl butyl phthalate (BBP), dicyclohexyl phthalate (DCHP), di-(2ethylhexyl) phthalate (DEHP), di-n-heptyl phthalate (DHepP), di-n-octyl phthalate (DOP), n-octyl-n-decyl phthalate (ODP), diisononyl phthalate (DiNP), diisodecyl phthalate (DiDP) and di-n-decyl phthalate (DDP)), 9 phthalate monoesters (monoisopropyl phthalate, monoisobutyl phthalate, mono-n-butyl monobenzyl phthalate, monocyclohexyl phthalate, mono-n-pentyl phthalate, mono-2ethylhexyl phthalate, mono-n-octyl phthalate and monoisononyl phthalate), phthalac acid and total phthalates in foods. The methods have been validated in-house and their broad applicability demonstrated by the analysis of high fat, high carbohydrate and high protein foodstuffs as well as combinations of all three major food constituents.

The methods were used to analyse UK total diet study (TDS) samples. The TDS samples comprise twenty food groups: bread, fresh fruit, fruit products, dairy products, oils & fats, milk, nuts, beverages, meat products, offal, green vegetables, eggs, miscellaneous cereals, fish, sugar & preserves, canned vegetables, poultry, carcass meat, other vegetables, and potatoes. In total 119 sub-categories of food are combined into the 20 groups.

- Diethyl phthalate was present in one food group (cereal) at a concentration of 13 µg/kg.
- Benzyl butyl phthalate was present in one food group (bread) at a concentration of 8 μg/kg.
- Diisobutyl phthalate was present in four food groups (bread, oils & fats, nuts and cereal) at respective concentrations of 17, 41, 49 and 81 µg/kg.
- Di-n-butyl phthalate was present in seven food groups (bread, oils & fats, nuts, meat products, cereal, fish and carcass meat) at respective concentrations of 16, 16, 28, 15, 14, 9 and 6 µg/kg.
- Di-(2-ethylhexyl) phthalate was present in eleven food groups (bread, dairy, oils & fats, nuts, meat products, cereal, fish, sugar & preserves, poultry, carcass meat and other vegetables) at respective concentrations of 125, 141, 106, 112, 329, 104, 789, 115, 322, 90 and 35 μg/kg.

After DEHP, the most prevalent phthalate was phthalic acid itself which was present in 11 food groups (bread, oils & fats, milk, nuts, green vegetables, eggs, sugar & preserves., canned vegetables, carcass meat, other vegetables and potatoes) at 27, 36, 66, 100, 89, 35, 110, 84, 36, 99 and 84 µg/kg, respectively.

The finding that the two most abundant diesters were DBP and DEHP was also reflected in the results for monoesters. Low levels of mono-n-butyl phthalate (MBP) and mono-(2-ethylhexyl) phthalate (MEHP) were detected in several of the TDS animal-based food groups. If post mortem metabolism can be discounted, this indicates exposure of the growing animals to the parent phthalate diesters had occurred as well as any possible contribution from e.g. processing and packaging of the foodstuffs.

To follow-up the TDS work, two hundred and sixty one retail foodstuffs were analysed for fifteen of the phthalate diester compounds (DMP, DEP, DiPP, DAP, DiBP, DBP, DPP, DHexP, BBP, DCHP, DEHP, DOP, DiNP, DiDP and DDP). The samples were categorised by the Food Standards Agency broadly along the lines of the TDS samples

into categories of: bread products (8 samples), dairy products - including milk (15 samples), oils & fats (24 samples), meat and meat products - including poultry (69 samples), liver – of fish and meat (12 samples), eggs (7 samples), miscellaneous cereal products (26 samples), fish and fish products (74 samples), infant food (10 samples) and infant formula (16 samples).

Phthalate diesters were present in 77 samples. DEHP was the most frequently detected (66 samples) however the highest levels were for the isomeric mixture DiNP in some samples. The tables below give an overview of the incidence per food category as well as the concentrations detected. The data given in these tables are for confirmed residues only. A response was observed in the GC-MS chromatograms of other samples and/or for other phthalates not listed in the tables. However in those cases the confirmation criteria were not met and as such it could not be confirmed unequivocally that the response was due to the presence of a phthalate diester.

Of the samples tested 75% of the bread products contained one or more phthalate diester, 53% of the dairy products, 33% of the oils & fats samples, 29% of the meat and meat products, 50% of the miscellaneous cereal products, 23% of the fish and fish products, 20% of the infant food samples and 19% of the infant formula samples.

The tables for the retail samples also include the diester results for the corresponding TDS food groups. A very detailed comparison is not appropriate because the TDS samples are prepared (e.g. cooked) to make ready-to-eat whereas the retail samples were simply unpacked and analysed. Also, the TDS food groups are made up of individual samples (e.g. beef, lamb, pork etc into the carcass meat group) in strict proportion to their importance to the national diet whereas the retail sampling was more ad hoc. Nevertheless, it is noteworthy that, with a few individual exceptions such as for food groups where the incidence and the concentrations in retail samples were low and so the phthalate would be averaged to below the detection limit in the TDS composites), the same phthalates were found in the retail samples as were found in the TDS samples.

Additional work was carried out to determine the source of the phthalates found in a small number of packaged foodstuffs. Phthalates may be present in foods as a result of migration from food contact materials and articles. Studies carried out in this project confirmed that phthalates in foods could be derived from migration from this source.

Bread products (8 samples)

LIMS number	Sample description		alate itration /kg)
		DiBP	DEHP
S09-017242	Granary loaf	67	
S09-017259	White bread rolls	17	92
S09-017293	Wholemeal pitta		94
S09-017307	Brown bread		
S09-017346	Rye wholemeal bread	108	
S09-017347	Milk brioche rolls		
S09-017382	Organic wholemeal bread		59
S09-017389	Sliced white plain bread		115
	incidence	3	4
	mean of all positive samples	64	90
	mean of all samples (non-detects set to 0)	24	45

TDS Group Bread	17	125
Also: DBP (16); BBP (8)	17	120

Dairy products including milk (15 samples)

LIMC	Commission description	Phtha	late conce	entration (μg/kg)
LIMS number	Sample description	DEP	DiBP	DEHP	DiNP
S09-017245	Jersey milk			109	
S09-017246	British double cream			328	
S09-017250	Blue Stilton			496	3055
S09-017270	Cornish clotted cream		186	690	
S09-017271	Traditional Normandy camembert				
S09-017279	Fresh filtered whole milk				
S09-017280	Greek style natural probiotic yoghurt			78	
S09-017318	Lemon curd yogurt			102	
S09-017334	Grated Emmental	272		366	
S09-017348	Brie				
S09-017379	Extra thick real cream - UHT			222	
S09-017437	Organic whole milk				
S09-017454	Organic whole milk				
S09-017465	Welsh farm assured whole milk				
S09-017482	Whole milk				
	incidence	1	1	8	1
	mean of all positive samples	272	186	299	3055
	mean of all samples (non-detects set to 0)	18	12	159	204
	TDS Group Dairy		1	141	
	TDS Group Milk	-	-	-	- -

TDS Group Dairy	-	-	141	-
TDS Group Milk	-	-	-	-

Oils & fats (24 samples)

LIMO month on	Commission de coninties	P	hthalate o	oncentra	tion (µg/ko	g)
LIMS number	Sample description	DiBP	DBP	BBP	DEHP	DiNP
S09-017247	Lard		141		119	
S09-017269	Dairy butter				347	1500
S09-017272	Goose fat					
S09-017276	Organic extra virgin olive oil	49	57	2084	6447	
S09-017286	Olive pomace oil blend				434	
S09-017290	Unsalted butter				2592	
S09-017295	Grapeseed oil					
S09-017298	Vegetable fat spread				160	
S09-017315	Pure vegetable oil					
S09-017330	Refined vegetable fat					
S09-017343	Beef dripping					
S09-017357	Sunflower oil					
S09-017404	Toasted sesame oil					
S09-017413	Groundnut oil				240	
S09-017448	Lard					
S09-017459	Extra virgin olive oil					
S09-017462	Extra virgin olive oil					
S09-017463	Lard					
S09-017474	Salted butter					
S09-017477	Lard					
S09-017481	Farmhouse butter					
S09-017484	Blended olive pomace oil					
S09-017489	Olive pomace oil					
S09-017497	Butter ghee				960	
	incidence	1	2	1	8	1
	mean of all positive samples	49	99	2084	1412	1500
	mean of all samples (non-detects set to 0)	2	8	87	471	63
	TDS Group Oils & Fats	41	16	_	106	-

Meat and meat products including poultry (69 samples)

LIMS number	Sample description	Phthal	ate concer (µg/kg)	itration
		DBP	DEHP	DiNP
S09-017241	Breast of lamb			
S09-017248	British Wiltshire cured thick cut gammon steak			
S09-017249	Lasagne			
S09-017251	British lean beef steak mince		256	
S09-017261	Shin of beef			
S09-017263	Diced lamb			
S09-017264	Boneless chicken breasts			
S09-017278	Lasagne			
S09-017289	Rosemary & garlic lamb chipolatas		163	636
S09-017291	Large roast chicken - whole		197	
S09-017300	Neck cutlets			
S09-017301	Chicken thighs - bone-in / skin on		65	1820
S09-017302	Beef topside			
S09-017303	Pork chops - bone-in / skin on			
S09-017305	Welsh breakfast sausage		166	
S09-017311	Lamb mince		190	
S09-017312	Turkey breast roast			
S09-017317	Diced chicken			
S09-017320	Free range chicken		32	
S09-017321	Rolled pork shoulder joint			
S09-017322	Beer & treacle back bacon			
S09-017328	Lorne sausage		71	
S09-017329	Smoked ham shank		114	
S09-017332	Half spring chicken			
S09-017338	Halal lamb carcase pieces			
S09-017339	Fresh British pork leg joint			
S09-017349	Sirloin steaks			
S09-017350	Pork sausage			
S09-017351	Lamb loin chops			
S09-017359	Turkey breast steaks			
S09-017362	Cunmbrian lamb hotpot			
S09-017370	Belly of pork (rind on)			
S09-017374	Sausages			
S09-017375	Prime gammon joint - unsmoked			
S09-017377	Spare rib of pork joint			
S09-017386	Turkey		56	
S09-017387	Turkey breast butter basted		60	
S09-017390	Beef sausages			

Meat and meat products including poultry (continued)

LIMS number	Sample description	Phthala	ate concer (µg/kg)	ntration
		DBP	DEHP	DiNP
S09-017392	Garnished turkey drumsticks	33	204	
S09-017393	Eye roast joint			
S09-017394	Frying steak			
S09-017396	Boneless pork chops			
S09-017397	Boneless stuffed chicken			
S09-017399	Streaky bacon			
S09-017408	Halal bone-in chicken thigh pieces			
S09-017409	British pork mince		47	
S09-017410	Organic bone-in lamb shoulder roast		238	
S09-017426	Breaded chicken pieces		76	
S09-017433	Free range belly pork			
S09-017439	British turkey mince			
S09-017449	Pork sausages			
S09-017450	English minced lamb			
S09-017451	Turkey leg			
S09-017452	Boneless leg of pork			
S09-017457	Organic British free range chicken thigh fillets			
S09-017458	British turkey lean mince			
S09-017460	Classic pork sausage - 16			
S09-017461	New Zealand farm assured lamb mince			
S09-017464	Free range turkey breast mince		127	
S09-017470	Minced lamb			
S09-017471	Minced beef			
S09-017472	Boneless leg of pork		20	
S09-017473	Minced beef			
S09-017475	Newmarket sausage			
S09-017478	Free range chicken legs			
S09-017479	Turkey mince		142	
S09-017480	Boneless leg of pork			
S09-017494	Minced beef		74	
S09-017496	British turkey drumsticks		74	
	incidence	1	20	2
	mean of all positive samples	33	119	1228
	mean of all samples (non-detects set to 0)	0.5	34	36
	TDS Group Most products	6 15	90 329	-
	TDS Group Meat products TDS Group Poultry	10 -	329	-

Liver (of fish and meat species; 12 samples)

No phthalate diesters present. Also, no phthalate diesters in TDS Group Offal

Eggs (7 samples)

No phthalate diesters present. Also, no phthalate diesters in TDS Group Eggs

Miscellaneous cereal products (26 samples)

I IMC number	Samula description	Phtha	late conce	ntration	(µg/kg)
LIMS number	Sample description	DEP	DiBP	DBP	DEHP
S09-017252	Chocolate sponge sandwich				
S09-017255	Cornflakes				
S09-017258	Bourbon creams			60	
S09-017273	Ripple roll				
S09-017275	Ginger biscuits				110
S09-017282	Matzos				
S09-017283	Egg pasta lasagne		30		
S09-017292	Belgian biscuit collection				219
S09-017294	Wheat cereal				49
S09-017297	Lasagne				
S09-017306	Gingerbread ghosties				91
S09-017308	Farmhouse fruit cake		46		245
S09-017345	Microwaveable porage oats - syrup swirl				
S09-017352	Pecan & maple crisp			33	
S09-017353	De-luxe muesli		83		228
S09-017356	Cream crackers				
S09-017363	Rice cereal				
S09-017364	Angel slices				
S09-017366	Cookies				83
S09-017371	Iced fairy cakes				
S09-017380	Wheat cereal				
S09-017402	Raspberry and coconut cakes				365
S09-017407	Honey cereal				
S09-017415	Rye crispbread		38		
S09-017417	Iced cake	44			98
S09-017424	Fruity malt loaf - sliced				
	incidence	1	4	2	9
	mean of all positive samples	44	49	47	165
	mean of all samples (non-detects set to 0)	2	8	4	57
	TDS Group Misc. Cereals	13	81	14	104

Fish and fish products (74 samples)

I IMS number	Sample description	Phthalate conce		te concentration (µg/kg)	
LINS number	Sample description	DEP	DiBP	DEHP	DiNP
S09-017239	Scottish mussels in shell				
S09-017243	Sea bass fillets				
S09-017244	Salmon fillets				
S09-017260	Conger eel				
S09-017266	Red mullet				
S09-017267	Lemon sole				
S09-017268	Sprats				
S09-017277	Fish pie				
S09-017281	Jumbo salted cod cutlets				
S09-017284	Mackerel fillets in oil			85	
S09-017288	Organic cod fish fingers				
S09-017310	Wild local caught trout fillets				
S09-017313	Swordfish				
S09-017314	Fresh baby hake				
S09-017324	Dressed crab		62		
S09-017325	Sprats (large)			96	
S09-017326	Bloater				
S09-017327	Whole smoked eel				
S09-017333	Tilapia				
S09-017335	Fresh tuna				644
S09-017336	Salmon fillets				
S09-017340	Salmon in dill sauce - frozen steam meal				
S09-017342	Whitebait IQF				
S09-017354	Craster kipper fillets	340		271	11576
S09-017355	Salmon				
S09-017360	Wild Alaskan salmon fillets			314	
S09-017361	Fillets of anchovies				
S09-017372	Wild pink salmon				
S09-017373	Scottish smoked peppered mackerel				
S09-017376	Naturally smoked haddock fillets				
S09-017378	Smoked salmon slices			2176	
S09-017384	Wild Alaskan salmon fillets				
S09-017391	2 River cobbler fillets			49	
S09-017395	Herring fillets			69	
S09-017398	Trout fillet				
S09-017400	Organic Irish oak smoked salmon			850	
S09-017401	Traditionally smoked mackerel fillets				5303
S09-017405	South Pacific sardines in tomato sauce			81	
S09-017420	Halibut				
S09-017421	Trout				

Fish and fish products (continued)

I IMC number	Comple description	Phthalate concentration (µg/kg)		µg/kg)	
LIMS number	Sample description	DEP	DiBP	DEHP	DiNP
S09-017422	Whitebait				
S09-017423	Trout				
S09-017427	Salmon en croute			204	
S09-017434	Yellowfin tuna				
S09-017435	Mackerel fillets				
S09-017436	Mackerel				
S09-017438	Sardines				
S09-017441	Dressed crab				
S09-017442	Kipper fillets				
S09-017443	Sea bream				
S09-017444	Herrings				
S09-017445	Red sea bream				
S09-017446	Farmed sea bass				
S09-017447	Mackerel				
S09-017453	Whole herring				
S09-017455	Sardines				
S09-017456	Whole kippers			97	
S09-017466	Dressed crab		18		
S09-017467	Mackerel				
S09-017468	IQF whitebait				
S09-017469	Whitebait				
S09-017476	Farmed sea bass fillets				
S09-017483	Fresh sardines				
S09-017485	Salmon steaks				
S09-017486	Sardines – fresh				
S09-017487	Smoked mackerel				
S09-017488	Sardines				
S09-017490	Smoked salmon				
S09-017491	Hebridean white crab meat		1		
S09-017492	Salmon			45	
S09-017493	Smoked mackerel				
S09-017495	Smoked salmon			52	1999
S09-017498	Wild salmon steaks				
S09-017499	Wild Solway salmon		1		
	incidence	1	2	13	4
	mean of all positive samples	340	40	338	4881
	mean of all samples (non-detects set to 0)	5	1	59	264
	TDS Group Fish Also: DBP (9)	-	-	789	-

Infant food (10 samples)

LIMS number	Sample description	Phthalate concentration (µg/kg) DEHP
S09-017254	Fisherman's bake	
S09-017257	Apple, peach & mango fruit pots	
S09-017274	Rice pudding	57
S09-017287	Lasagne	
S09-017367	Cauliflower & broccoli cheese	59
S09-017411	Organic beef stew with potatoes	
S09-017412	Strawberry dairy dessert	
S09-017416	Organic gingerbread men	
S09-017419	Cottage pie	
S09-017431	Biscotti	
	incidence	2
	mean of all positive samples	58
	mean of all samples (non-detects set to 0)	12

No corresponding TDS Group	
----------------------------	--

Infant formula (16 samples)

LIMS number	Sample description	Phthalate concentration (µg/kg)	
		DiBP	DEHP
S09-017256	Infant milk - ready to use		
S09-017285	Infant milk - ready to use		
S09-017296	Organic follow-on milk - ready to use		
S09-017316	Infant milk - ready to use		
S09-017331	Infant milk - formula	13	
S09-017365	Growing up milk for toddlers - ready to use		
S09-017381	Infant milk - formula		
S09-017383	Goat milk nutrition - formula		96
S09-017385	Soya infant formula		
S09-017403	Soya infant formula		
S09-017406	Infant milk - formula		
S09-017414	Infant milk - formula		
S09-017418	Organic infant milk - formula		125
S09-017425	Follow-on milk - ready to use		
S09-017429	Follow-on milk - ready to use		
S09-017430	Infant milk - formula		
	incidence	1	2
	mean of all positive samples	13	111
	mean of all samples (non-detects set to 0)	1	14

No corresponding TDS Group	

Table o	f Contents	Page No.
1.	INTRODUCTION	25
1.1	Background	25
1.2	Analysis of phthalates	25
1.2.1	Phthalate diesters	25
1.2.2	Phthalate monoesters	26
1.2.3	Total phthalate determination	26
1.3	Occurrence in foodstuffs	26
1.4	Sources of phthalate contamination	26
2.	AIMS	27
3.	PROJECT OBJECTIVES	27
4.	METHOD DEVELOPMENT AND IN-HOUSE VALIDATION	28
4.1	Analytes	28
4.2	Method development and validation – phthalate diesters	28
4.2.1	Sample extraction	28
4.2.2	Analysis	29
4.2.3	Minimising background levels of phthalate diesters	29
4.2.4	Validation of the methodology for foodstuffs	30
4.2.4.1	Limit of detection and limit of quantification	30
4.2.4.2	Linearity of the method	30
4.2.4.3	Repeatability and reproducibility	31
4.2.4.4	Recovery	31
4.3	Method development and validation – phthalate monoesters	31
4.3.1	Sample extraction	31
4.3.2	Analysis	31
4.3.3	Validation of the methodology for foodstuffs	32
4.3.3.1	Limit of detection and limit of quantification	32
4.3.3.2	Linearity of the method	32
4.3.3.3	Repeatability and reproducibility	32
4.3.3.4	Recovery	33
4.4	Method development and validation – phthalic acid	33
4.4.1	Sample extraction	33
4.4.2	Analysis	33
4.4.3	Validation of the methodology for foodstuffs	33
4.4.3.1	Limits of detection and quantification	33
4.4.3.2	Linearity of the method	34
4.4.3.3	Repeatability and reproducibility	34

Table of Contents		Page No.
4.4.3.4	Recovery	34
4.5	Method development and validation – total phthalates	34
4.5.1	Sample extraction	34
4.5.2	Analysis	34
4.5.3	Validation of the methodology for foodstuffs	35
4.5.3.1	Limits of detection and quantification	35
4.5.3.2	Linearity of the method	35
4.5.3.3	Repeatability and reproducibility	35
4.5.3.4	Recovery	35
5.	TDS SAMPLE ANALYSIS	36
5.1	Samples	36
5.2	Analysis	36
5.3	Results	36
5.3.1	Phthalate diesters	36
5.3.2	Phthalate monoesters	37
5.3.3	Phthalic acid	37
5.3.4	Total phthalates	38
6.	PHTHALATE SOURCE STUDIES	38
6.1	Sample details	39
6.2	Extraction and analysis	39
6.2.1	Gaskets	39
6.2.2	Packaging	40
6.2.3	Foodstuffs	40
6.3	Results	41
6.3.1	Phthalate diesters in gaskets and other packaging materials	41
6.3.2	Phthalate diesters in foods	41
7.	PHTHALATE DIESTERS IN RETAIL FOODSTUFFS	41
7.1	Samples	42
7.2	Extraction and analysis	42
7.3	Results	42
8.	DISCUSSION	42
9.	REFERENCES	43
ANNEX	1	273
ANNEX	2	283
ANNEX	3	291
ANNEX	4	298

List of Figures	Page No.
Figure 1. Dimethyl phthalate in the procedural blank	45
Figure 2. Diethyl phthalate in the procedural blank	46
Figure 3. Diisopropyl phthalate in the procedural blank	47
Figure 4. Diallyl phthalate in the procedural blank	48
Figure 5. Diisobutyl phthalate in the procedural blank	49
Figure 6. Dibutyl phthalate in the procedural blank	50
Figure 7. Dipentyl phthalate in the procedural blank	51
Figure 8. Di-n-hexyl phthalate in the procedural blank	52
Figure 9. Benzyl butyl phthalate in the procedural blank	53
Figure 10. Dicyclohexyl phthalate in the procedural blank	54
Figure 11. Di-(2-ethylhexyl) phthalate in the procedural blank	55
Figure 12. Di-n-heptyl phthalate in the procedural blank	56
Figure 13. Di-n-octyl phthalate in the procedural blank	57
Figure 14. n-Octyl-n-decyl phthalate in the procedural blank	58
Figure 15. Diisononyl phthalate in the procedural blank	59
Figure 16. Diisodecyl phthalate in the procedural blank	61
Figure 17. Di-n-decyl phthalate in the procedural blank	63
Figure 18. Dimethyl phthalate spiked into foods at the target LOQ	64
Figure 19. Diethyl phthalate spiked into foods at the target LOQ	67
Figure 20. Diisopropyl phthalate spiked into foods at the target LOQ	70
Figure 21. Diallyl phthalate spiked into foods at the target LOQ	73
Figure 22. Dibutyl and diisobutyl phthalate spiked into foods at the target LC	OQ 76
Figure 23. Dipentyl phthalate spiked into foods at the target LOQ	79
Figure 24. Di-n-hexyl phthalate spiked into foods at the target LOQ	82
Figure 25. Benzyl butyl phthalate spiked into foods at the target LOQ	85
Figure 26. Dicyclohexyl phthalate spiked into foods at the target LOQ	88
Figure 27. Di-(2-ethylhexyl) phthalate spiked into foods at the target LOQ	91
Figure 28. Di-n-heptyl phthalate spiked into foods at the target LOQ	94
Figure 29. Di-n-octyl phthalate spiked into foods at the target LOQ	97
Figure 30. n-Octyl-n-decyl phthalate spiked into foods at the target LOQ	100
Figure 31. Diisononyl phthalate spiked into foods at the target LOQ	103
Figure 32. Diisodecyl phthalate spiked into foods at the target LOQ	108
Figure 33. Di-n-decyl phthalate spiked into foods at the target LOQ	113
Figure 34. Calibration graph for dimethyl phthalate in acetonitrile	116
Figure 35 Calibration graph for diethyl phthalate in acetonitrile	116

List of Fig	ures	Page No.
Figure 36.	Calibration graph for diisopropyl phthalate in acetonitrile	117
Figure 37.	Calibration graph for diallyl phthalate in acetonitrile	117
Figure 38.	Calibration graph for diisobutyl phthalate in acetonitrile	118
Figure 39.	Calibration graph for dibutyl phthalate in acetonitrile	118
Figure 40.	Calibration graph for dipentyl phthalate in acetonitrile	119
•	Calibration graph for di-n-hexyl phthalate in acetonitrile tion corrected to 17% of the total mass – see text)	119
Figure 42.	Calibration graph for benzyl butyl phthalate in acetonitrile	120
Figure 43.	Calibration graph for dicyclohexyl phthalate in acetonitrile	120
Figure 44.	Calibration graph for di-(2-ethylhexyl) phthalate in acetonitrile	121
Figure 45.	Calibration graph for di-n-heptyl phthalate in acetonitrile	121
Figure 46.	Calibration graph for di-n-octyl phthalate in acetonitrile	122
Figure 47.	Calibration graph for n-octyl-n-decyl phthalate in acetonitrile	122
Figure 48.	Calibration graph for diisononyl phthalate in acetonitrile	123
Figure 49.	Calibration graph for diisodecyl phthalate in acetonitrile	123
Figure 50.	Calibration graph for di-n-decyl phthalate in acetonitrile	124
Figure 51.	Monoisopropyl phthalate spiked into foods at the target LOQ	125
•	Total monoisobutyl phthalate and mono-n-butyl phthalate foods at the target LOQ	128
Figure 53.	Mono-n-butyl phthalate spiked into foods at the target LOQ	131
Figure 54.	Monobenzyl phthalate spiked into foods at the target LOQ	134
Figure 55.	Monocyclohexyl phthalate spiked into foods at the target LOQ	137
Figure 56.	Mono-n-pentyl phthalate spiked into foods at the target LOQ	140
Figure 57.	Mono-2-ethylhexyl phthalate spiked into foods at the target LOQ	143
Figure 58.	Mono-n-octyl phthalate spiked into foods at the target LOQ	146
Figure 59.	Monoisononyl phthalate spiked into foods at the target LOQ	149
Figure 60.	Calibration graph for monoisopropyl phthalate in acetonitrile	152
•	Calibration graph for total monoisobutyl phthalate and ityl phthalate in acetonitrile	152
Figure 62.	Calibration graph for mono-n-butyl phthalate in acetonitrile	153
Figure 63.	Calibration graph for monobenzyl phthalate in acetonitrile	153
Figure 64.	Calibration graph for monocyclohexyl phthalate in acetonitrile	154
Figure 65.	Calibration graph for mono-n-pentyl phthalate in acetonitrile	154
Figure 66.	Calibration graph for mono-(2-ethylhexyl) phthalate in acetonitrile	155
Figure 67.	Calibration graph for mono-n-octyl phthalate in acetonitrile	155
Figure 68.	Calibration graph for monoisononyl phthalate in acetonitrile	156

List of Figures	Page No.
Figure 69. Phthalic acid spiked into foods at the target LOQ	157
Figure 70. Calibration graph for phthalic acid in acetonitrile	160
Figure 71. GC-MS selected ion chromatogram for dimethyl phthalate	161
Figure 72. Calibration graph for dimethyl phthalate in acetonitrile	164
Figure 73. Diisobutyl phthalate concentrations in the lasagne sheets taken at different distances from the packaging	164

List of Tables	Page No.
Table 1. Phthalate diester - ions monitored	165
Table 2. Limits of detection and quantification of the phthalate diesters in the three food matrices tested	166
Table 3. Repeatability and reproducibility data – dimethyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg	167
Table 4. Repeatability and reproducibility data – diethyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg	168
Table 5. Repeatability and reproducibility data – diisopropyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg	169
Table 6. Repeatability and reproducibility data - diallyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg	170
Table 7. Repeatability and reproducibility data – diisobutyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 µg/kg	171
Table 8. Repeatability and reproducibility data – di-n-butyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg	172
Table 9. Repeatability and reproducibility data - dipentyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg	173
Table 10. Repeatability and reproducibility data – di-n-hexyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg	174
Table 11. Repeatability and reproducibility data – benzyl butyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg	175
Table 12. Repeatability and reproducibility data - dicyclohexyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 µg/kg	176
Table 13. Repeatability and reproducibility data – di-(2-ethylhexyl) phthalated Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μ g/kg	e: 177
Table 14. Repeatability and reproducibility data - di-n-heptyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg	178
Table 15. Repeatability and reproducibility data – di-n-octyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg	179
Table 16. Repeatability and reproducibility data – n-octyl-n-decyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 $\mu g/kg$	180

List of Tables	Page No.
Table 17. Repeatability and reproducibility data – diisononyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 1 and 5 mg/kg	181
Table 18. Repeatability and reproducibility data – diisodecyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 1 and 5 mg/kg	182
Table 19. Repeatability and reproducibility data – di-n-decyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 µg/kg	183
Table 20. Monophthalate esters - transitions and collision energies	184
Table 21. Limits of detection and quantification of the phthalate monoesters in the three food matrices tested	185
Table 22. Repeatability and reproducibility data – monoisopropyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 μg/kg	186
Table 23. Repeatability and reproducibility data – monoisobutyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 µg/kg	187
Table 24. Repeatability and reproducibility data – mono-n-butyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 µg/kg	188
Table 25. Repeatability and reproducibility data – monobenzyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 µg/kg	189
Table 26. Repeatability and reproducibility data – monocyclohexyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 μg/kg	190
Table 27. Repeatability and reproducibility data – mono-n-pentyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 μg/kg	191
Table 28. Repeatability and reproducibility data – mono-2-ethylhexyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 µg/kg	192
Table 29. Repeatability and reproducibility data – mono-n-octyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 µg/kg	193
Table 30. Repeatability and reproducibility data – monoisononyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 µg/kg	194
Table 31. Repeatability and reproducibility data – phthalic acid. Concentration determined in the three selected foodstuffs spiked at a nominal concentration of 50 μg/kg	195
Table 32. Limits of detection and quantification of the dimethyl phthalate in the three food matrices tested	196

LIST OF TABLES	Page No
Table 33. Repeatability and reproducibility data – Determined concentration of dimethyl phthalate in the three selected foodstuffs spiked at nominal concentrations of 420 $\mu g/kg$	196
Table 34. Sample details for the 20 TDS samples	197
Table 35. Phthalate diester concentrations measured in the 20 TDS samples	198
Table 36. Phthalate monoester concentrations measured in the 20 TDS samples	204
Table 37. Sample details and phthalic acid concentrations measured in the 20 TDS samples	207
Table 38. Sample details and phthalic acid concentrations measured in the 20 TDS samples	208
Table 39. Sample details – phthalate source studies	209
Table 40. Concentrations of the phthalates detected in the gaskets and packaging materials	211
Table 41. Calculated concentrations in the foods assuming 100% transfer from the gaskets and packaging materials	212
Table 42. Measured diisobutyl phthalate concentrations in the lasagne sheet taken at different distances from the packaging	s 212
Table 43. Retail food sample details	213
Table 44. Retail food sample results	220

ABBREVIATIONS

BBP Benzyl butyl phthalate

DAP Diallyl phthalate

DBP Di-n-butyl phthalate

DCHP Dicyclohexyl phthalate

DDP Di-n-decyl phthalate

DEHP Di-(2-ethylhexyl) phthalate

DEP Diethyl phthalate

DHepP Di-n-heptyl phthalate DHexP Di-n-hexyl phthalate **DiBP** Diisobutyl phthalate DiDP Diisodecyl phthalate **DINP** Diisononyl phthalate DiPP Diisopropyl phthalate DMP Dimethyl phthalate DOP Di-n-octyl phthalate DPP Di-n-pentyl phthalate

EFSA European Food Safety Authority

FSA Food Standards Agency
GC Gas chromatography
LC Liquid chromatography

LOD Limit of detection

LOQ Limit of quantification

MBnzP Monobenzyl phthalate

MBP Mono-n-butyl phthalate

MCHP Monocyclohexyl phthalate

MEHP Mono-2-ethylhexyl phthalate

MiBP Monoisobutyl phthalate
MiNP Monoisononyl phthalate
MiPP Monoisopropyl phthalate
MOP Mono-n-octyl phthalate
MPP Mono-n-pentyl phthalate

MS Mass spectrometry

ODP n-Octyl-n-decyl phthalate

RASFF Rapid alert system for food and feed

SOP Standard operating procedure

TDI Tolerable daily intake

ABBREVIATIONS

TDS Total diet study

WHO World Health Organisation

1. INTRODUCTION

1.1 Background

Phthalates are a group of compounds produced in large volumes that are widely used as additives in plastics and consumer products [1]. Although it has been reported that they are no longer used in plastic food packaging [2] in 2009 there were thirteen notifications issued through the EU rapid alert system for food and feed (RASFF) [3] several of which reported the migration of phthalates from lids used to seal glass jars. Phthalates may also be used in adhesives or inks applied to such materials.

The annual production of phthalates was estimated by the World Health Organisation (WHO) to approach 8 million tonnes in 1991 [4]. They are ubiquitous in the environment and have been detected in environmental samples including rain water, water, soil and sediments, indoor air/dust and aquatic systems [5]. Hubert *et al.* estimated the release of di-(2-ethylhexyl) phthalate (DEHP) to the environment to be about 1.8% of the annual production [6]. Phthalates have also been detected in foods [7-11], in particular fatty foods, and phthalate metabolites have been observed in breast milk [12] and urine [13].

There is a large volume of literature on the toxicology of phthalates. The European Food Safety Authority (EFSA) has issued opinions on several phthalates in recent years and has revised the Tolerable Daily Intake values (TDIs) for some. New restrictions for the use of these phthalates in food contact plastics have been accepted and have been included in Directive 2007/19/EC, the 4th amendment to Directive 2002/72/EC. These restrictions relate specifically to migration from food contact materials but do not take into account any contribution from any environmental sources. Given that the potential for contamination of phthalates from environmental sources exists, the European Commission expressed an interest in controlling phthalates under the Contaminants in Foods Regulations.

The toxicity of the phthalate diesters has recently been described in a background paper for discussion within the UK Food Standards Agency Committee on Toxicology [14].

The metabolites of some phthalates are also suspected of producing teratogenic and endocrine-disrupting effects and studies have shown that di-n-butyl phthalate (DBP) and DEHP were metabolised to bioactive phthalate monoesters [15-17]. Moreover, monobutyl phthalate (MBP) and monoethylhexyl phthalate (MEHP) have been detected in consumer milk and infant formula in the ranges 0.6-3.9 μ g/L (MBP) and 5.6-9.9 μ g/L (MEHP) which suggests that the cows producing these products have been exposed to phthalates themselves [18]. Animal origin food is likely to contain these compounds and, therefore, a suitable analytical method is needed to determine them in food. The phthalate metabolites have been determined in humans for assessing exposure to phthalate diesters. The main matrix studied is urine [13, 19-22] but determination of monophthalates has also been carried out in serum or breast milk [12, 18, 23].

1.2 Analysis of phthalates

1.2.1 Phthalate diesters

Several analytical methods have been reported for the determination of these substances in foodstuffs and these have utilised both gas chromatograpy-mass spectrometry (GC-MS) and liquid chromatography- mass spectrometry/mass spectrometry (LC-MS/MS) analysis to quantify the levels present. The available methods were summarised in an EU report published in 2009 (EUR 23682 EN – 2009) [24]. Although both analytical methods provide good detection limits – literature data

gives values of < 10 μ g/kg, phthalates are ubiquitous and therefore elimination of all background traces during the analytical procedure is not possible. As a result reporting limits are higher than the detection limits quoted and are dependent on the measures taken to minimise background contamination.

1.2.2 Phthalate monoesters

The methods applied for the determination of phthalate monoesters usually entail solvent extraction, SPE clean-up and determination by LC-MS. Most of the methods reported are for the determination of these substances in biological matrices where the monoesters have been used as biomarkers to phthalate exposure. Methodology for the determination of phthalate monoesters in milk have been reported [18] but not for other foodstuffs.

1.2.3 Total phthalate determination

By converting all phthalates (including metabolites) to dimethyl phthalate the total phthalate concentration in a foodstuff can be determined. Methodology for the determination of the total phthalate concentration in foodstuffs has been described previously [e.g. 7-8].

1.3 Occurrence in foodstuffs

There have been few surveys to determine phthalate levels in foods. The last one in the UK, to determine these substances in infant formula, was reported almost 10 years ago. The majority of work in Europe has been carried out by the UK [7-9] and Danish authorities [10-11]. Up-to-date data on the levels of these substances in the UK diet is required to allow the overall dietary exposure of the UK population to be determined.

1.4 Sources of phthalate contamination

In the mid to late 1990s, three surveys were carried out at CSL, funded by MAFF, to determine the concentrations of phthalates in infant formula and foodstuffs [7-9]. A fourth survey [25], also conducted by CSL, measured the levels of selected phthalates in paper and board packaging materials. The foodstuffs in contact with the paper and board samples found to contain the highest levels of phthalates were also analysed. The concentrations of the phthalates in some foods were greater than the worst case migration (i.e. even if all of the phthalates detected in the packaging had transferred to the food they would not account for the levels detected). The rate of transfer from the packaging to the food would have been expected to be similar for the two phthalates measured (DBP and DEHP). This was not the case for many samples. Finally when the phthalate concentrations at the surface of the foodstuff were compared with those at the core they were similar in approximately half of the samples analysed. If the source of these substances was the packaging then a concentration gradient would be expected to be observed with higher levels at the surface of the foodstuff. This distribution of migrants within foods has been demonstrated within the EU project FOODMIGROSURE [26]. A concentration profile (highest in the layer of food in direct contact with the packaging) was obtained for all but the most volatile substances where migration can occur through the gas phase. Therefore questions were raised following this study [25] as to whether or not the phthalates detected were present as a consequence of migration from the food contact materials and articles or if they would have been present at the same levels even if the foodstuff had not been packaged, i.e. from some other source of contamination.

2. AIMS

The aims of this project were to provide data on the exposure of the UK population to phthalates, firstly through the analysis of the UK total diet study (TDS) samples and secondly through the analysis of unpackaged and packaged foodstuffs. TDSs are an important part of the Food Standards Agency's (FSA) surveillance programme for chemicals in food. TDS samples have been collected on an annual basis since 1966 (by JFSSG and MAFF prior to the establishment of the FSA). Results from TDSs are used to estimate dietary exposures of the general UK population to chemicals in food, such as nutrients and contaminants, to identify trends in exposure and to make assessments on the safety and nutritional quality of the food supply. The TDS samples comprise twenty food groups. In total 119 sub-categories of food are combined into the 20 groups. The relative proportion of each food category within a group reflects its importance in the average UK household diet and is based on an average of three previous years of consumption data from the National Food Survey. Foods are grouped so that commodities known to be susceptible to contamination (e.g. offals, fish) are kept separate, as are foods which are consumed in large quantities (e.g. bread, potatoes, milk).

In addition to the determination of the exposure of the UK population to these chemicals, this project aimed to establish the source of these substances in foodstuffs.

3. PROJECT OBJECTIVES

The project objectives defined in the scope of work were:

Objective 01. Method development and in-house validation

Objective 02. TDS sample receipt, logging and storage

Objective 03. Analysis of 20 TDS samples for phthalates

Objective 04. Screening of the empty TDS containers for phthalates

Objective 05. Interim report describing the results of the analysis of the 20 TDS

samples and containers

Objective 06. Establishing methods to differentiate between environmental sources

of phthalates and contamination arising as a result of migration from

food contact materials

Objective 07. Interim report describing the results of the investigation into the

applicability of the proposed methods to determine the likely

source(s) of phthalates in foods

Objective 08. Perform a satisfactory sample check exercise

Objective 09. Sample receipt, logging and storage

Objective 10. Analysis of retail food samples

Objective 11. Interim spreadsheets

Objective 12. Final report

4. METHOD DEVELOPMENT AND IN-HOUSE VALIDATION

Methodologies for the determination of phthalate diesters, phthalate monoesters, phthalic acid and total phthalates in foodstuffs were developed.

4.1 Analytes

Based on information provided by the Food Standards Agency and reported concentrations of phthalate diesters in foodstuffs the following analytes were selected:

- Dimethyl phthalate (DMP)
- Diethyl phthalate (DEP)
- Diisopropyl phthalate (DiPP)
- Diallyl phthalate (DAP)
- Diisobutyl phthalate (DiBP)
- Di-n-butyl phthalate (DBP)
- Di-n-pentyl phthalate (DPP)
- Di-n-hexyl phthalate (DHexP)
- Benzyl butyl phthalate (BBP)
- Dicyclohexyl phthalate (DCHP)
- Di-(2-ethylhexyl) phthalate (DEHP)
- Di-n-heptyl phthalate (DHepP)
- Di-n-octyl phthalate (DOP)
- n-Octyl-n-decyl phthalate (ODP)
- Diisononyl phthalate (DiNP)
- Diisodecyl phthalate (DiDP)
- Di-n-decyl phthalate (DDP)

The monoesters selected were those that could be purchased commercially:

- Monoisopropyl phthalate (MiPP)
- Monoisobutyl phthalate (MiBP)
- Mono-n-butyl phthalate (MBP)
- Monobenzyl phthalate (MBnzP)
- Monocyclohexyl phthalate (MCHP)
- Mono-n-pentyl phthalate (MPP)
- Mono-2-ethylhexyl phthalate (MEHP)
- Mono-n-octyl phthalate (MOP)
- Monoisononyl phthalate (MiNP)

Phthalic acid was also included.

4.2 Method development and validation – phthalate diesters

4.2.1 Sample extraction

The extraction protocol was optimised to allow all seventeen phthalate diesters to be analysed in the same method. Despite the differences in size and polarity this was achieved using a mixture of acetonitrile and dichloromethane as the extraction solvent, evaporation to dryness and reconstitution in acetonitrile (to remove any traces of fat remaining in the extract). Care had to be exercised in the concentration step to ensure that the smaller, more volatile phthalates were not lost. Further clean-up steps were

avoided due to risk of contamination of the sample with those ubiquitous phthalates (see Section 3.1.3).

4.2.2 Analysis

Both GC-MS and LC-MS/MS methods have been described for the determination of phthalate diesters [24]. GC-MS was chosen here. Chromatographic conditions were optimised to provide a single multi-analyte method of analysis. Stock solutions of each analyte and internal standard prepared at a concentration of 1 mg/ml were analysed with the mass spectrometer operated in full scan mode monitoring from 40 to 450 amu. The retention times of each analyte and the masses to analyse were selected from the analysis of these solutions (Table 1). Deuterated internal standards were used.

Analysis of the n-octyl-n-decyl phthalate revealed three peaks in the total ion chromatogram. These were identified (from their retention times and full scan mass spectra) as di-n-octyl phthalate, n-octyl-n-decyl phthalate and di-n-decyl phthalate. The percentage of the response derived from the n-octyl-n-decyl phthalate was calculated to be 58%. This was subsequently taken into account when determining the performance characteristics for these analytes.

4.2.3 Minimising background levels of phthalate diesters

The problems associated with the analysis of phthalates are well known. In particular analytical background levels of those phthalates that are ubiquitous need to be minimised. The measures taken included:

- A laboratory was dedicated to the analysis of all samples (away from where the analytical standards were prepared and from where the control sample spiking was carried out).
- All solvents were screened for phthalates prior to analysis and the 'cleanest'
 ones used throughout the study. Further clean up of the solvents used was
 performed by the addition of muffled aluminium oxide to the solvent bottles for
 at least 24 hours prior to use.
- All glassware was solvent rinsed and/or baked prior to use.
- PTFE vial septa were used throughout.
- A Merlin Microseal GC injector was used.
- A GC-MS instrument was dedicated to this analysis.

To establish the background levels procedural blank samples were taken through the analytical method. The SIM chromatograms obtained from the analysis of the procedural blank samples and the procedural blank samples overspiked with each phthalate diester at a nominal concentration of 0.05 mg/kg are shown in Figures 1 to 17. All measured ions are provided to detect any interferences in any of the channels of interest derived from the extraction procedure.

Low responses were observed in the m/z 149 channel for DiBP and DBP and for the m/z 149 and 167 channels for DEHP. The peak area ratios for the procedural blank samples were compared with the same samples overspiked at a nominal concentration equivalent to 0.05 mg/kg in the foodstuff. This data confirmed that the background contamination derived from the analytical procedure was < 1 μ g/kg for the DiBP and DBP. DEHP could not be separated from DHepP in the chromatograms and therefore quantification uses the m/z 279 ion which is unique to this phthalate. No background response was detected for this concentration in the m/z 279 channel.

4.2.4 Validation of the methodology for foodstuffs

In order to demonstrate that the method developed was suitable for phthalate diester determination in a wide range of foodstuffs then the method performance characteristics (limit of detection and limit of quantification, linearity of the analysis, repeatability, in-house reproducibility and recovery) were derived. The performance of the method was assessed by the analysis of three foods (cheese – high fat, orange juice – high carbohydrate and pork mince – high protein) spiked with all 17 phthalate diesters.

4.2.4.1 Limit of detection and limit of quantification

The target LOQ (10x the signal:noise ratio) was set as 0.05 mg/kg for each of the single phthalates and 1 mg/kg for the isomeric mixes (DiNP and DiDP). Figures 18 to 33 show the SIM chromatograms (only the ion selected for quantification is shown) obtained when the three foods were analysed after spiking with the analytes at these target LOQ values.

Where no response was observed in the blank (unspiked) foodstuff then the LOD and LOQ in the foodstuff were calculated as 3 and 10 x the signal:noise ratio respectively.

Where a response was observed at the retention time of the analyte of interest in the blank (unspiked) foodstuff this approach was not applicable. In these cases the LOD and LOQ were calculated as 3 and 10 x the signal:noise ratio obtained from the procedural blank and overspiked samples. These are likely to be underestimations of the detection limits when the foodstuff is present to affect the partitioning.

Where a response was observed at the retention time of the analyte of interest in the blank (unspiked) foodstuff and in the procedural blank (i.e. DiBP and DBP) the LOD and LOQ were calculated as 3 and 10 x the concentration detected in the procedural blank samples.

The LODs and LOQs determined are given in Table 2.

The target LOQ was met for DMP, DEP, DiPP, DAP, DiBP, DPP, DHexP, BBP, DCHP, DEHP, DHepP, DOP, ODP and DDP in all three food matrices.

DHepP and DEHP could not be resolved using the GC column and temperature programme described. As a result the ions that were unique to these two analytes were used for quantification purposes. These ions give a much lower response than the m/z 149 ion and as a result the LOD and LOQ are lower but are still less than the target LOQ.

The target LOD and LOQ was not met for DiNP and DiDP in the high fat foodstuff (cheese). DiNP and DiDP are highly fat soluble and therefore are not readily extracted from the cheese. Here even the high concentration spiked (1 mg/kg) was not detected. Although LC-MS/MS analysis may be expected to improve the sensitivity of the analysis this approach will not allow us to compare isomeric profiles as effectively as by GC-MS as is required for the investigations into the source(s) of the phthalates in the foods. Therefore this higher LOD/LOQ was considered acceptable for the purpose of this study.

4.2.4.2 Linearity of the method

The calibration was linear for DMP, DEP, DiPP, DAP, DiBP, DBP, DPP, DHexP, BBP, DCHP, DEHP, DHepP, DOP, ODP and DDP at concentrations equivalent to 0 to 0.5 mg/kg in the foodstuff and for DiNP and DiDP at concentrations equivalent to 0 to 6.5 mg/kg in the foodstuff using calibration standards prepared by two analysts on

different days. The data generated by the two analysts is combined in the calibration graphs shown in Figures 34 to 50. The correlation coefficients (r²) were better than 0.99 in all cases.

4.2.4.3 Repeatability and reproducibility

The repeatability of the analysis of the phthalate diesters was determined in the three selected food matrices. The foods were spiked at nominal concentrations of 0.05 and 0.3 mg/kg for DMP, DEP, DiPP, DAP, DiBP, DPP, DHexP, BBP, DCHP, DEHP, DHepP, DOP, ODP and DDP and at nominal concentrations of 1 and 5 mg/kg for diisononyl phthalate and diisodecyl phthalate. The results obtained are summarised in Tables 3 to 19. The concentrations reported have been normalised to the actual spiking levels for clarity. The repeatability was acceptable for all analytes spiked at these levels with the concentrations detected in the spiked samples giving relative standard deviations of < 20%.

When determining the repeatability, the phthalate concentrations in the unspiked food were not determined and therefore the replicate results for Analyst 1 in Tables 3 to 19 have not been corrected for any background levels present in the foodstuffs.

The average concentrations detected in the spiked foods in analysis 1 (n = 8) and analysis 2 (n = 3) showed good agreement (reproducibility). With the exception of the DEHP, where different batches of the foods were used containing different background levels (as mentioned above, the concentrations measured in the repeatability samples have not been corrected for the background levels) the values were within 30% of one another.

4.2.4.4 Recovery

The analytical recoveries relative to the solvent calibration standards are shown in Tables 3 to 19 for each matrix. Recoveries were analyte and food matrix specific and therefore overspiking and recovery correction is required for the quantification of the phthalate diesters in foods.

The resulting standard operating procedure (SOP) is provided as Annex 1.

4.3 Method development and validation – phthalate monoesters

4.3.1 Sample extraction

The extraction protocol was optimised to allow all nine phthalate monoesters to be analysed in the same method. Samples were extracted with acidified acetonitrile:dichloromethane (1:1) and concentrated/cleaned-up prior to analysis.

4.3.2 Analysis

LC-MS/MS was used as the phthalate monoesters are polar compounds and are therefore more amenable to this technique. Chromatographic conditions were optimised to provide a single multi-analyte method of analysis. Labelled internal standards were used. Individual stock solutions of each analyte and each internal standard were prepared at a concentration of 10 µg/mL and were infused into the mass spectrometer in full scan mode to determine parent ion m/z values. The mass spectrometer was then used in MS/MS mode to determine and optimise MRM transitions. For each monoester the channel with the largest response was used as

the quantification channel and the second largest was selected for confirmation. Individual stock solutions at a concentration of 1 μ g/mL were then injected into the LC-MS/MS to determine individual retention times. For each analyte the selected transitions and cone voltages are shown in Table 20. The MiBP and MBP co-eluted in the chromatogram. One transition was identified that was specific to MBP and therefore to quantify the concentration of MBP derived from this response was subtracted from the concentration derived from the combined response.

4.3.3 Validation of the methodology for foodstuffs

In order to demonstrate that the method developed was suitable for phthalate monoester determination in a wide range of foodstuffs then the method performance characteristics (limit of detection and limit of quantification, linearity of the analysis, repeatability, in-house reproducibility and recovery) were derived. The performance of the method was assessed by the analysis of three foods (cheese – high fat, orange juice – high carbohydrate and pork mince – high protein) spiked with the nine phthalate monoesters.

4.3.3.1 Limit of detection and limit of quantification

The target LOQ (10x the signal:noise ratio) was set as 0.05 mg/kg for each phthalate monoester. Figures 51 to 59 show the MRM chromatograms (only the transition selected for quantification is shown) obtained when the three foods were analysed with the addition of the internal standards and after spiking with the analytes at this target LOQ.

Where no response was observed in the blank (unspiked) foodstuff then the LOD and LOQ in the foodstuff were calculated from the overspiked response as 3 and 10 x the signal:noise ratio respectively.

For the mono-2-ethylhexyl phthalate a response was observed at the retention time of the analyte of interest in both the blank (unspiked) foodstuff and the procedural blank samples. For this analyte the LOD and LOQ were calculated as 3 and 10 x the concentration calculated for the response detected in the procedural blank samples.

The LODs and LOQs determined are given in Table 21. The target LOQ was met for all analytes.

4.3.3.2 Linearity of the method

The calibration was linear for all analytes at concentrations equivalent to 0 to 0.1 mg/kg in the foodstuff. The calibration graphs are shown in Figures 60 to 68. The correlation coefficients (r²) were better than 0.99 in all cases.

4.3.3.3 Repeatability and reproducibility

The repeatability of the analysis was determined in the three selected food matrices. The foods were spiked at nominal concentrations of 0.05 mg/kg for each analyte. The results obtained are summarised in Tables 22 to 30. For all analytes the repeatability was acceptable with the concentrations detected in the spiked samples giving relative standard deviations of < 19%.

The average concentrations detected in the spiked foods in analysis 1 (n = 6) and analysis 2 (n = 3) showed good agreement (reproducibility). The measured

concentrations in the two analyses were within 30% of one another for all nine phthalate monoesters.

4.3.3.4 Recovery

The analytical recoveries relative to the solvent calibration standards are shown in Tables 22 to 30 for each matrix. Recoveries were in the range 65 to 125%. Recoveries were analyte and food matrix specific and repeatable within the batch and reproducible between batches. For example monoisopropyl phthalate spiked into pork mince gave 65% recovery with an RSD of 12% in analysis 1 and 60% recovery with an RSD of 0.9% in analysis 2. Therefore overspiking and recovery correction is required for the quantification of the phthalate monoesters in foods.

The resulting SOP is provided as Annex 2.

4.4 Method development and validation – phthalic acid

4.4.1 Sample extraction

Samples were extracted with acidified acetonitrile:dichloromethane (1:1) and concentrated/cleaned-up prior to analysis.

4.4.2 Analysis

LC-MS/MS was used for this polar compound. Labelled phthalic acid was used as an internal standard. Individual stock solutions of the analyte and internal standard were prepared at a concentration of 10 μ g/mL and were infused into the mass spectrometer in full scan mode to determine parent ion m/z values. The mass spectrometer was then used in MS/MS mode to determine and optimise MRM transitions. The largest response was used as the quantification channel and the second largest was selected for confirmation. Individual stock solutions at a concentration of 1 μ g/mL were then injected into the LC-MS/MS to determine individual retention times. The retention time was 2.5 minutes, the quantification transition was 164.75 -> 120.81 (cone voltage = 10 eV) and the confirmation transition was 164.75 -> 76.95 (cone voltage = 15 eV).

4.4.3 Validation of the methodology for foodstuffs

In order to demonstrate that the method developed was suitable for phthalic acid determination in a wide range of foodstuffs then the method performance characteristics (limit of detection and limit of quantification, linearity of the analysis, repeatability, in-house reproducibility and recovery) were derived. The performance of the method was assessed by the analysis of three foods (cheese – high fat, orange juice – high carbohydrate and pork mince – high protein) spiked with phthalic acid

4.4.3.1 Limits of detection and quantification

The target LOQ (10x the signal:noise ratio) was set as 0.05 mg/kg. Figure 69 shows the MRM chromatograms (only the transition selected for quantification is shown) obtained when the three foods were analysed with the addition of the internal standards and after spiking with the phthalic acid at this target LOQ. In all cases a response was observed at the retention time of the analyte of interest in the blank

(unspiked) foodstuff. The LOD (5.3 μ g/kg) and LOQ (17.7 μ g/kg) were calculated as 3x and 10x the average response in the blank samples. The target LOQ was met.

4.4.3.2 Linearity of the method

The calibration was linear at concentrations equivalent to 0 to 0.1 mg/kg in the foodstuff. The calibration graph is shown in Figure 70. The correlation coefficient (r^2) was 0.999.

4.4.3.3 Repeatability and reproducibility

The repeatability of the analysis was determined in the three selected food matrices. The foods were spiked at nominal concentrations of 0.05 mg/kg. The results obtained are summarised in Table 31. For all foods the repeatability was acceptable with the concentrations detected in the spiked samples giving relative standard deviations of < 12%.

The average concentrations detected in the spiked foods in analysis 1 (n = 6) and analysis 2 (n = 3) showed good agreement (reproducibility). The measured concentrations in the two analyses were within 20% of one another.

4.4.3.4 Recovery

The analytical recoveries relative to the solvent calibration standards are shown in Table 31. Recoveries were in the range 87 to 116%.

The resulting SOP is provided as Annex 3.

4.5 Method development and validation – total phthalates

In previous studies differences were observed in the total phthalate concentration (calculated by converting all phthalates to dimethyl phthalate) and the sum of the individual phthalate diesters measured in foods. It was proposed that the difference in these two values could be due to the presence of phthalic acid and phthalate monoesters in the food samples tested as these substances would also be converted to dimethyl phthalate and therefore included in the total phthalate measurement as well as the presence of any phthalate diesters that were not included in the analysis.

4.5.1 Sample extraction

Samples were extracted with acidified acetonitrile:dichloromethane (1:1) and the phthalates extracted were converted to DMP by heating with methanolic potassium hydroxide solution and then with boron trifluoride/diethyl ether complex. These extracts were then fractionated by size exclusion chromatography and analysed GC-MS.

4.5.2 Analysis

As DMP was the analyte to be measured then the same approach as described for the phthalate diesters (Section 4.2.2) was used.

4.5.3 Validation of the methodology for foodstuffs

In order to demonstrate that the method developed was suitable for total phthalate determination in a wide range of foodstuffs then the method performance characteristics (limit of detection and limit of quantification, linearity of the analysis, repeatability, in-house reproducibility and recovery) were derived. The performance of the method was assessed by the analysis of three foods (cheese – high fat, orange juice – high carbohydrate and pork mince – high protein). Validation was achieved through the analysis of replicate spiked samples containing 200 µg/kg each of diethyl phthalate, diisobutyl phthalate and di-n-decyl phthalate in the food. This is equivalent to 420 µg/kg of dimethyl phthalate in the final measurement. These phthalates were chosen as they represent a low, medium and high molecular weight phthalate diester.

4.5.3.1 Limits of detection and quantification

Figure 71 shows the selected ion chromatograms obtained when the three foods were analysed with the addition of the internal standards and after spiking with the analytes. The LOD and LOQ in the foodstuff were calculated from the overspiked response as 3 and 10 x the signal:noise ratio respectively. The LODs and LOQs determined are given in Table 32.

4.5.3.2 Linearity of the method

The calibration was linear for dimethyl phthalate at concentrations equivalent to 0 to 1000 μ g/kg in the foodstuff. The calibration graph is shown in Figure 72. The correlation coefficient (r^2) was 0.9995.

4.5.3.3 Repeatability and reproducibility

The repeatability of the analysis was determined in the three selected food matrices. The foods were spiked at nominal concentrations 200 μ g/kg each of diethyl phthalate, diisobutyl phthalate and di-n-decyl phthalate in the food. This is equivalent to 420 μ g/kg of dimethyl phthalate in the final measurement. The results obtained are summarised in Table 33. The repeatability was acceptable with the concentrations detected in the spiked samples giving relative standard deviations of < 12%.

The average concentrations detected in the spiked foods in analysis 1 (n = 6) and analysis 2 (n = 3) showed good agreement (reproducibility). The measured concentrations in the two analyses were within 8% of one another.

4.5.3.4 Recovery

The analytical recoveries relative to the solvent calibration standards are shown in Table 33 for each matrix. Recoveries were in the range 88 to 100%.

The resulting SOP is provided as Annex 4.

5. TDS SAMPLE ANALYSIS

5.1 Samples

The TDS samples were received on 03/07/2008. On receipt in the laboratory each was assigned a unique sample number using the Fera LIMS system. Sample details are provided in Table 34. Samples were stored frozen (-20°C) until required for analysis.

5.2 Analysis

All TDS samples were analysed according to the SOPs provided in Annexes 1 to 4.

5.3 Results

The phthalate diester, phthalate monoester, phthalic acid and total phthalate concentrations detected in the twenty TDS samples are given in Tables 35 to 38.

5.3.1 Phthalate diesters

The concentrations of the phthalates detected in the TDS samples are given in Table 35.

In many cases no response was observed or the response was $< 3 \times 10^{-5}$ x the signal to noise ratio in the selected ion chromatogram used for quantification. These are reported in Table 35 as $< 10^{-5}$ LOD. The LOD was calculated as 3 x signal to noise ratio using the response of the lowest concentration overspiked samples. The LODs were sample/analyte specific and are also given in Table 35.

In some cases a response was observed in the chromatogram but its peak height was < 10 x the signal to noise ratio in the selected ion chromatogram used for quantification. These are reported in Table 35 as < LOQ (LOQ = limit of quantification). The LOQ was calculated as 10 x signal to noise ratio using the response of the lowest concentration overspiked samples. LODs were sample/analyte specific and are also given in Table 35. The samples reported as < LOQ are highlighted in blue. All concentrations determined from the response observed were less than the calculated LOQ value. For these samples it was not confirmed whether or not the response was due to the analyte of interest or from a co-eluting interference (whole or in-part).

For those samples in which the response was > 10 x the signal to noise ratio in the selected ion chromatogram used for quantification and all confirmation criteria were met the recovery corrected concentration was calculated. For the quantified results recoveries were in the range 75 to 116%. Relative retention times and ion ratios were used to confirm that the responses observed were due to the phthalate diesters.

The following phthalates were detected and confirmed in the TDS samples:

- Diethyl phthalate in one sample at a concentration of 13 μg/kg
- Diisobutyl phthalate in four samples at concentrations in the range 17 to 81 µg/kg
- Di-n-butyl phthalate in seven samples at concentrations in the range 6 to 28 µg/kg
- Benzyl butyl phthalate in one sample at a concentration of 8 µg/kg

 Di-(2-ethylhexyl) phthalate in eleven samples at concentrations in the range 35 to 789 μg/kg

These are highlighted in green in Table 35.

Where responses were observed but the confirmation criteria were not met the calculated concentration is provided. These responses could not be attributed to the phthalate diester. This may be due to the response being too low such that the confirmatory ions were close to the limit of detection or the response being due to a coeluting interference (whole or in-part) giving a response in the target or qualifying ions.

5.3.2 Phthalate monoesters

The concentrations of the phthalate monoesters detected in the TDS samples are given in Table 36.

In many cases no response was observed or the response was $< 3 \times 10^{10} \times 10^{10}$ x the signal to noise ratio in the multiple reaction monitoring (MRM) chromatogram used for quantification. These are reported in Table 36 as $< 10^{10} \times 10^{10} \times 10^{10}$ to detection). The LOD was calculated as 3 x signal to noise ratio using the response of the overspiked samples. The LODs were analyte specific and are given in Table 36.

In some cases a response was observed in the chromatogram but its peak height was < 10 x the signal to noise ratio in the selected ion chromatogram used for quantification. These are reported in Table 36 as < LOQ (LOQ = limit of quantification). The LOQ was calculated as 10 x signal to noise ratio using the response of the overspiked samples. LOQs were analyte specific and are given in Table 36. The samples reported as < LOQ are highlighted in blue. All concentrations determined from the response observed were less than the calculated LOQ value. For these samples it was not confirmed whether or not the response was due to the analyte of interest or from a co-eluting interference (whole or in-part).

For those samples in which the response was > 10 x the signal to noise ratio in the MRM chromatogram used for quantification and all confirmation criteria were met, the recovery corrected concentration was calculated. For the quantified results recoveries were in the range 90 to 114%. Relative retention times and ion ratios were used to confirm that the responses observed were due to the phthalate monoesters.

The following phthalate monoesters were detected and confirmed in the TDS samples:

- Mono-n-butyl phthalate in three samples at concentrations in the range 29 to 52 µg/kg
- Mono-(2-ethylhexyl) phthalate in one sample at 54 μg/kg

These are highlighted in green in Table 36. All samples that the monoesters were detected in were animal/fish based wherein metabolism of any diesters to which they have been exposed may be expected.

Procedural blank samples were analysed alongside the foodstuffs. In all cases the phthalate monoester concentrations detected in the procedural blank samples were equivalent to concentrations of < 15 μ g/kg in the foodstuff.

5.3.3 Phthalic acid

The concentrations of the phthalic acid detected in the TDS samples are given in Table 37.

In one case no response was observed in the multiple reaction monitoring (MRM) chromatogram used for quantification. This is reported in Table 37 as < LOD (LOD = limit of detection). The LOD was calculated as 3 x signal to noise ratio using the response of the overspiked samples.

In two cases a response was observed in the chromatogram but its peak height was < 10 x the signal to noise ratio in the selected ion chromatogram used for quantification. These are reported in Table 37 as < LOQ (LOQ = limit of quantification). The LOQ was calculated as 10 x signal to noise ratio using the response of the overspiked samples. The concentrations determined from the response observed were less than the calculated LOQ value. For these samples it was not confirmed whether or not the response was due to the analyte of interest or from a co-eluting interference (whole or in-part).

For those samples in which the response was > 10 x the signal to noise ratio in the MRM chromatogram used for quantification and all confirmation criteria were met the recovery corrected concentration was calculated. For the quantified results recoveries were acceptable. Relative retention times and MRM channel ratios were used to confirm that the responses observed were due to the phthalic acid.

5.3.4 Total phthalates

The total phthalate concentrations detected in the TDS samples are given in Table 38. All samples gave measurable total phthalate levels. When comparing the total phthalate concentrations with the sum of the individual diesters, monoesters and phthalic acid differences were observed. The measurements derived from the targeted analysis of the individual substances are considered to be the most accurate as the analysis is more direct and straightforward compared to the uncertainties associated with the complex methodology of the total phthalate determination.

6. PHTHALATE SOURCE STUDIES

Phthalates may be present in foods as a result of migration from food contact materials and articles. Although it is reported that phthalates are no longer used in the production of food contact plastics they may be used as carriers for pigments in printing inks and in adhesives applied to a plastic food contact material or article. Further, phthalates are commonly found in paper and board food contact materials, in particular when the material has been recycled. As a result of their widespread use and their moderate resistance to degradation phthalates are also ubiquitous in the environment. Therefore they may be also be present in foods as a consequence of environmental contamination.

For a solid foodstuff it may be envisaged that environmental and migration sources of phthalates may be differentiated in three ways:

- (a) Which phthalates are present in the food and the packaging?
 For any phthalates to be present in food as a result of migration from food contact materials it would be expected that the phthalates present in the packaging materials would also be detected in the foods, i.e. the identity would be the same.
- (b) What are the ratios of the phthalate concentrations in the foods and in the packaging?

As phthalates are structurally similar it would be expected that they would migrate at a similar rate so the ratio of the concentrations of the individual phthalates to one another in the packaging would be expected to be similar to that in the foods.

(c) What is the concentration depth profile of the phthalates in the food?

For a solid foodstuff the concentration of any phthalates migrating from a food contact material into a food would be expected to be greater at the food contact surface compared to within the bulk of the foodstuff. Similarly any phthalates 'picked-up' by the food during processing would expect to be at higher concentrations at the foods surface than in the centre. By cutting slices of the food at defined distances from the packaging material and analysing each 'slice' separately a concentration depth profile should be observed if the source of the phthalates in the foodstuff is migration. If this is not the case then the phthalates will be distributed homogeneously throughout the foodstuff.

For a liquid foodstuff, e.g. milk, only (a) and (b) above would be relevant as mixing of the foodstuff would readily occur and therefore it would not be expected that a concentration depth profile would be observed. This is also expected to be true, to a certain extent, for semi-solid foods such as yoghurt.

6.1 Sample details

Twenty nine packaged foodstuffs were purchased from retail outlets in the north of England. Each was assigned a unique sample code using the Fera LIMS system. Sample details are provided in Table 39. These samples were selected for screening purposes to establish the presence (or absence) of phthalates in the packaging materials.

6.2 Extraction and analysis

6.2.1 Gaskets

Gasket (100 mg), cut from the lid of the test sample using a hexane rinsed scalpel, was dissolved in tetrahydrofuran (10 mL). The sample was sonicated to effect the dissolution of the polymer. Ethanol (20 mL) was added dropwise to precipitate the polymer. The mixture was centrifuged and the solvent decanted into a clean glass vial. The sample was evaporated to dryness on a heating block set at 50℃ (no nitrogen). The dry residue was reconstituted in acetonitrile (2 mL) prior to analysis by GC-MS.

One sample was prepared as described.

Duplicate samples were prepared as described but with the addition of 150 μ l of a mixed labelled phthalate internal standard solution to the gasket prior to dissolution in the solvent. The mixed labelled internal standard solution contained d₄-dimethyl phthalate, d₄-diethyl phthalate, d₄-dipropyl phthalate, d₄-diisobutyl phthalate, d₄-di-n-butyl phthalate, d₄-di-n-pentyl phthalate, d₄-di-n-hexyl phthalate, d₄-benzylbeutyl phthalate, d₄-dicyclohexyl phthalate, d₄-di-2-ethylhexyl phthalate, d₄-di-n-heptyl phthalate, d₄-di-n-octyl phthalate and d₄-di-n-nonyl phthalate each at a nominal concentration of 100 μ g/mL.

Duplicate overspiked sample were prepared as described but with the addition of the internals standards (as above) and with the addition of 175 μ l of a mixed phthalate standard solution to the gasket prior to dissolution in the solvent. The mixed phthalate standard solution contained dimethyl phthalate, diethyl phthalate, diisopropyl phthalate, diallyl phthalate, diisobutyl phthalate, di-n-butyl phthalate, di-n-pentyl phthalate, di-n-pentyl phthalate, di-2-ethylhexyl phthalate, di-2-ethylhexyl

phthalate, di-n-heptyl phthalate, di-n-octyl phthalate, diisononyl phthalate, diisodecyl phthalate and di-n-decyl phthalate each at a nominal concentration of 150 µg/mL.

Quantification was achieved by the analysis of calibration standards containing 150 μ l of the 100 μ g/mL mixed labelled phthalate internal standard solution and 0, 45, 90, 175, 350, 700 and 1000 μ L of the 150 μ g/mL mixed phthalate standard solution in a total volume of 2 mL of acetonitrile (the final volume of the reconstituted extract).

All extracts and calibration standards were analysed following the analytical procedure given in Annex 1.

6.2.2 Packaging

An area of 0.5 dm² was cut from each packaging material and the mass was recorded. The entire packaging material was then cut into small pieces (~ 1 x 1 cm), the pieces were mixed and a mass equivalent to an area of 0.5 dm² was weighed into a glass vial, the packaging was extracted with dichloromethane (20 mL) by shaking for 4 hours at room temperature. The solvent layer was decanted into a clean glass vial and the extract was evaporated to dryness on a heating block set at 50°C (no nitrogen). The dry residue was reconstituted in acetonitrile (1 mL) prior to analysis by GC-MS.

One sample was prepared as described.

Duplicate samples were prepared as described but with the addition of 25 μ l of a mixed labelled phthalate internal standard solution to the packaging material prior to extraction. The mixed labelled internal standard solution contained d₄-dimethyl phthalate, d₄-diethyl phthalate, d₄-dipropyl phthalate, d₄-diisobutyl phthalate, d₄-di-n-butyl phthalate, d₄-di-n-pentyl phthalate, d₄-di-n-hexyl phthalate, d₄-di-n-heptyl phthalate, d₄-di-n-hetyl phthalate, d₄-di-n-octyl phthalate and d₄-di-n-nonyl phthalate each at a nominal concentration of 100 μ g/mL.

Duplicate overspiked sample were prepared as described but with the addition of the internals standards (as above) and with the addition of 25 µl of a mixed phthalate standard solution to the gasket prior to dissolution in the solvent. The mixed phthalate standard solution contained dimethyl phthalate, diethyl phthalate, diisopropyl phthalate, diallyl phthalate, diisobutyl phthalate, di-n-butyl phthalate, di-n-pentyl phthalate, di-n-hexyl phthalate, benzylbutyl phthalate, dicyclohexyl phthalate, di-2-ethylhexyl phthalate, di-n-heptyl phthalate, di-n-octyl phthalate, diisononyl phthalate, diisodecyl phthalate and di-n-decyl phthalate each at a nominal concentration of 100 µg/mL.

Quantification was achieved by the analysis of calibration standards containing 25 μ L of the 100 μ g/mL mixed labelled phthalate internal standard solution and 0, 5, 10, 25, 50, 100 and 250 μ L of the 100 μ g/mL mixed phthalate standard solution made up in dichloromethane to achieve a total volume of 20 mL. The calibration standards were evaporated to dryness (alongside the samples) and reconstituted in acetonitrile (1 mL) prior to analysis by GC-MS.

All extracts and calibration standards were analysed following the analytical procedure given in Annex 1.

6.2.3 Foodstuffs

Foods were analysed as described in Annex 1.

6.3 Results

6.3.1 Phthalate diesters in gaskets and other packaging materials

Phthalates were detected in nine of the 29 packaging materials at concentrations in excess of the limit of quantification (LOQ). The concentrations detected are shown in Table 40.

In general the levels present were low. The worst case migration was calculated, assuming 100% transfer from the packaging to the foodstuff taking into account the packaging area/total mass of gasket and the mass of the foodstuff. The results of these calculations are shown in Table 41.

6.3.2 Phthalate diesters in foods

Taking into account the food contact conditions, the presence of any packaging layers that may act as total or partial barriers to migration, the fact that typically up to 10% of a substance will migrate and the analyte limits of detection sample S09-003808 (Lasagne sheets) was selected for analysis.

Sample S09-003808 (Lasagne sheets) is a solid foodstuff and is therefore suitable for testing the three hypotheses given above:

- (a) Which phthalates are present in the food and the packaging?
 Dimethyl phthalate, diisobutyl phthalate, di-n-butyl phthalate and di-(2-ethylhexyl) phthalate were detected in the packaging.
- (b) What are the ratios of the phthalate concentrations in the foods and in the packaging?
- (c) What is the concentration depth profile of the phthalates in the food?
 The two outer lasagne sheets, the next two sheets and two sheets from the centre of the stack were selected as the three layers of the foodstuff.

Triplicate samples of the lasagne sheets were purchased. From each the two outer lasagne sheets, the next two sheets and two sheets from the centre of the stack were tested. The results obtained are shown in Table 42. Recoveries were acceptable, in the range 85 to 110%. Results have not been corrected for recovery. Only diisobutyl phthalate was detected in the foodstuff. This was not unexpected as this phthalate was present at the high concentration in the packaging, consistent with hypothesis (a). As only one phthalate was detected in the foodstuff then hypothesis (b) could not be tested but the absence of the other phthalates in the food is at least consistent, because pro-rata they would be expected to be present at levels of less than the limits of detection. Figure 73 shows the concentration depth profiles for the diisobutyl phthalate for the three samples tested. The highest concentration of the diisobutyl phthalate was in the lasagne sheet that comes into direct contact with the cartonboard packaging. Although only one example this result provides clear evidence that the source of the diisobutyl phthalate in the food was the packaging.

7. PHTHALATE DIESTERS IN RETAIL FOODSTUFFS

Fifteen of the seventeen phthalate diesters for which the methodology was validated were selected for analysis: DMP, DEP, DiPP, DAP, DiBP, DBP, DPP, DHP, BBP, DCHP, DEHP, DOP, DiNP, DiDP and DDP.

7.1 Samples

Two hundred and sixty one foodstuffs were received from Ventress Technical Ltd. Fera LIMS numbers and the sample description are given in Table 43.

7.2 Extraction and analysis

On receipt in the laboratory the foodstuff was removed from the packaging and homogenised. Precautions were taken to minimise contamination (as described previously, Section 4.2.3). The samples were analysed according to the SOP given in Annex 1 but with the omission of the DHepP (excluded as it co-elutes with DEHP and its inclusion resulted in a higher LOQ for this more common phthalate diester) and ODP.

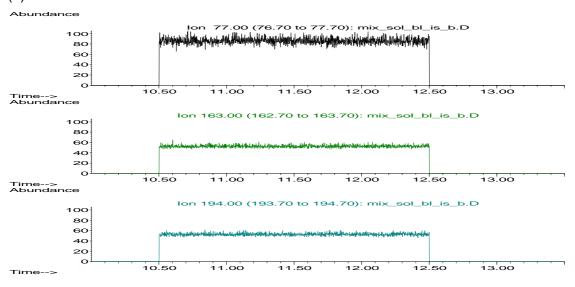
7.3 Results

The concentrations of the phthalate diesters measured in the samples are shown in Table 44. For those analytes for which there was no response in the procedural blank the limits of detection and quantification were calculated as three and ten times the signal to noise ratio of the overspike response. For those analytes for which a response was observed in the procedural blank the limits of detection and quantification were calculated as three and ten times the concentration measured in this sample. The limits of detection and quantification have not been verified. For those samples in which the response was > 10 x the signal to noise ratio in the selected ion chromatogram used for quantification and all confirmation criteria were met the recovery corrected concentration was calculated and this is reported in Table 44. Relative retention times and ion ratios were used to confirm that the responses observed were due to the phthalate diesters. In some cases the criteria defined in the SOP (Annex 1) were not met. For this data the recovery corrected concentration is given but the failure to confirm is noted. This may be due to the response being too low such that the confirmatory ions were close to the limit of detection or the response being due to a co-eluting interference (whole or in-part) giving a response in the target or qualifying ions. For some analyte/matrix combinations no data is present. This may be because of an interference derived from the foodstuff from which the phthalate diester could not be separated or it may be due to failure of the phthalate diester to partition into the organic solvent as a consequence of its solubility in the foodstuff.

In general those samples for which the presence of one or more phthalate diester was confirmed contained low levels of one or more of DBP, DiBP or DEHP. Sample S08-17276, an organic virgin olive oil, contained the highest phthalate concentrations (DiBP = $49 \mu g/kg$, DBP, $57 \mu g/kg$, BBP = $2084 \mu g/kg$ and DEHP = $6446 \mu g/kg$).

8. DISCUSSION

This report describes the development and in-house validation of methodology for the determination of phthalate diesters, phthalate monoesters, phthalic acid and total phthalates in foods. The methods encompass a wide range of analytes and have been validated and applied to high fat, high carbohydrate and high protein foodstuffs as well as combinations of all three. TDS sample analysis detected low levels of DEP, DiBP, DBP, BBP and DEHP and these same phthalate diesters were detected when 261 retail foodstuffs were analysed for these compounds. Low levels of MBP and MEHP were detected in several of the TDS animal/fish based samples wherein metabolism of any diesters to which they have been exposed may be expected. Phthalates may be


present in foods as a result of migration from food contact materials and articles. Studies carried out in this project confirmed that phthalates in foods could be derived from migration from food packaging materials.

9. REFERENCES

- [1] Schettler, T. Human exposure to phthalates via consumer products. *International Journal of Andrology*, 2006, 29, 134-139.
- [2] http://www.ehponline.org/docs/2006/8804/letter.html
- [3] https://webgate.ec.europa.eu/rasffwindow/portal/index.cfm?event=searchResultList&StartRow=101]
- [4] WHO 1992: Diethylhexyl phthalate, Environmental Health Criteria 131.
- [5] Petrovic, M., Eljarrat, E., Lopez de Alda, M. J. and Barceló, D. Endocrine disrupting compounds and other emerging contaminants in the environment: A survey on new monitoring strategies and occurrence data. *Analytical and Bioanalytical Chemistry*, 2004, **378**, 549-562.
- [6] Hubert W.W., Grasl-Kraupp B. and Schulte-Hermann R. Hepatocarcinogenic potential of di(2-ethylhexyl)phthalate in rodents and its implications on human risk. *Critical Reviews in Toxicolology*, 1996, **26**, 365-481.
- [7] MAFF UK Phthalates in food. MAFF Food Surveillance Information Sheet. Number 82, March 1996.
- [8] MAFF UK Phthalates in infant formulae. MAFF Food Surveillance Information Sheet. Number 83, March 1996.
- [9] MAFF UK Phthalates in infant formulae follow-up survey. MAFF Food Surveillance Information Sheet. Number 168, December 1998.
- [10] Sorensen, L. K. Determination of phthalates in milk and milk products by liquid chromatography/tandem mass spectrometry. *Rapid Commun. Mass Spectrom.*, 2006, **20**, 1135-1143.
- [11] Petersen, J. H. and Breindahl, T. Plasticizers in total diet samples, baby food and infant formulae. *Food Additives and Contam*inants, 2000, **17**, 133-141.
- [12] Main, K. M, Mortensen, G.-K, Kaleva, M. M., Kirsten A. Boisen, K. A., Damgaard, I. N., Chellakooty, M., Schmidt, I. M., Suomi A.-M, Virtanen, H. E., Petersen, J. H., Andersson, A.-M., Toppari, J. and Skakkebæk, N. E. Human Breast Milk Contamination with Phthalates and Alterations of Endogenous Reproductive Hormones in Infants Three Months of Age. *Environmental Health Perspectives*, 2006, **114**, 270-276.
- [13] Anderson W. A. C., Barnes K. A., Castle L., Damant, A. P. and Scotter, M. J. Determination of isotopically labelled monoesterphthalates in urine by high performance liquid chromatography-mass spectrometry. *Analyst*, 2002, **127**, 1193-1197.
- [14] http://cot.food.gov.uk/pdfs/tox201032.pdf
- [15] Heindel, J. J. and Powell, C. J. Phthalate ester effects on rat sertoli cell function *in vitro*: Effects of phthalate side chain and age of animal. *Toxicology and Applied Pharmacology*, 1992, **115**, 116-123.

- [16] Ema, M., Kurosaka, R., Amano, H. and Ogawa, Y. Developmental toxicity evaluation of mono-*n*-butyl phthalate in rats. *Toxicology Letters*, 1995, **78**, 101-106.
- [17] Albro, P. W., Chapin, R. E., Corbett, J. T., Schroeder, J. and Phelps, J. L. Mono-2-ethylhexyl phthalate, a metabolite of di-(2-ethylhexyl) phthalate, causally linked to testicular atrophy in rats. *Toxicology and Applied Pharmacology*, 1989, **100**, 193-200.
- [18] Mortensen, G. K., Main, K. M., Andersson, A. M., Leffers, H. and Skakkebwk, N. E. Determination of phthalate monoesters in human milk, consumer milk, and infant formula by tandem mass spectrometry (LC–MS–MS). *Analytical and Bioanalytical Chemistry*, 2005, **382**, 1084-1092.
- [19] Silva, M. J., Samandar, E., Preau Jr, J. L., Reidy, J. A., Needham, L. L. and Calafat, A. M. Quantification of 22 phthalate metabolites in human urine. *Journal of Chromatography B*, 2007, **860**, 106-112.
- [20] Holm, A., Solbu, K., Molander, P., Lundanes, E. and Greibrokk, T. Sensitive biomonitoring of phthalate metabolites in human urine using packed capillary column switching liquid chromatography coupled to electrospray ionization iontrap mass spectrometry. *Analytical and Bioanalytical Chemistry*, 2004, **378**, 1762-1768.
- [21] Silva, M. J., Slakman, A. R., Reidy, J. A., Preau, J. L., Herbert, A. R., Samandar, E., Needham, L. L. and Calafat, A. M. Analysis of human urine for fifteen phthalate metabolites using automated solid-phase extraction. *Journal of Chromatography B*, 2004, **805**, 161-167.
- [22] Koch, H. M., Gonzalez-Reche, L. M. and Angerer, J. On-line cleanup by multidimensional LC–ESI–MS/MS for high throughput quantification of primary and secondary phthalate metabolites in human urine. *Journal of Chromatography B*, 2003, **784**, 169-182.
- [23] Calafat, A. M., Slakman, A. R., Silva, M. J., Herbert, A. R. and Needham, L. L. Automated solid phase extraction and quantitative analysis of human milk for 13 phthalate metabolites. *Journal of Chromatography B*, 2004, **805**, 49-56.
- [24] Wenzl, T. Methods for the determination of phthalates in food. EU Report EUR 23682. 2009.
- [25] MAFF UK Phthalates in paper and board packaging. MAFF Food Surveillance Information Sheet. Number 60, May 1995.
- [26] http://crl-fcm.jrc.it/files/FOODMIGROSURE synthetic final report.pdf

Figure 1. Dimethyl phthalate in the procedural blank

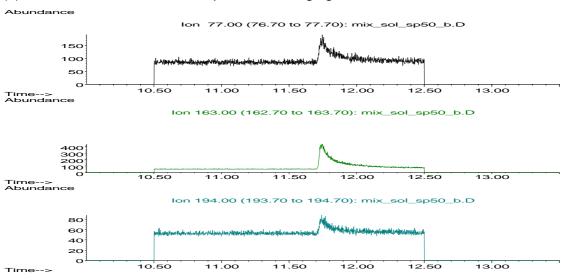
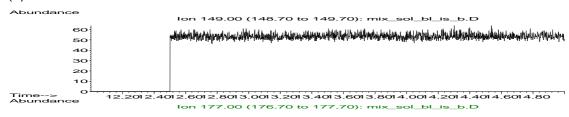
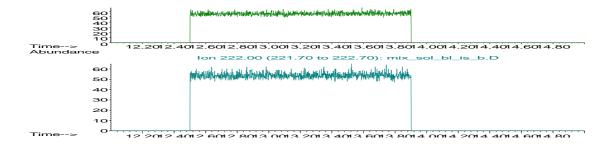




Figure 2. Diethyl phthalate in the procedural blank

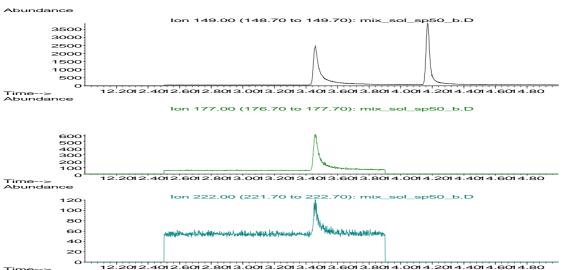
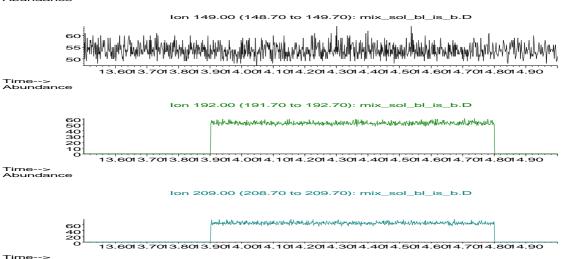



Figure 3. Diisopropyl phthalate in the procedural blank

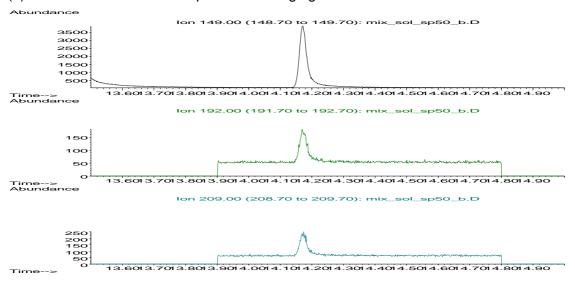
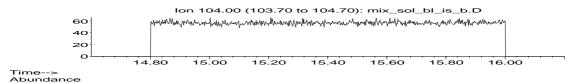
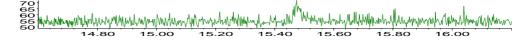
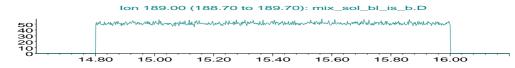
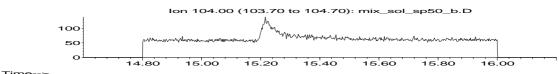
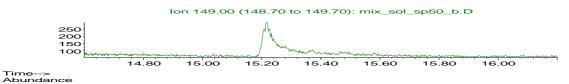




Figure 4. Diallyl phthalate in the procedural blank


Abundance

Ion 149.00 (148.70 to 149.70): mix_sol_bl_is_b.D


Time--> Abundance


Time-->

(b) Procedural blank + overspike at 0.05 mg/kg

Abundance

Time--> Abundance

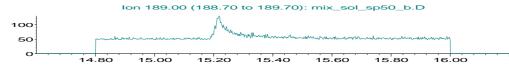
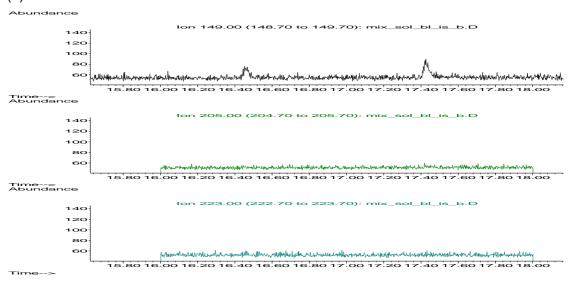



Figure 5. Diisobutyl phthalate in the procedural blank

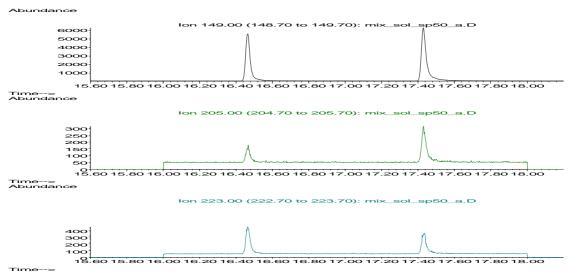
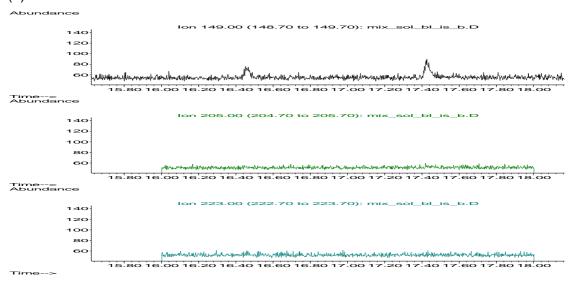



Figure 6. Dibutyl phthalate in the procedural blank

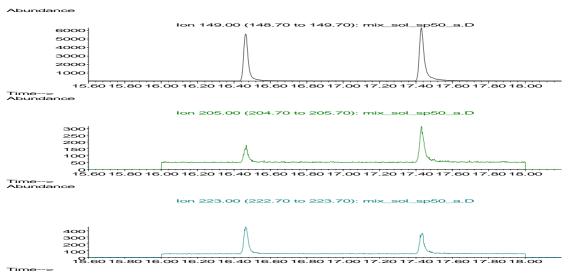
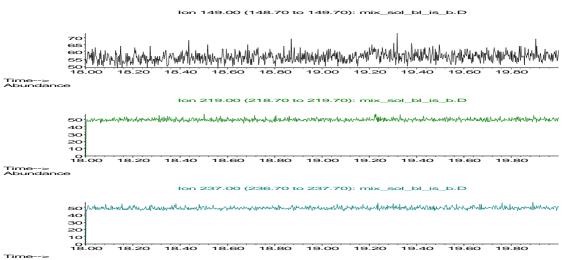



Figure 7. Dipentyl phthalate in the procedural blank

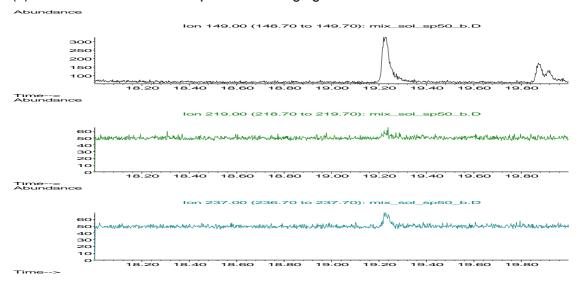
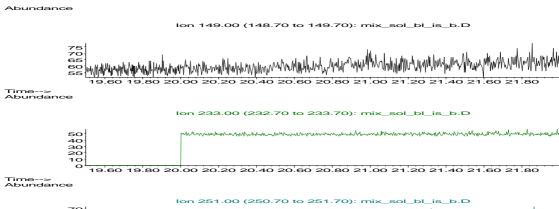



Figure 8. Di-n-hexyl phthalate in the procedural blank

10n 251.00 (250.70 to 251.70): mix_sol_bl_is_b.D

60

50

50

40

30

20

19.60 19.80 20.00 20.20 20.40 20.60 20.80 21.00 21.20 21.40 21.60 21.80

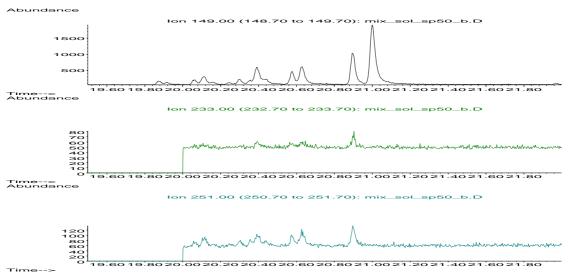
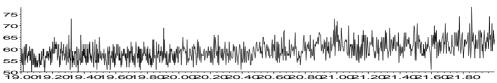
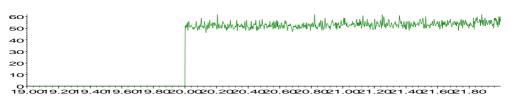
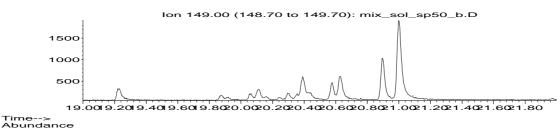



Figure 9. Benzyl butyl phthalate in the procedural blank

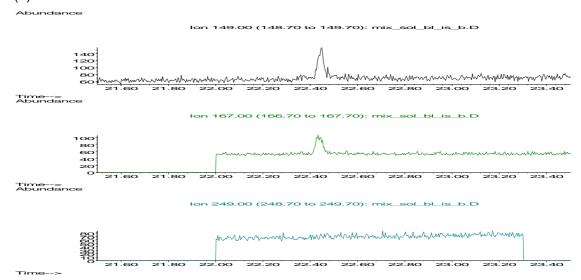

Abundance

Ion 149.00 (148.70 to 149.70): mix_sol_bl_is_b.D


Time--> Abundance

Ion 206.00 (205.70 to 206.70): mix_sol_bl_is_b.D

(b) Procedural blank + overspike at 0.05 mg/kg


Abundance

Ion 206.00 (205.70 to 206.70): mix_sol_sp50_b.D

Figure 10. Dicyclohexyl phthalate in the procedural blank

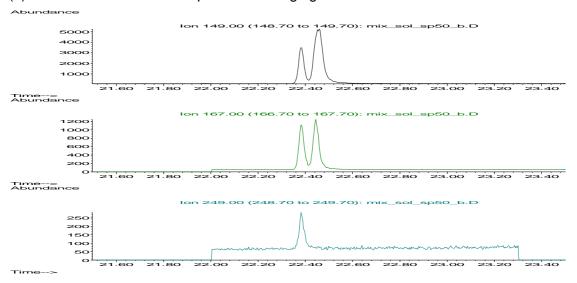
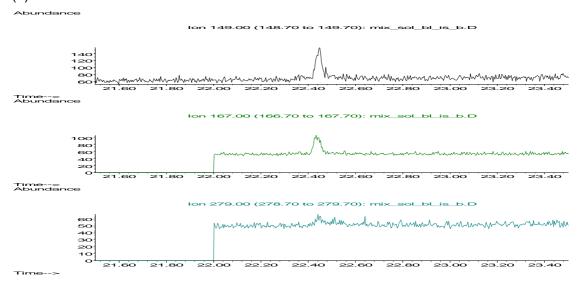



Figure 11. Di-(2-ethylhexyl) phthalate in the procedural blank

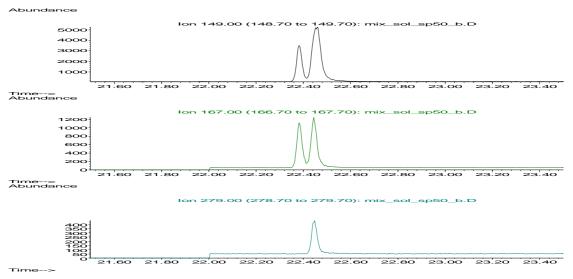



Figure 12. Di-n-heptyl phthalate in the procedural blank

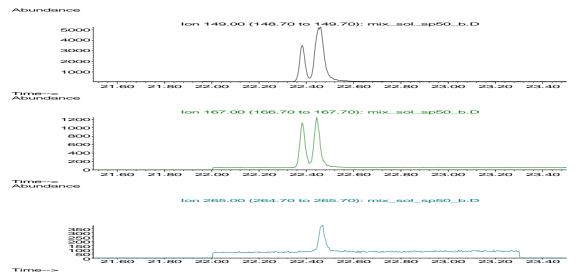
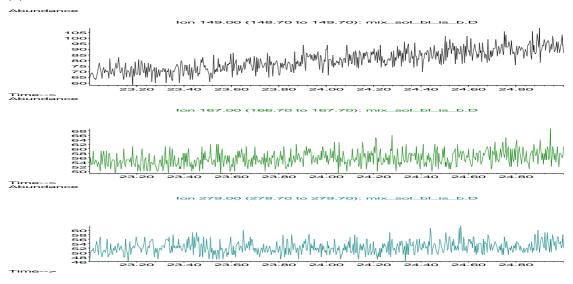



Figure 13. Di-n-octyl phthalate in the procedural blank

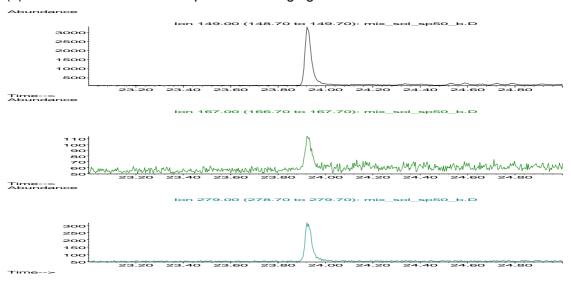



Figure 14. n-Octyl-n-decyl phthalate in the procedural blank

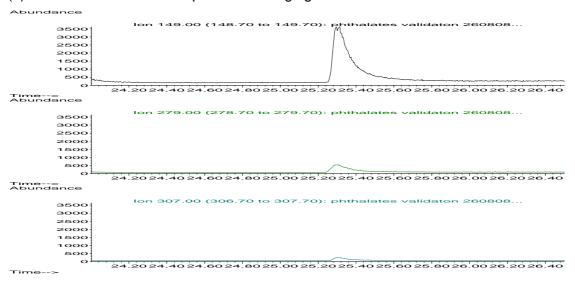
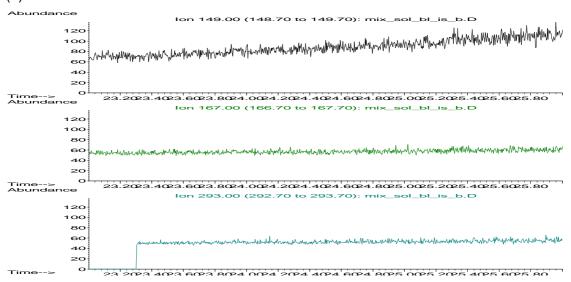
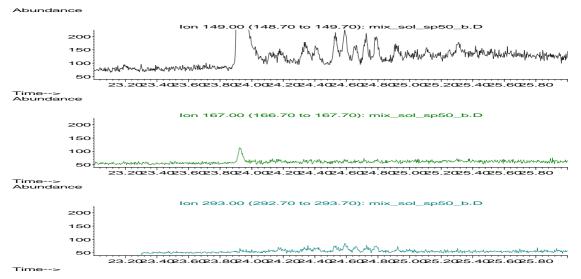
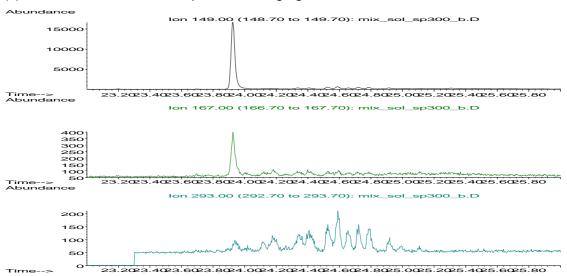
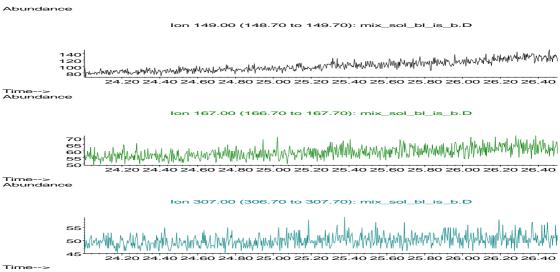
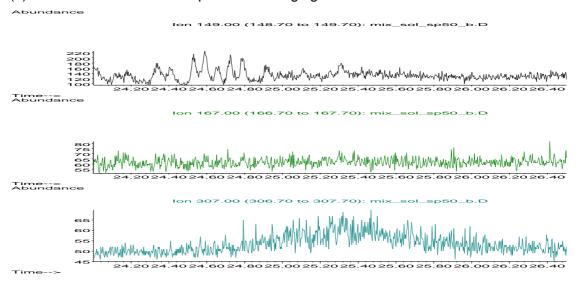
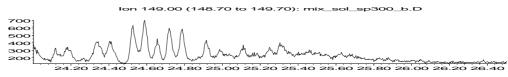
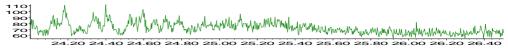




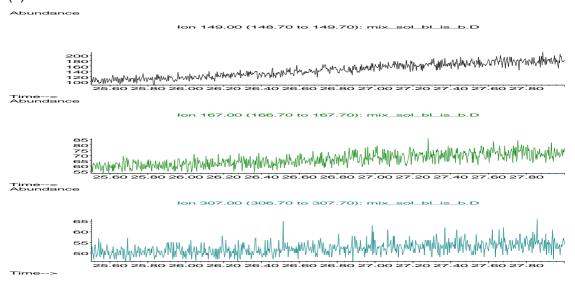
Figure 15. Diisononyl phthalate in the procedural blank


Figure 16. Diisodecyl phthalate in the procedural blank


(c) Procedural blank + overspike at 0.3 mg/kg

Abundance


Time--> Abundance

lon 167.00 (166.70 to 167.70): mix_sol_sp300_b.D

Time--> Abundance

Figure 17. Di-n-decyl phthalate in the procedural blank

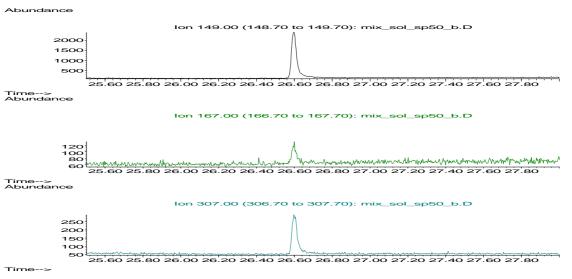
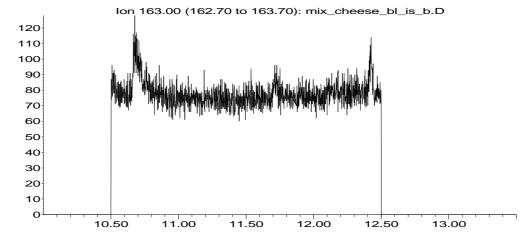
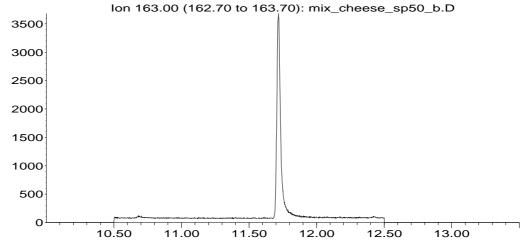
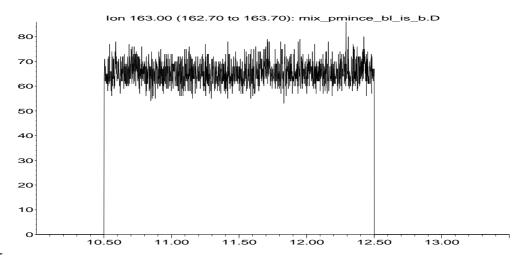



Figure 18. Dimethyl phthalate spiked into foods at the target LOQ

(a) Cheese only

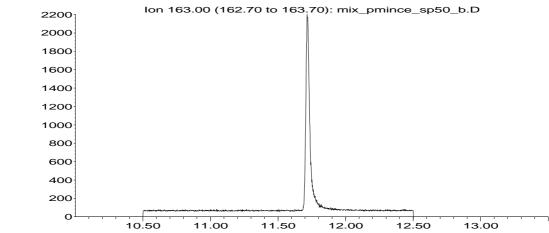

Abundance

Time-->


(b) Cheese overspiked with dimethyl phthalate at 0.05 mg/kg

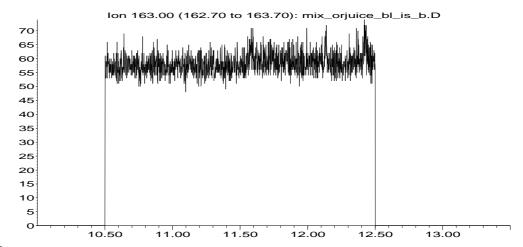
Abundance

(c) Pork mince only


Abundance

Time-->

(d) Pork mince overspiked with dimethyl phthalate at 0.05 mg/kg


Abundance

Time-->

(e) Orange juice only

Abundance

Time-->

(f) Orange juice overspiked with dimethyl phthalate at 0.05 mg/kg

Abundance

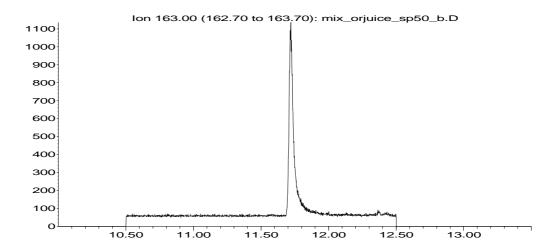
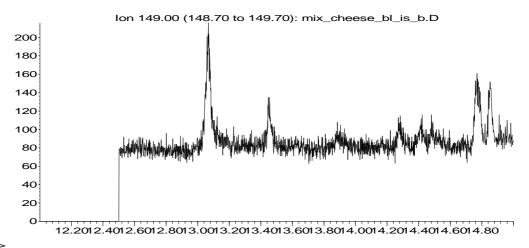
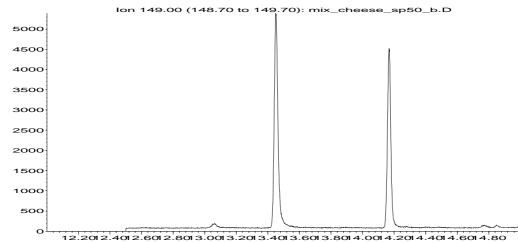
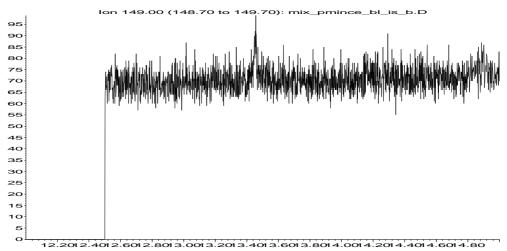



Figure 19. Diethyl phthalate spiked into foods at the target LOQ

(a) Cheese only

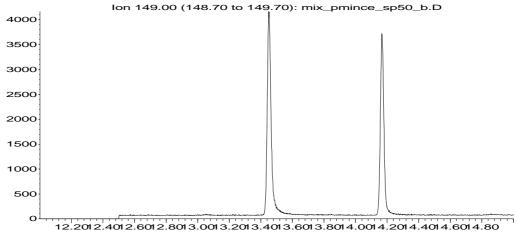

Abundance

Time-->

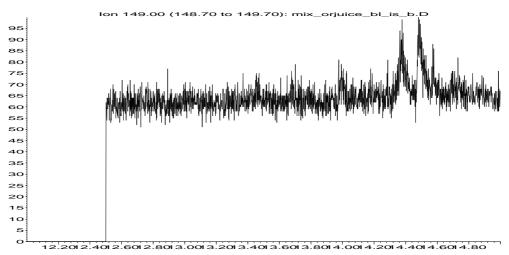

(b) Cheese overspiked with diethyl phthalate at 0.05 mg/kg

Abundance

(c) Pork mince only


Abundance

Time-->


(d) Pork mince overspiked with diethyl phthalate at 0.05 mg/kg

Abundance

(e) Orange juice only

Abundance

Time-->

(f) Orange juice overspiked with diethyl phthalate at 0.05 mg/kg

12.2012.4012.6012.8013.0013.2013.4013.6013.8014.0014.2014.4014.6014.80

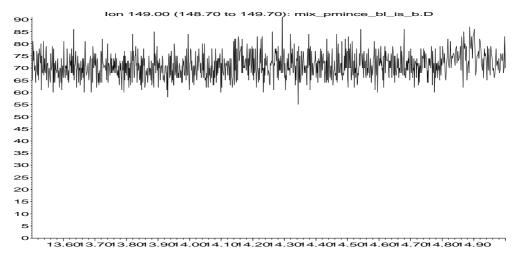
Time---

Figure 20. Diisopropyl phthalate spiked into foods at the target LOQ

(a) Cheese only

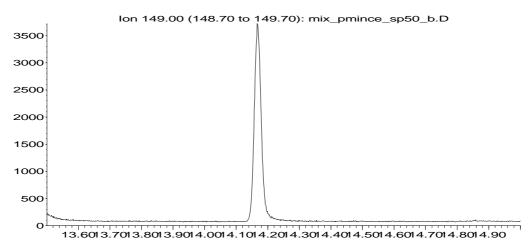
Abundance Ion 149.00 (148.70 to 149.70): mix_cheese_bl_is_b.D 160 150 140 130 110 100 90 80 60 50 40 30 20 10 13.6013.7013.8013.9014.0014.1014.2014.3014.4014.5014.6014.7014.8014.90

Time-->

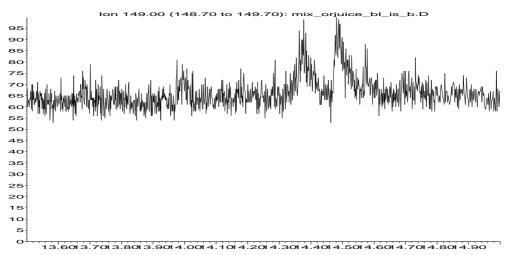

(b) Cheese overspiked with diisopropyl phthalate at 0.05 mg/kg

Abundance

(c) Pork mince only


Abundance

Time-->


(d) Pork mince overspiked with diisopropyl phthalate at 0.05 mg/kg

Abundance

(e) Orange juice only

Abundance

Time-->

(f) Orange juice overspiked with diisopropyl phthalate at 0.05 mg/kg

Abundance

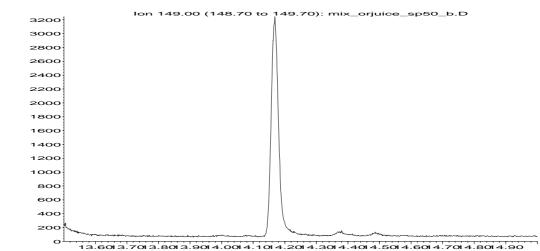
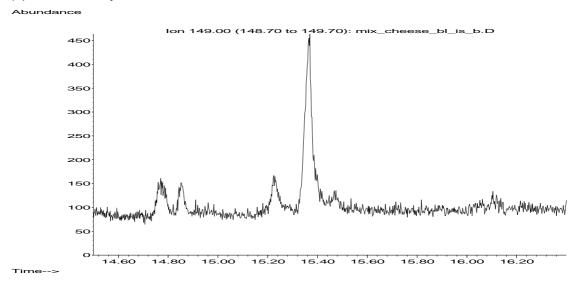
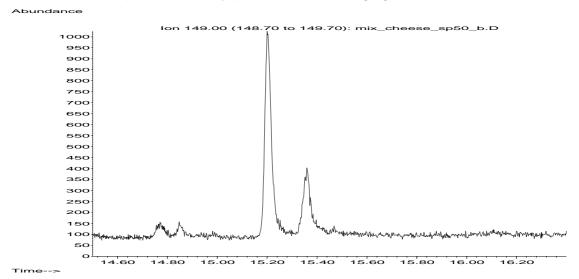
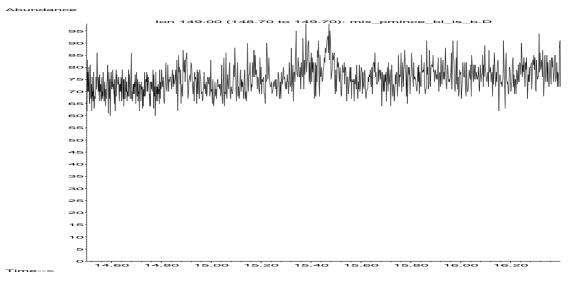
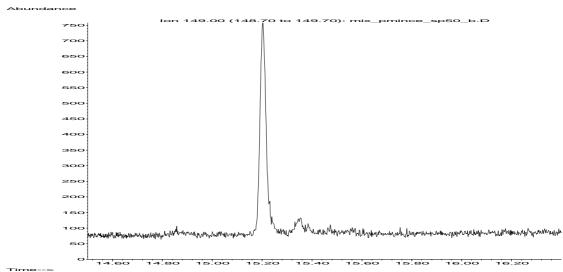
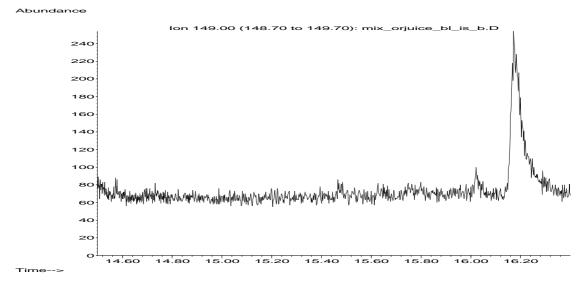





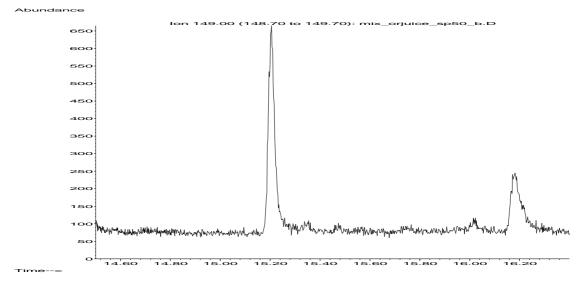
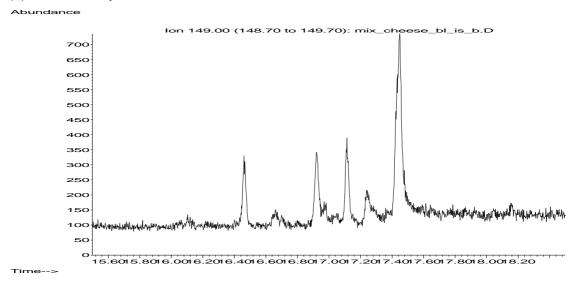
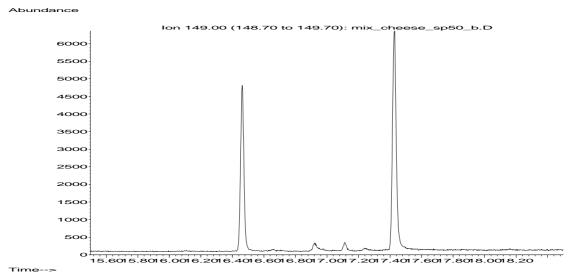
Figure 21. Diallyl phthalate spiked into foods at the target LOQ

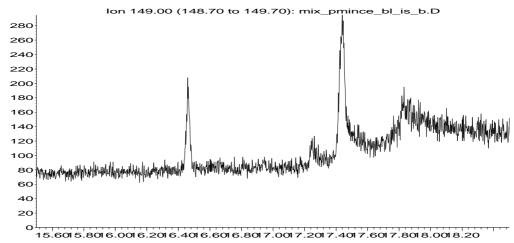



(b) Cheese overspiked with diallyl phthalate at 0.05 mg/kg

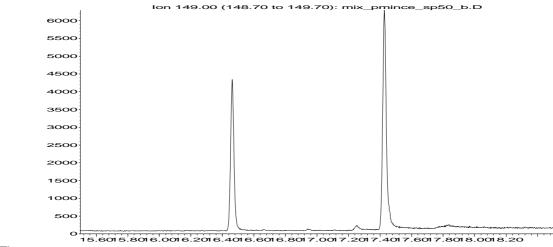
(d) Pork mince overspiked with diallyl phthalate at 0.05 mg/kg

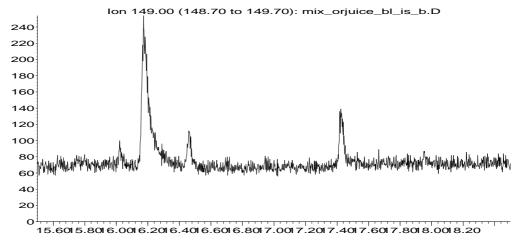
(f) Orange juice overspiked with diallyl phthalate at 0.05 mg/kg


Figure 22. Dibutyl and diisobutyl phthalate spiked into foods at the target LOQ

(b) Cheese overspiked with dibutyl and diisobutyl phthalate at 0.05 mg/kg


Abundance


Time-->

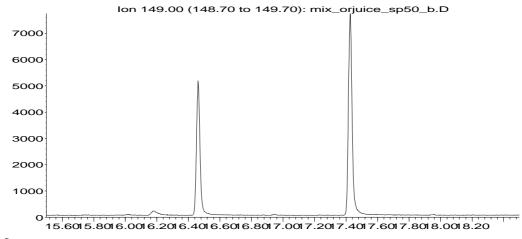
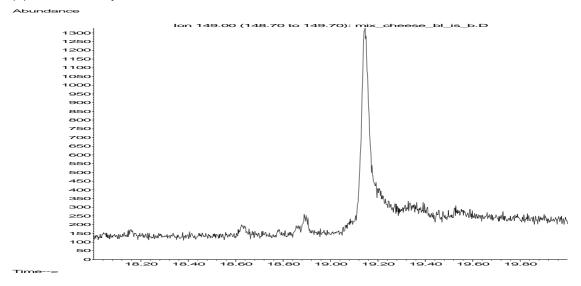
(d) Pork mince overspiked with dibutyl and diisobutyl phthalate at 0.05 mg/kg

Abundance

Abundance

Time-->

(f) Orange juice overspiked with dibutyl and diisobutyl phthalate at 0.05 mg/kg

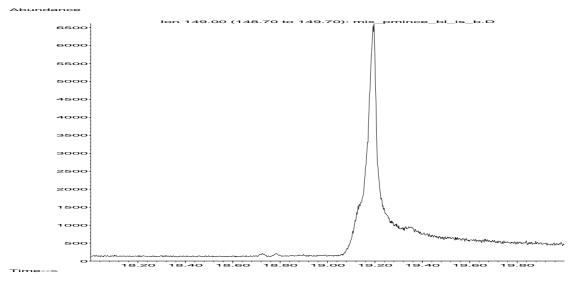
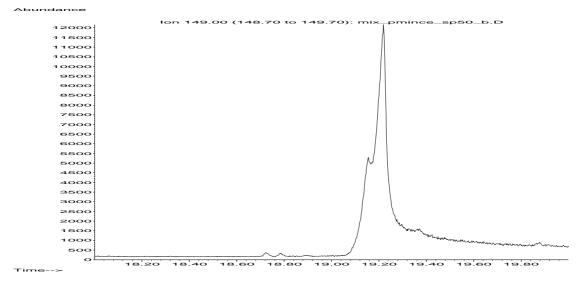
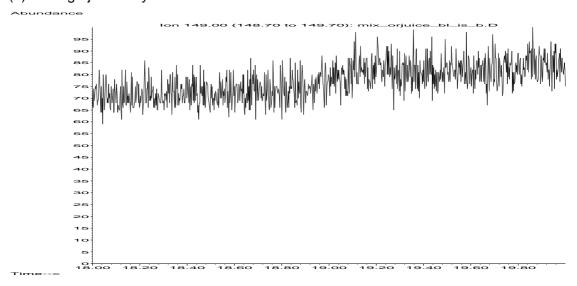


Figure 23. Dipentyl phthalate spiked into foods at the target LOQ




(b) Cheese overspiked with dipentyl phthalate at 0.05 mg/kg

(d) Pork mince overspiked with dipentyl phthalate at 0.05 mg/kg

(f) Orange juice overspiked with dipentyl phthalate at 0.05 mg/kg

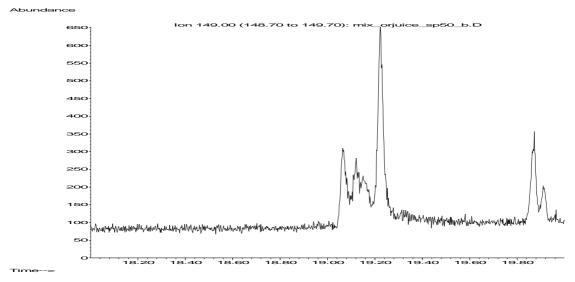
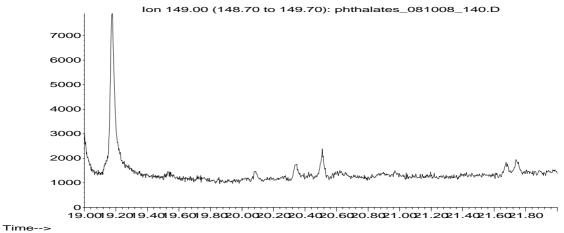
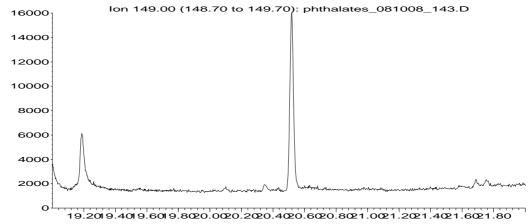
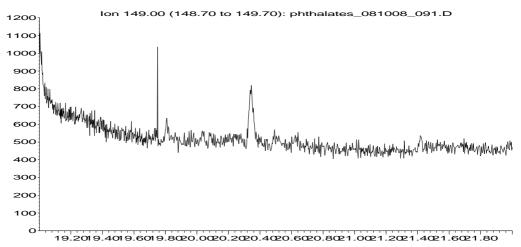



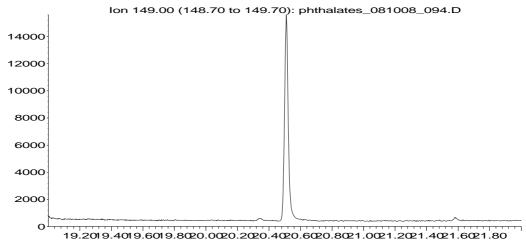
Figure 24. Di-n-hexyl phthalate spiked into foods at the target LOQ

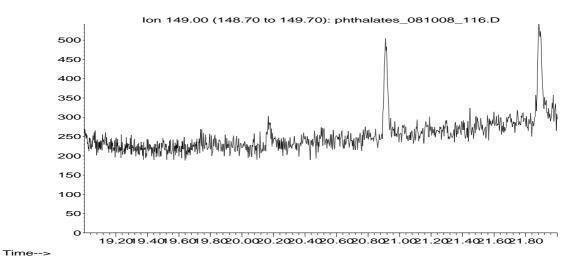

Abundance


.....

(b) Cheese overspiked with di-n-hexyl phthalate at 0.05 mg/kg

Abundance


Abundance

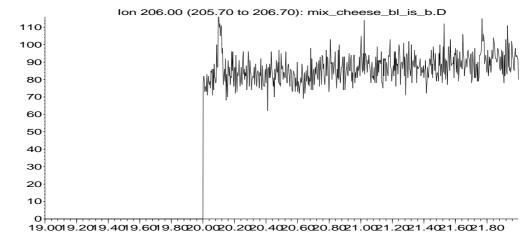

Time-->

(d) Pork mince overspiked with di-n-hexyl phthalate at 0.05 mg/kg

Abundance

Abundance

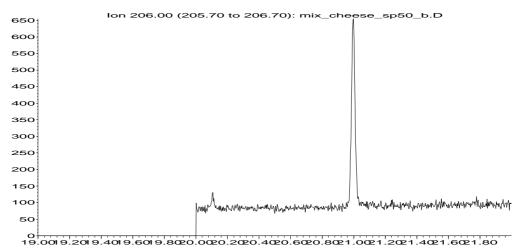
(f) Orange juice overspiked with di-n-hexyl phthalate at 0.05 mg/kg

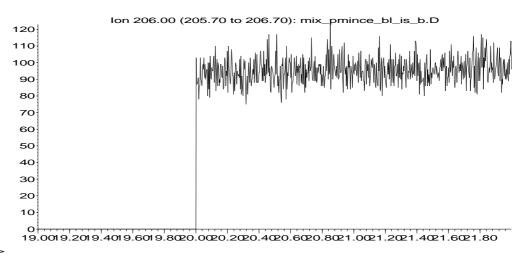

Abundance

lon 149.00 (148.70 to 149.70): phthalates_081008_120.D

11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
10000
10000

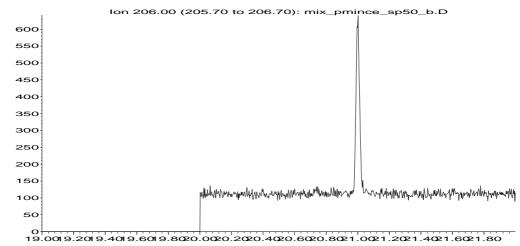
Figure 25. Benzyl butyl phthalate spiked into foods at the target LOQ

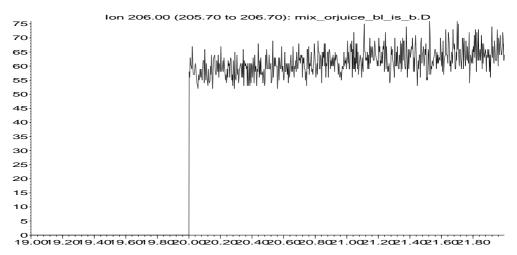

Abundance


Time-->

(b) Cheese overspiked with benzyl butyl phthalate at 0.05 mg/kg

Abundance


Abundance


Time-->

(d) Pork mince overspiked with benzyl butyl phthalate at 0.05 mg/kg

Abundance

Abundance

Time---

(f) Orange juice overspiked with benzyl butyl phthalate at 0.05 mg/kg

Abundance

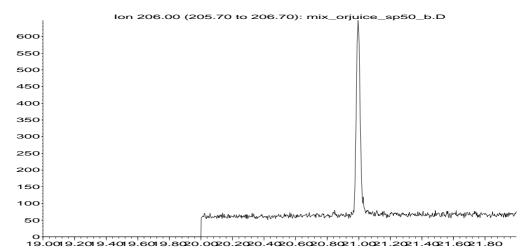
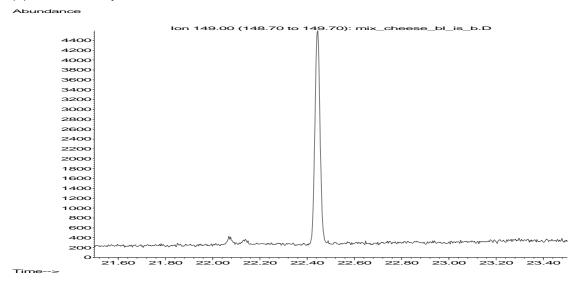
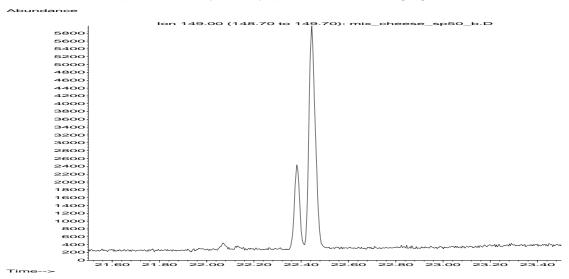
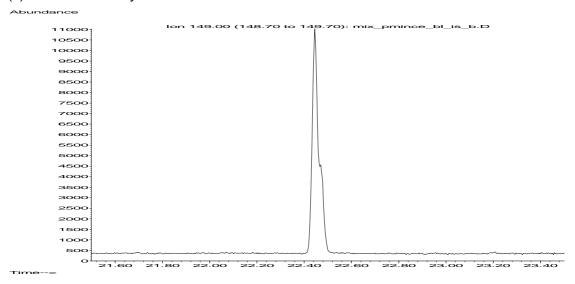
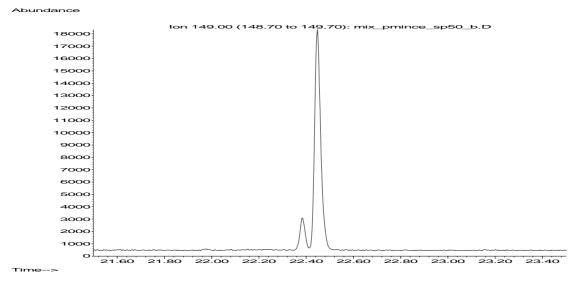
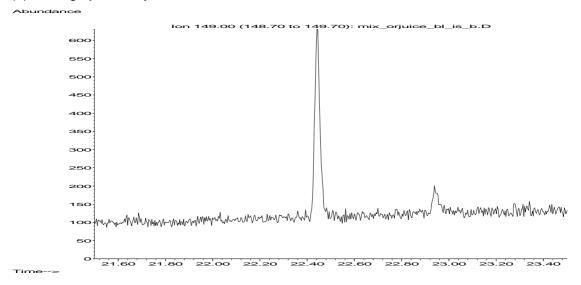





Figure 26. Dicyclohexyl phthalate spiked into foods at the target LOQ




(b) Cheese overspiked with dicyclohexyl phthalate at 0.05 mg/kg

(d) Pork mince overspiked with dicyclohexyl phthalate at 0.05 mg/kg

(f) Orange juice overspiked with dicyclohexyl phthalate at 0.05 mg/kg

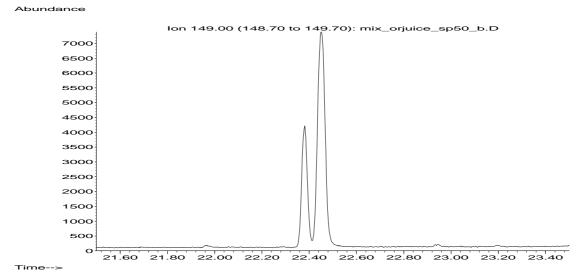
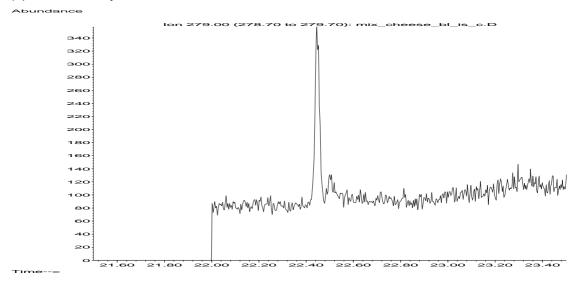
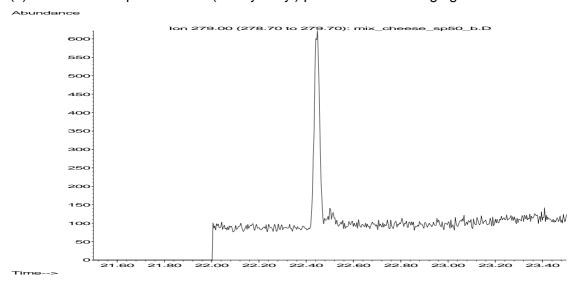
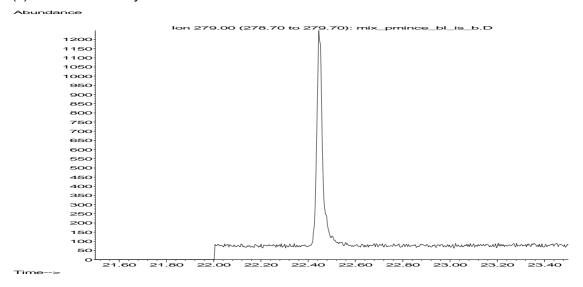
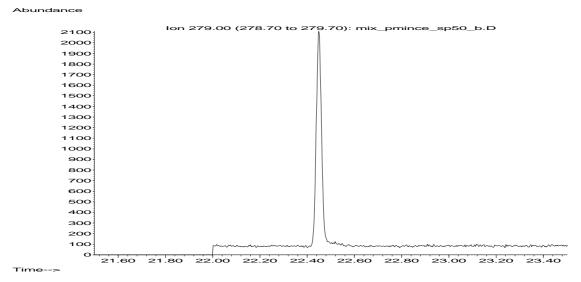
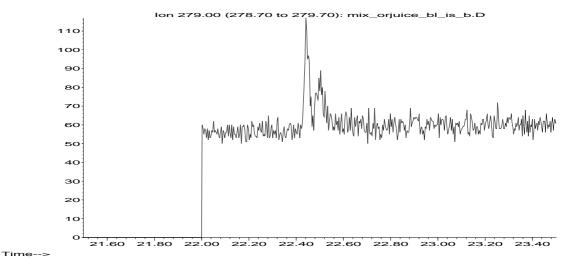





Figure 27. Di-(2-ethylhexyl) phthalate spiked into foods at the target LOQ



(b) Cheese overspiked with di-(2-ethylhexyl) phthalate at 0.05 mg/kg



(d) Pork mince overspiked with di-(2-ethylhexyl) phthalate at 0.05 mg/kg

Abundance

(f) Orange juice overspiked with di-(2-ethylhexyl) phthalate at 0.05 mg/kg

Abundance

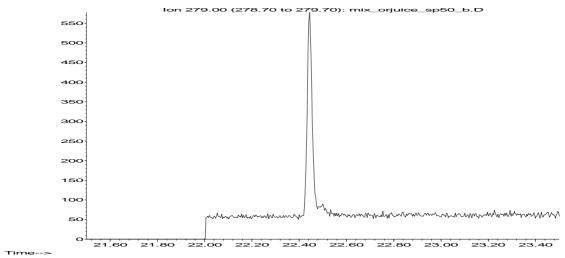
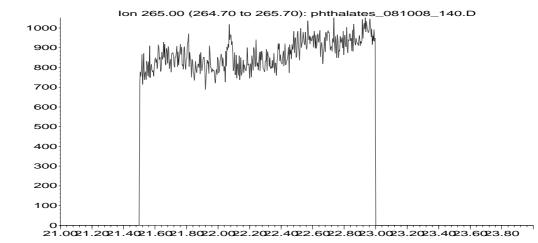
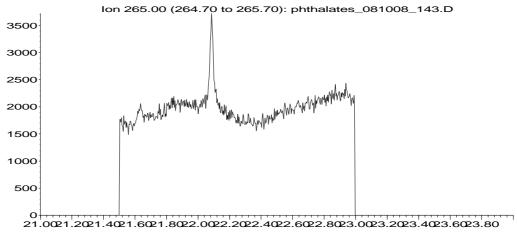
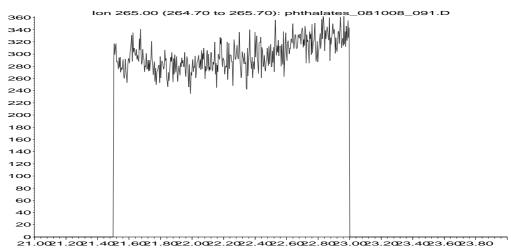



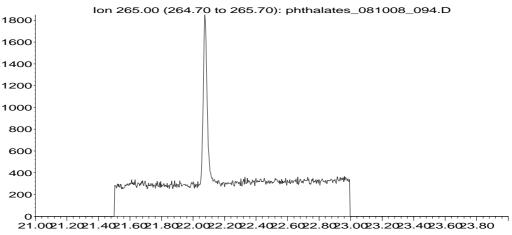
Figure 28. Di-n-heptyl phthalate spiked into foods at the target LOQ

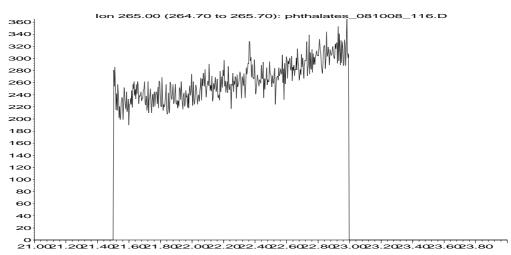

Abundance


Time-->

(b) Cheese overspiked with di-n-heptyl phthalate at 0.05 mg/kg

Abundance


Abundance


Time-->

(d) Pork mince overspiked with di-n-heptyl phthalate at 0.05 mg/kg

Abundance

Abundance

Time-->

(f) Orange juice overspiked with di-n-heptyl phthalate at 0.05 mg/kg

Abundance

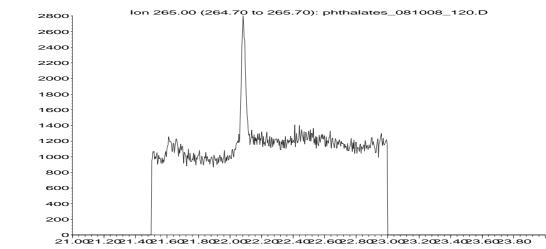
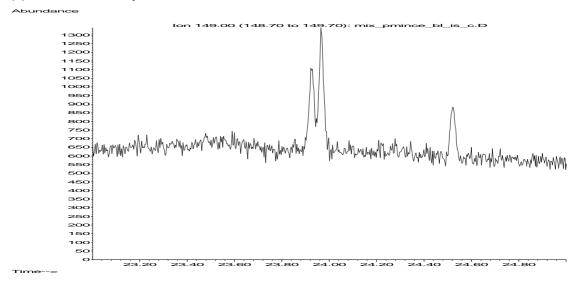
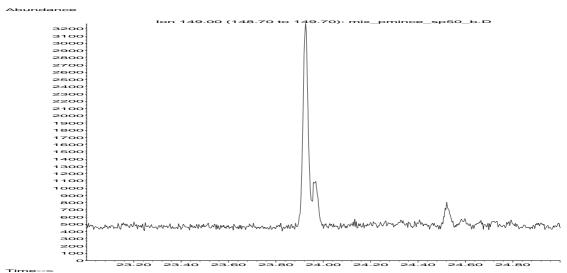
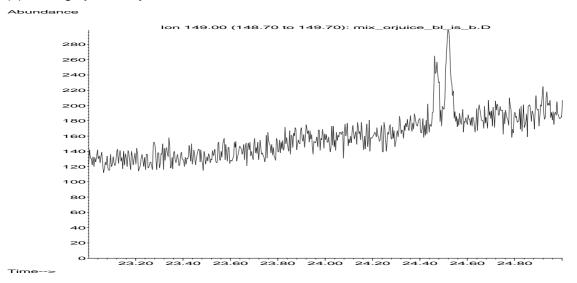



Figure 29. Di-n-octyl phthalate spiked into foods at the target LOQ


Abundance Ion 149.00 (148.70 to 149.70): mix_cheese_bl_is_b.D agriconales en established and company of the compa 24.00 Time-->


(b) Cheese overspiked with di-n-octyl phthalate at 0.05 mg/kg

23.80 24.00 24.20 24.40 23.60 Time-->

(d) Pork mince overspiked with di-n-octyl phthalate at 0.05 mg/kg

(f) Orange juice overspiked with di-n-octyl phthalate at 0.05 mg/kg

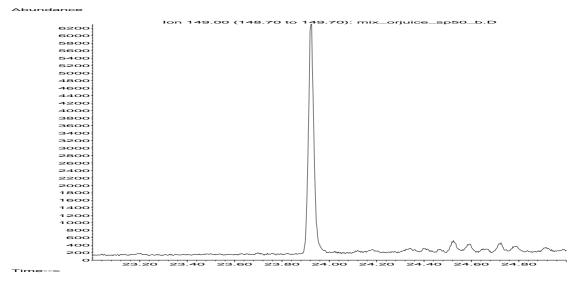
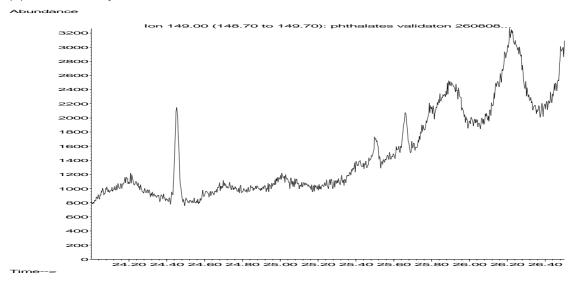
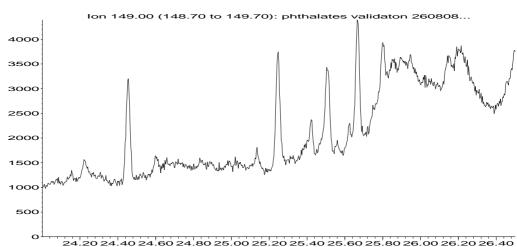
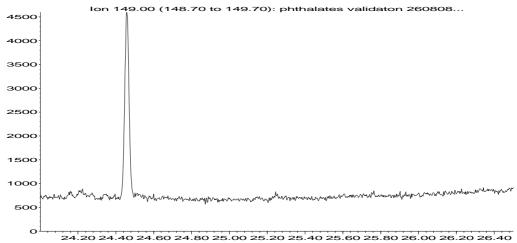
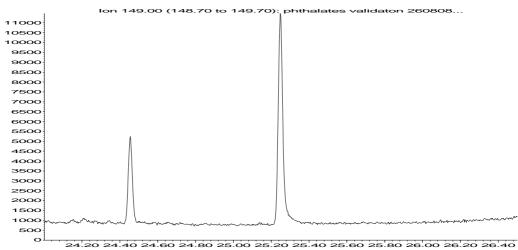




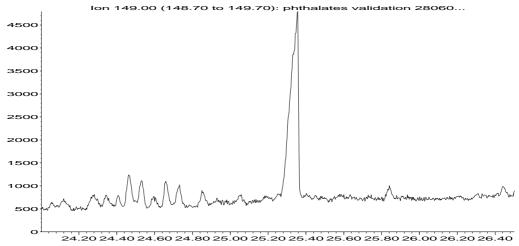
Figure 30. n-Octyl-n-decyl phthalate spiked into foods at the target LOQ



(b) Cheese overspiked with n-octyl-n-decyl phthalate at 0.05 mg/kg

Abundance


Abundance


Time-->

(d) Pork mince overspiked with n-octyl-n-decyl phthalate at 0.05 mg/kg

Abundance

Abundance

Time-->

(f) Orange juice overspiked with n-octyl-n-decyl phthalate at 0.05 mg/kg

Abundance

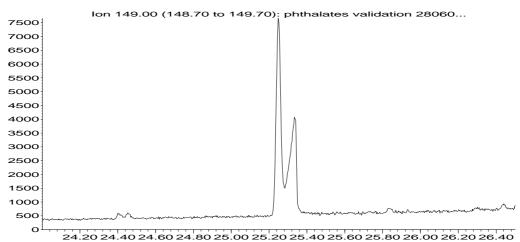
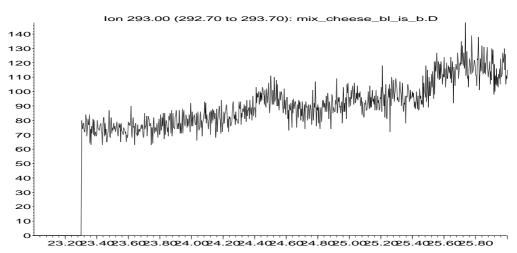
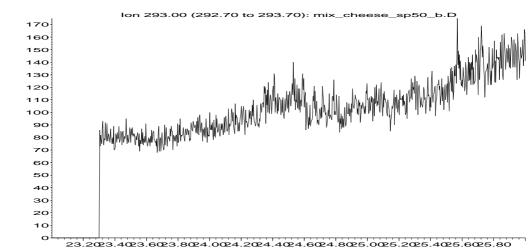
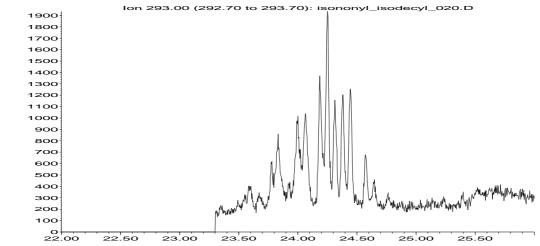



Figure 31. Diisononyl phthalate spiked into foods at the target LOQ

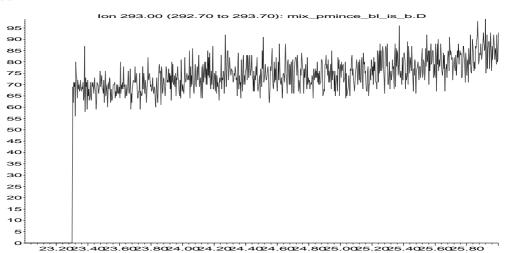

Abundance

Time-->

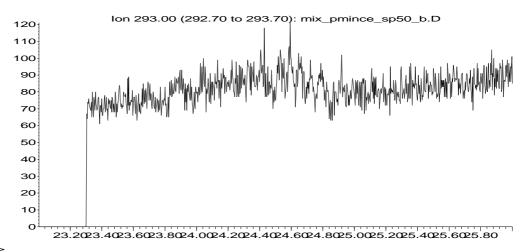

(b) Cheese overspiked with diisononyl phthalate at 0.05 mg/kg

Abundance

(c) Cheese overspiked with diisononyl phthalate at 1 mg/kg

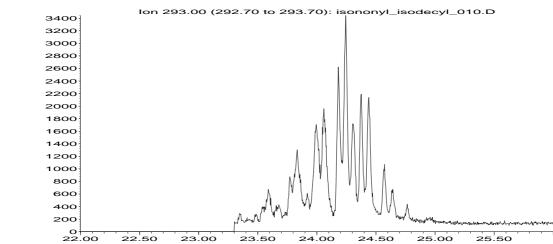

Abundance

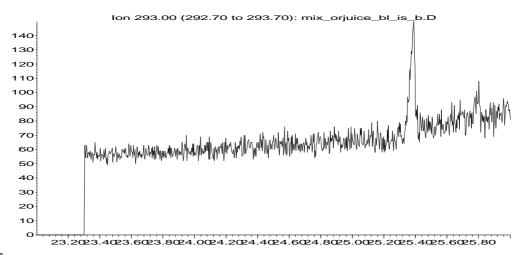
Time-->


(d) Pork mince only

Abundance

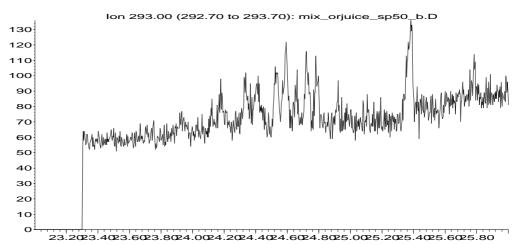
(e) Pork mince overspiked with diisononyl phthalate at 0.05 mg/kg


Abundance


Time-->

(f) Pork mince overspiked with diisononyl phthalate at 1 mg/kg

Abundance


Abundance

Time-->

(h) Orange juice overspiked with diisononyl phthalate at 0.05 mg/kg

Abundance

(i) Orange juice overspiked with diisononyl phthalate at 1 mg/kg

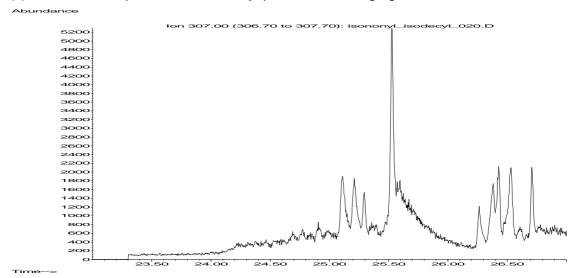
Abundance Ion 293.00 (292.70 to 293.70): isononyl_isodecyl_030.D 26000 24000 22000 12000 10000 8000 6000 4000 22.00 25.00 25.50 23.00 22.50 24.00

Figure 32. Diisodecyl phthalate spiked into foods at the target LOQ

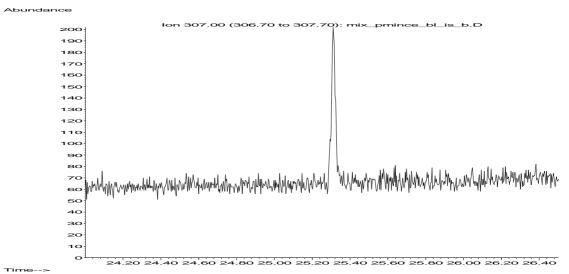
Abundance

Ion 307.00 (306.70 to 307.70): mix_cheese_bl_is_b.D

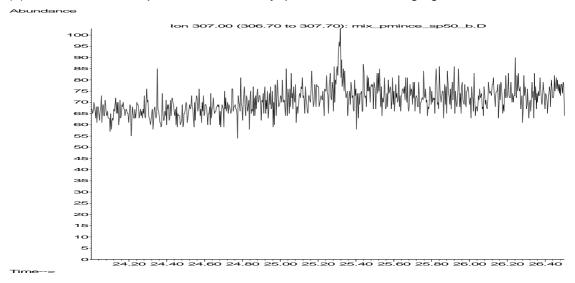
550
450
400
350
300
250
100
100
100
24.20 24.40 24.60 24.80 25.00 25.20 25.40 25.60 25.80 26.00 26.20 26.40

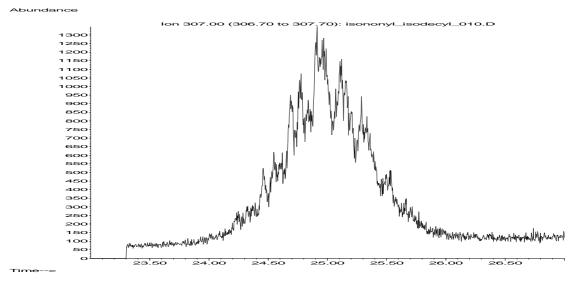

(b) Cheese overspiked with diisodecyl phthalate at 0.05 mg/kg

Abundance

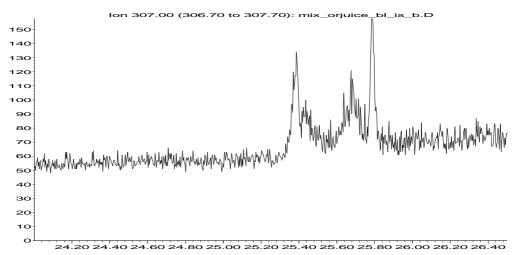

Ion 307.00 (306.70 to 307.70): mix_cheese_sp50_b.D

550
500
450
400
350
250
200
150
100
24.20 24.40 24.60 24.80 25.00 25.20 25.40 25.60 25.80 26.00 26.20 26.40

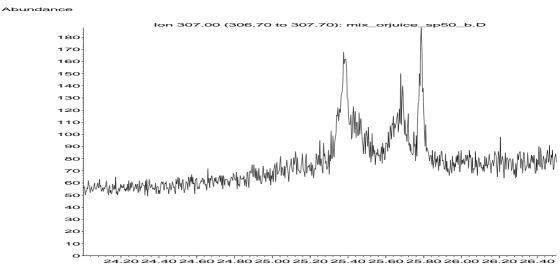

(c) Cheese overspiked with diisodecyl phthalate at 1 mg/kg


(d) Pork mince only

(e) Pork mince overspiked with diisodecyl phthalate at 0.05 mg/kg



(f) Pork mince overspiked with diisodecyl phthalate at 1 mg/kg



(g) Orange juice only

Abundance

(h) Orange juice overspiked with diisodecyl phthalate at 0.05 mg/kg

(i) Orange juice overspiked with diisodecyl phthalate at 1 mg/kg

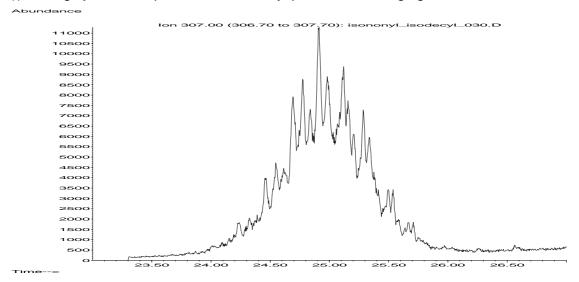
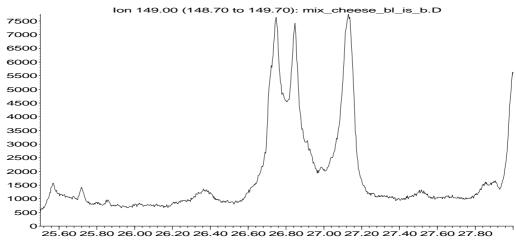
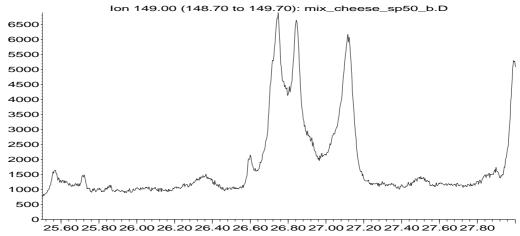



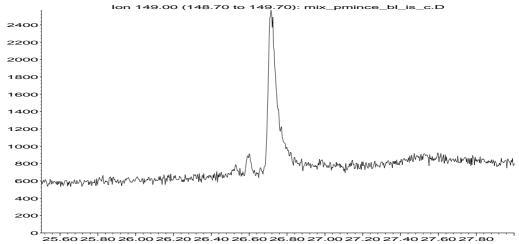
Figure 33. Di-n-decyl phthalate spiked into foods at the target LOQ

(a) Cheese only


Abundance

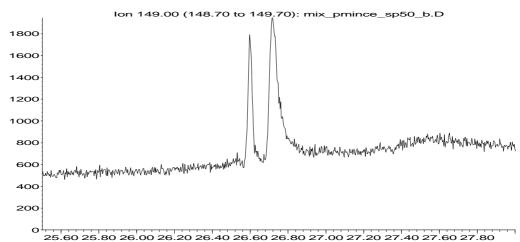
Time-->

(b) Cheese overspiked with di-n-decyl phthalate at 0.05 mg/kg


Abundance

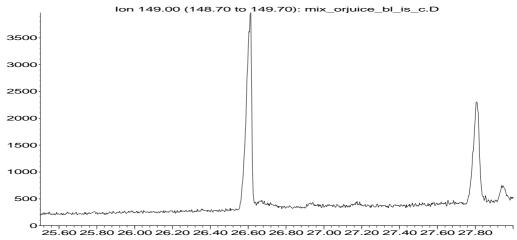
Time-->

(c) Pork mince only

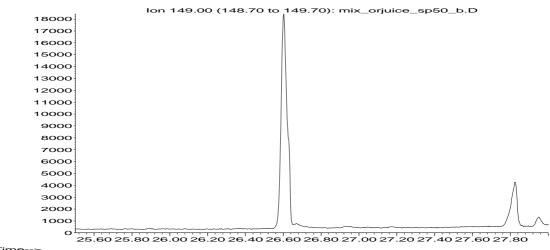

Abundance

Time-->

(d) Pork mince overspiked with di-n-decyl phthalate at 0.05 mg/kg


Abundance

Time-->


(e) Orange juice only

Abundance

(f) Orange juice overspiked with di-n-decyl phthalate at 0.05 mg/kg

Abundance

Time-->

Figure 34. Calibration graph for dimethyl phthalate in acetonitrile

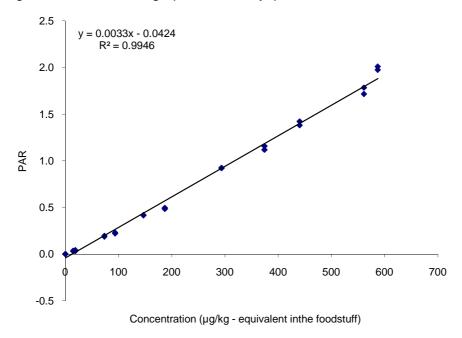


Figure 35. Calibration graph for diethyl phthalate in acetonitrile

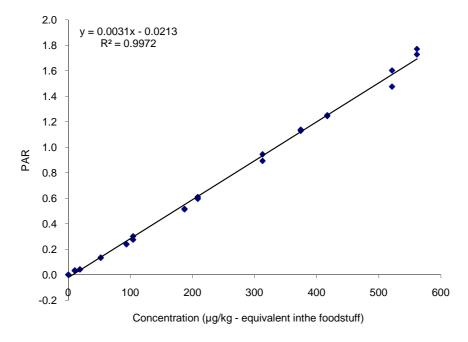


Figure 36. Calibration graph for diisopropyl phthalate in acetonitrile

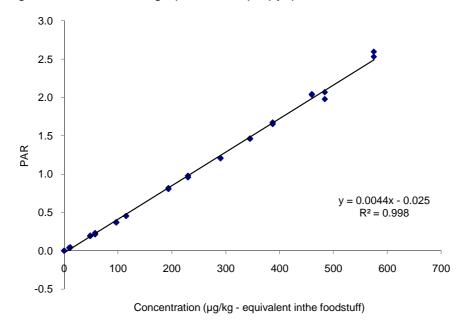


Figure 37. Calibration graph for diallyl phthalate in acetonitrile

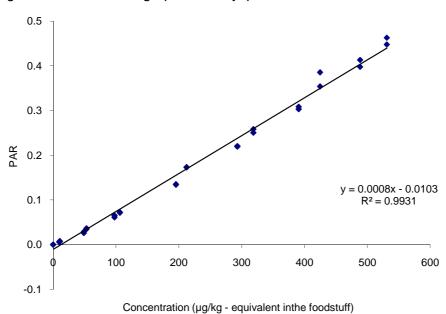


Figure 38. Calibration graph for diisobutyl phthalate in acetonitrile

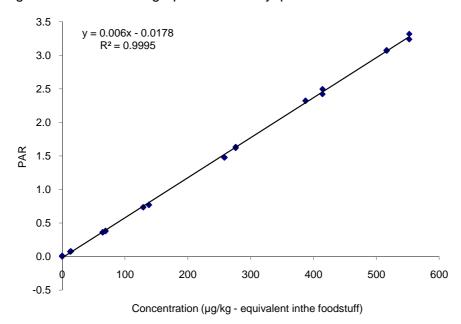


Figure 39. Calibration graph for dibutyl phthalate in acetonitrile

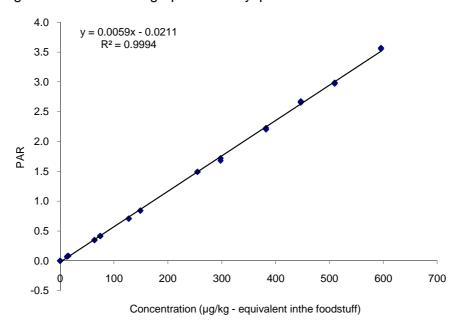


Figure 40. Calibration graph for dipentyl phthalate in acetonitrile

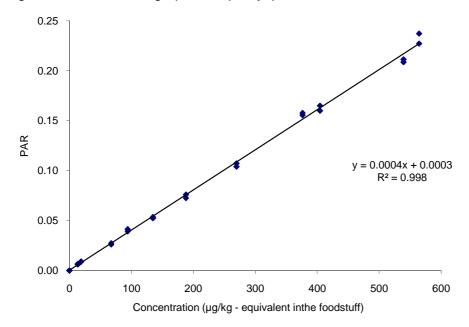


Figure 41. Calibration graph for di-n-hexyl phthalate in acetonitrile (concentration corrected to 17% of the total mass – see text)

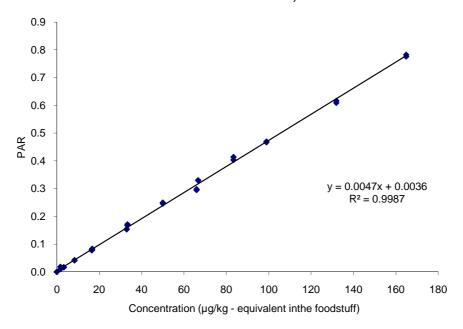


Figure 42. Calibration graph for benzyl butyl phthalate in acetonitrile

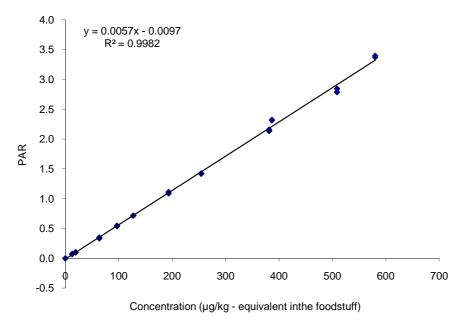
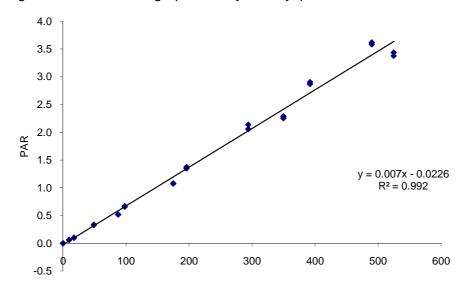
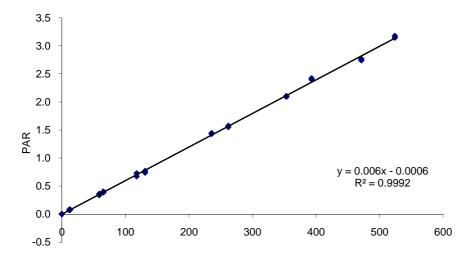




Figure 43. Calibration graph for dicyclohexyl phthalate in acetonitrile

Concentration ($\mu g/kg$ - equivalent in he foodstuff)

Figure 44. Calibration graph for di-(2-ethylhexyl) phthalate in acetonitrile

Concentration (µg/kg - equivalent in he foodstuff)

Figure 45. Calibration graph for di-n-heptyl phthalate in acetonitrile

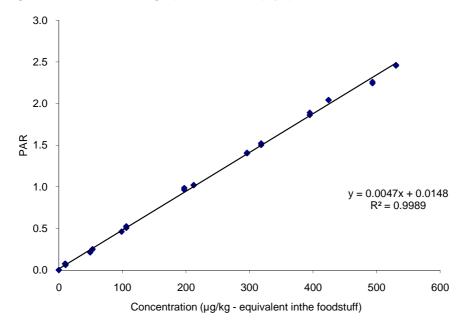
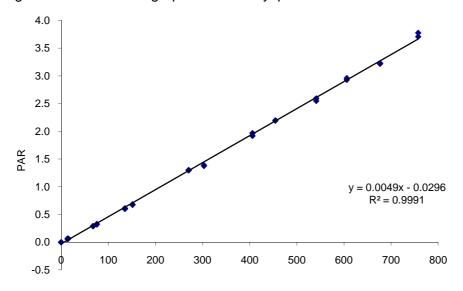



Figure 46. Calibration graph for di-n-octyl phthalate in acetonitrile

Concentration (µg/kg - equivalent inthe foodstuff)

Figure 47. Calibration graph for n-octyl-n-decyl phthalate in acetonitrile (concentration corrected to 58% of the total mass – see text)

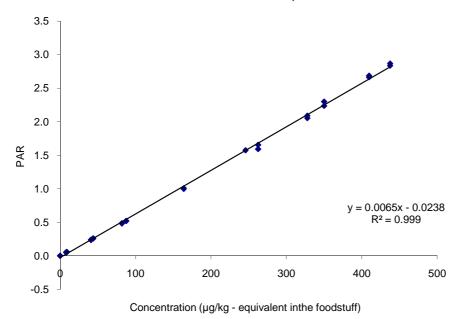


Figure 48. Calibration graph for diisononyl phthalate in acetonitrile

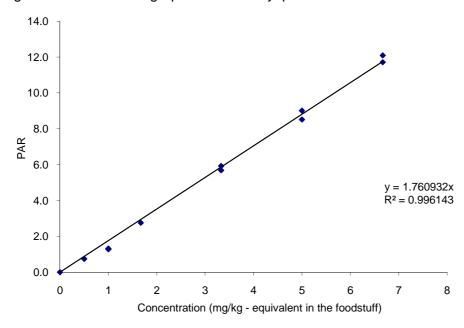


Figure 49. Calibration graph for diisodecyl phthalate in acetonitrile

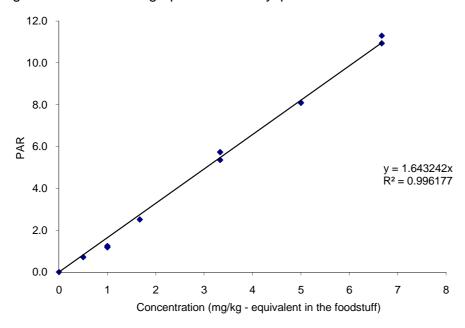
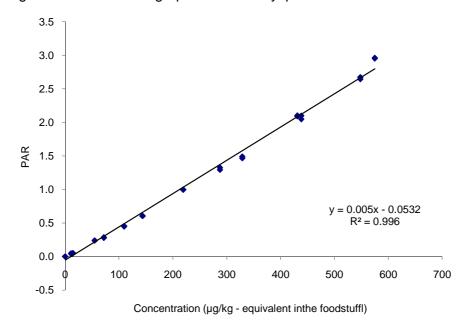
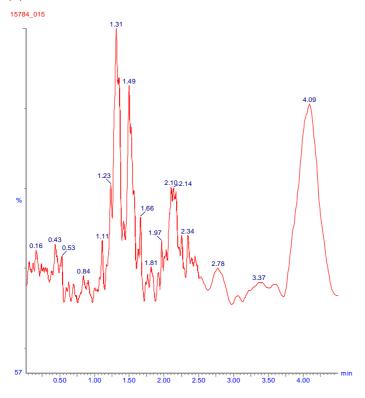
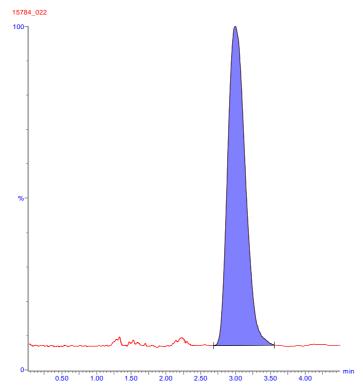
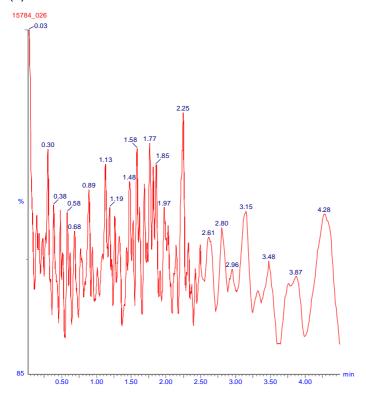
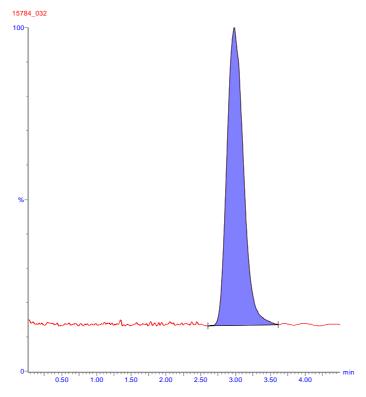
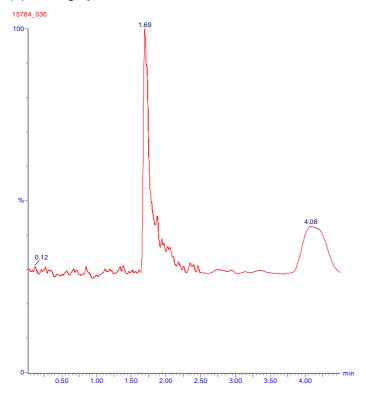


Figure 50. Calibration graph for di-n-decyl phthalate in acetonitrile


Figure 51. Monoisopropyl phthalate spiked into foods at the target LOQ

(f) Orange juice + overspike at 0.05 mg/kg

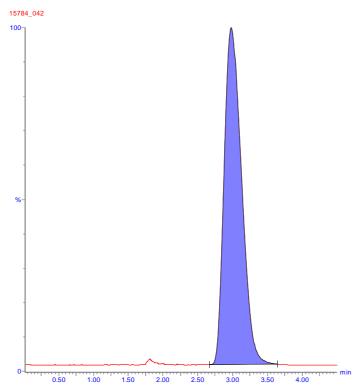
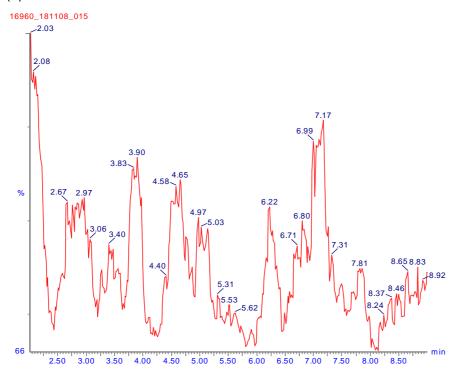
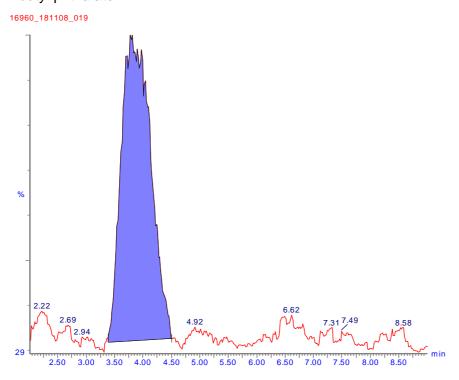
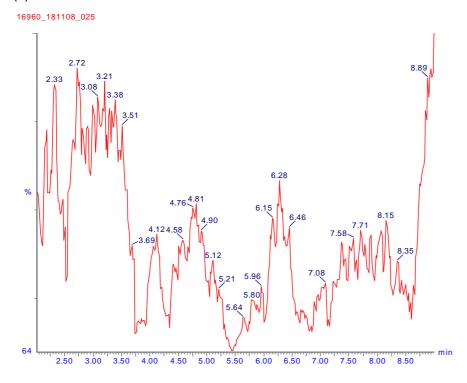
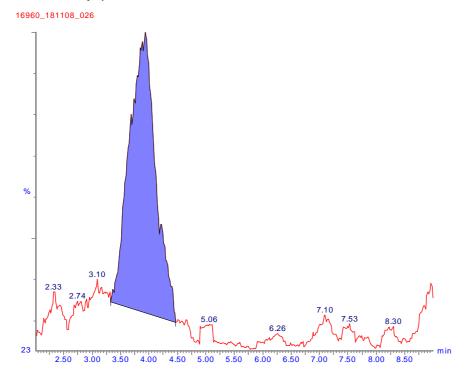
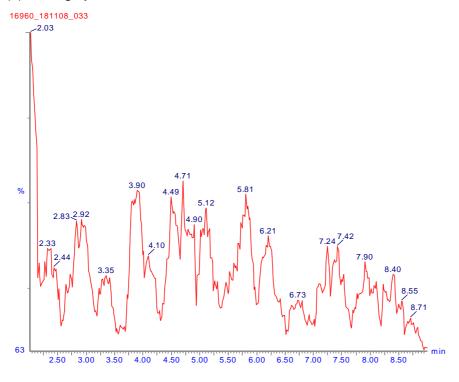





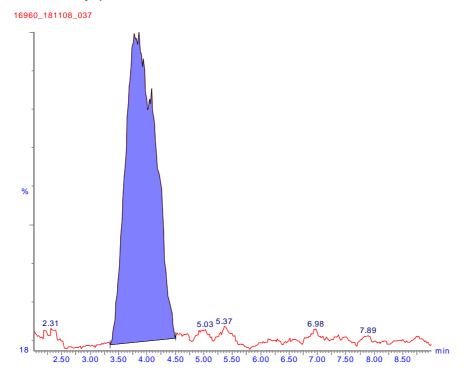
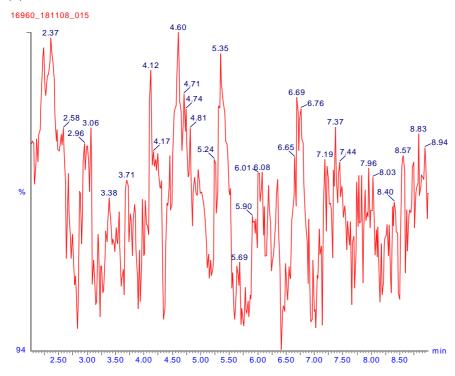
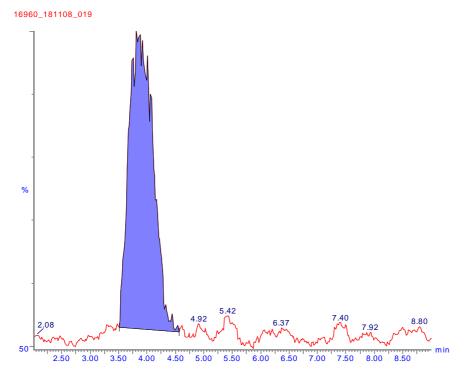
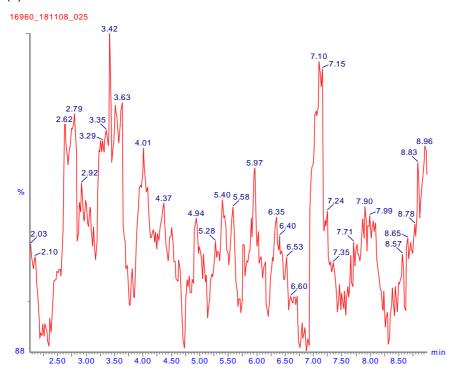
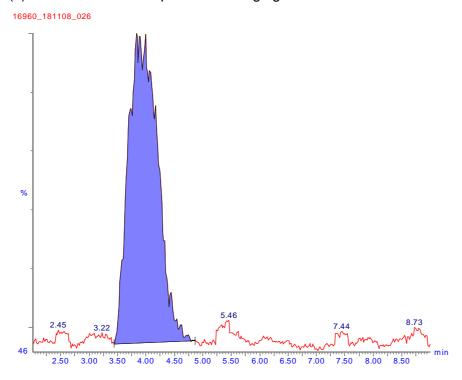
Figure 52. Total monoisobutyl phthalate and mono-n-butyl phthalate spiked into foods at the target LOQ

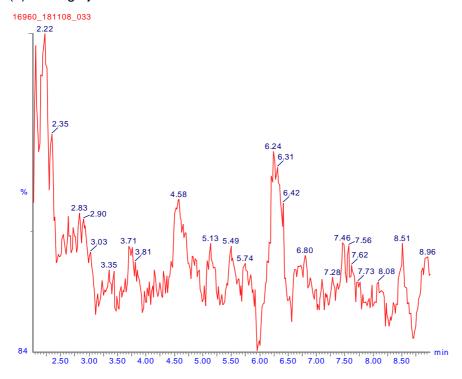



(b) Cheese + overspike at 0.05 mg/kg monoisobutyl phthalate and 0.05 mg/kg monon-butyl phthalate

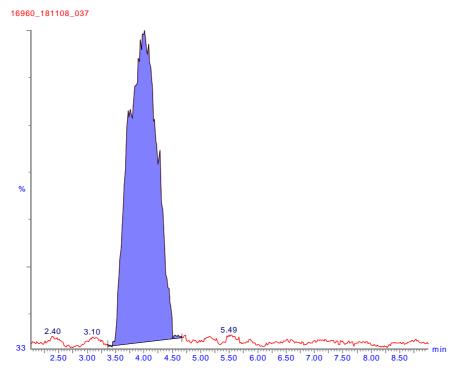
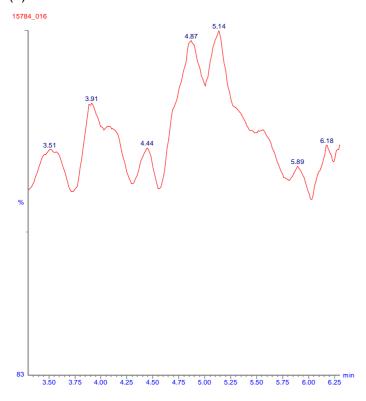
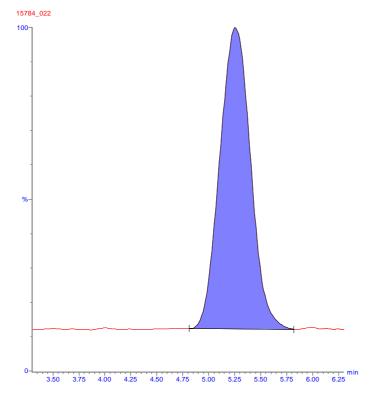
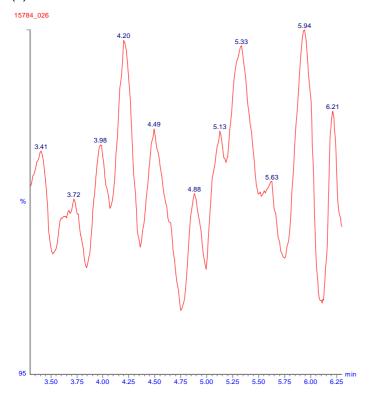
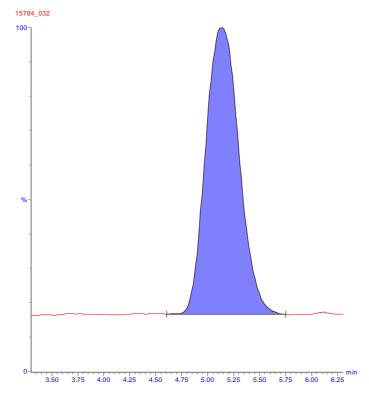
(d) Pork mince + overspike at 0.05 mg/kg monoisobutyl phthalate and 0.05 mg/kg mono-n-butyl phthalate

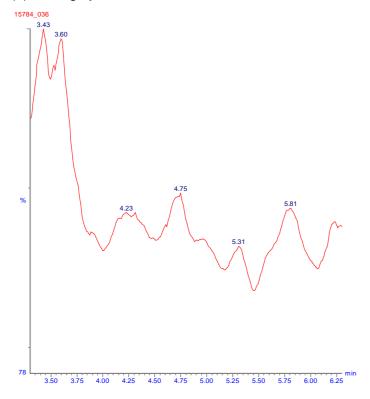
(f) Orange juice + overspike at 0.05 mg/kg monoisobutyl phthalate and 0.05 mg/kg mono-n-butyl phthalate

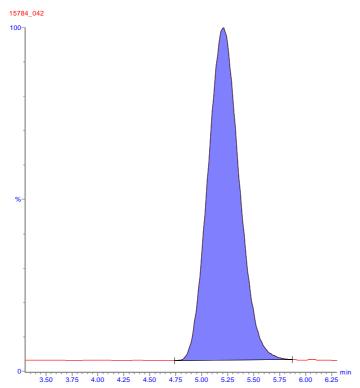
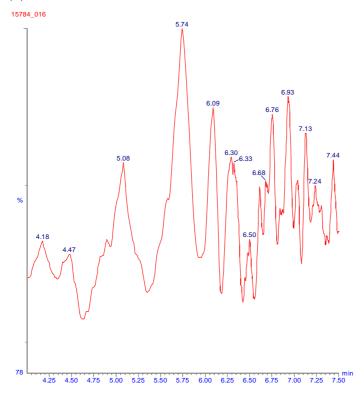
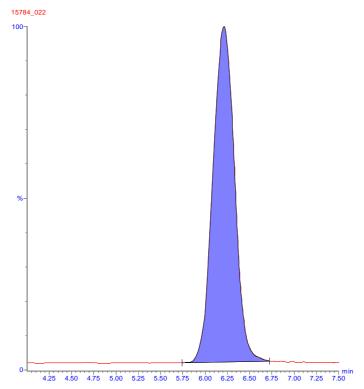
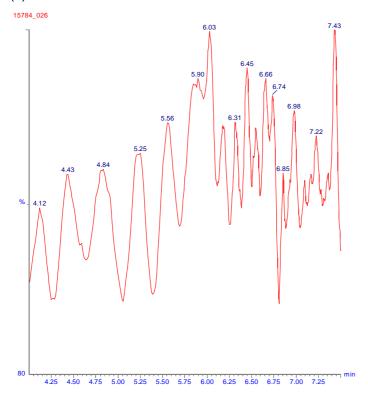
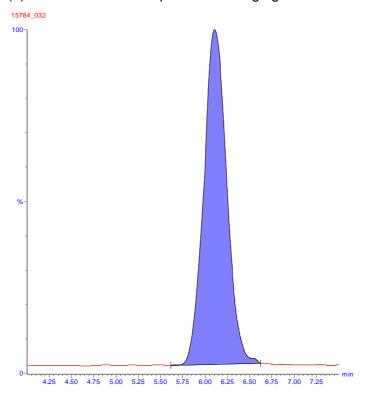

Figure 53. Mono-n-butyl phthalate spiked into foods at the target LOQ

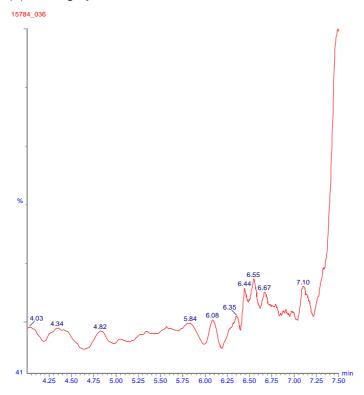
(f) Orange juice + overspike at 0.05 mg/kg

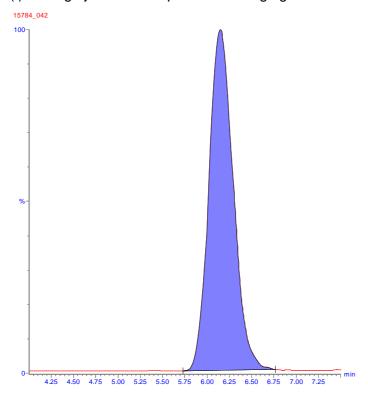
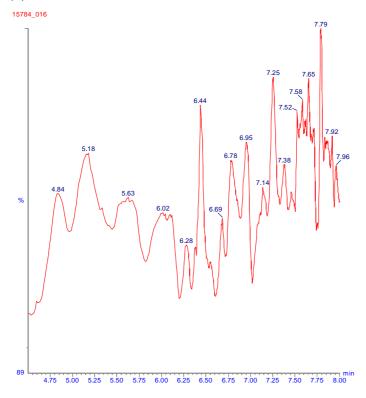
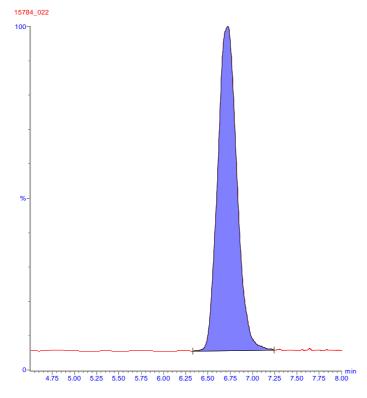
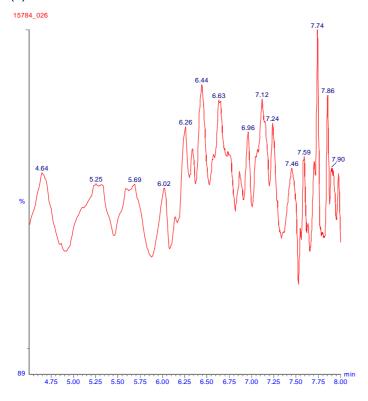
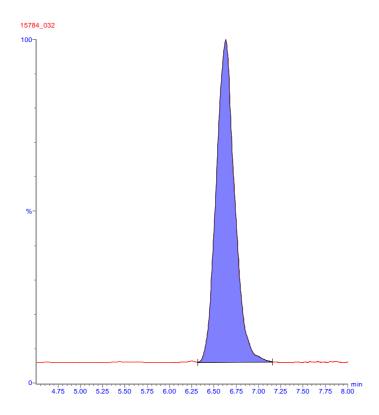

Figure 54. Monobenzyl phthalate spiked into foods at the target LOQ

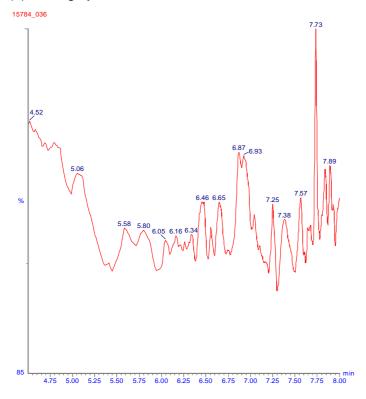
(f) Orange juice + overspike at 0.05 mg/kg


Figure 55. Monocyclohexyl phthalate spiked into foods at the target LOQ

(f) Orange juice + overspike at 0.05 mg/kg


Figure 56. Mono-n-pentyl phthalate spiked into foods at the target LOQ

(f) Orange juice + overspike at 0.05 mg/kg

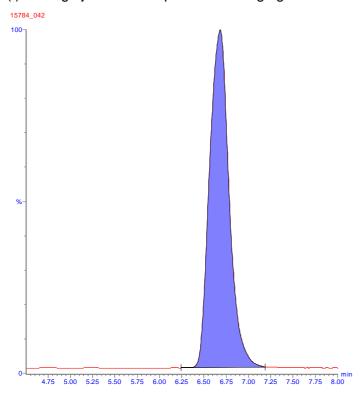
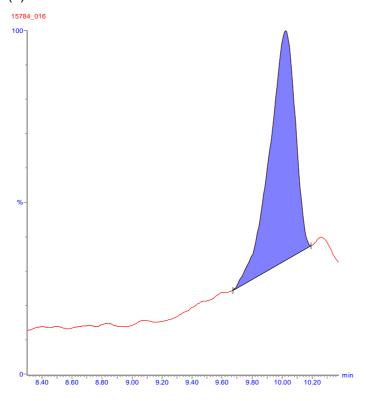
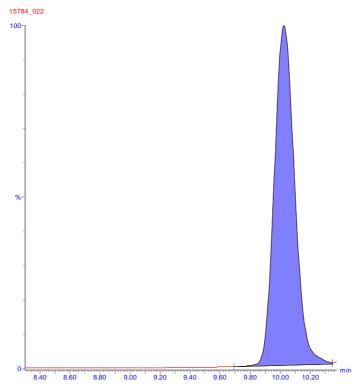
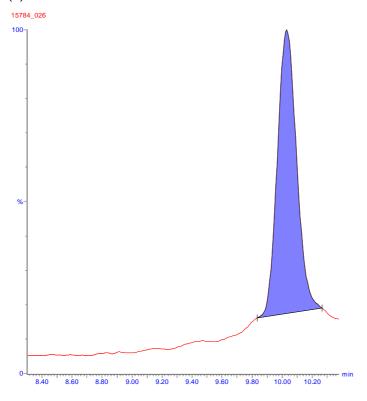
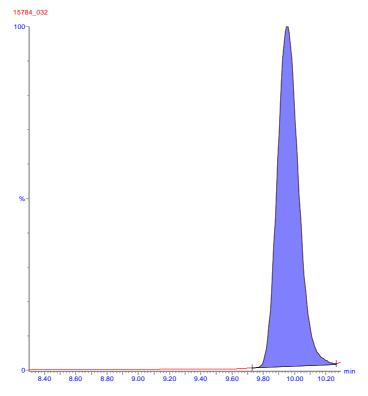
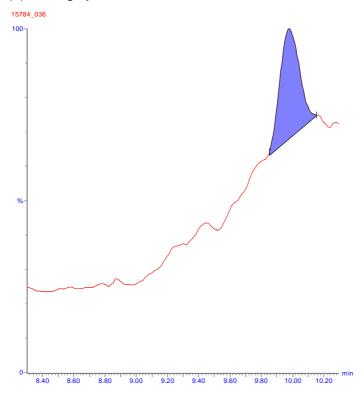






Figure 57. Mono-2-ethylhexyl phthalate spiked into foods at the target LOQ



(e) Orange juice blank

(f) Orange juice + overspike at 0.05 mg/kg

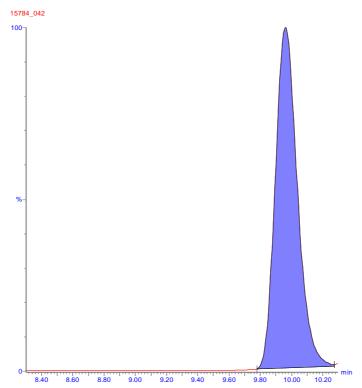
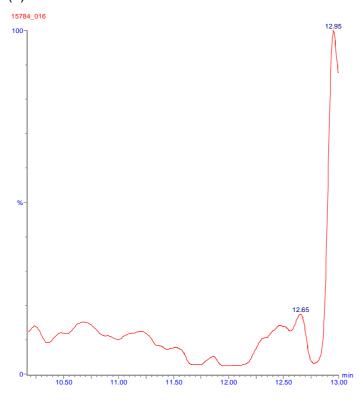
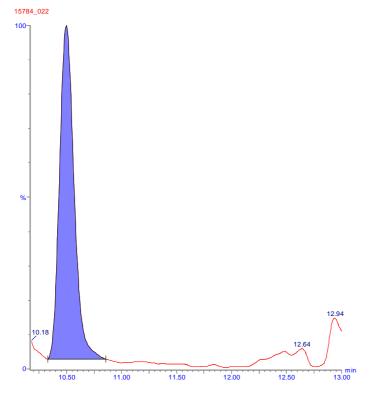
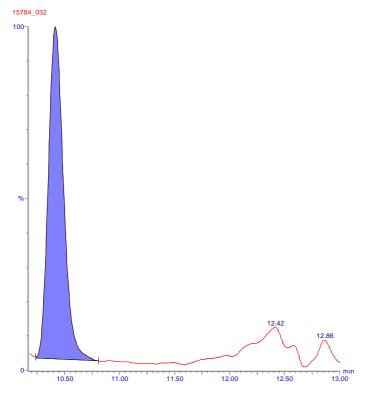
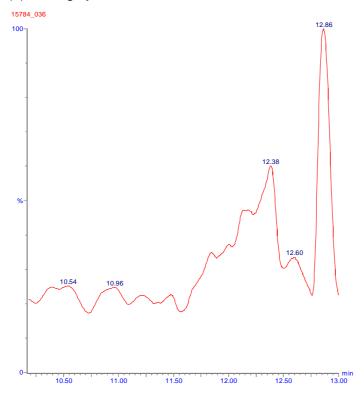




Figure 58. Mono-n-octyl phthalate spiked into foods at the target LOQ

(a) Cheese blank


(b) Cheese + overspike at 0.05 mg/kg


(c) Pork mince blank

(d) Pork mince + overspike at 0.05 mg/kg

(e) Orange juice blank

(f) Orange juice + overspike at 0.05 mg/kg

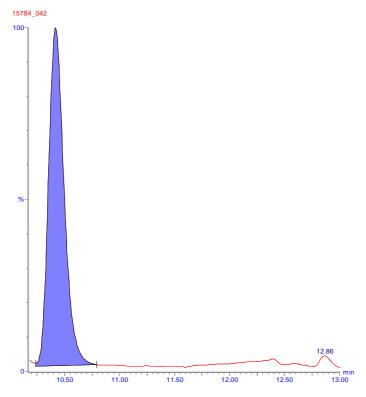
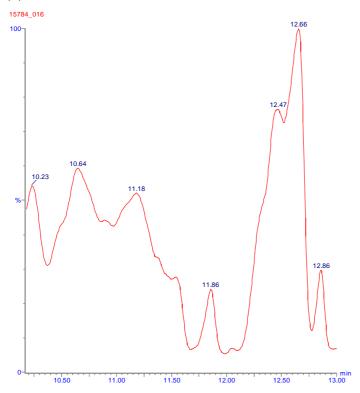
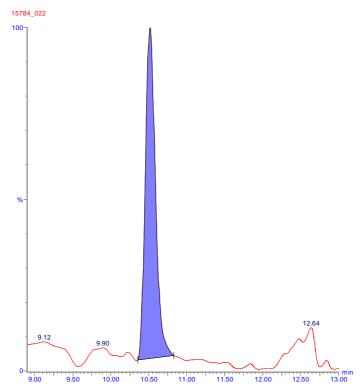
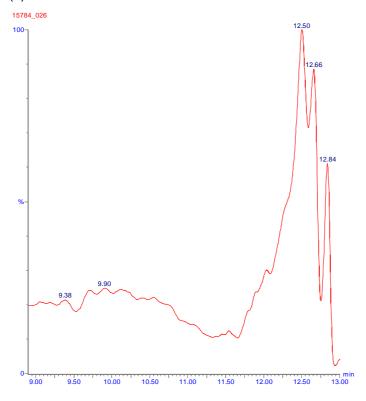
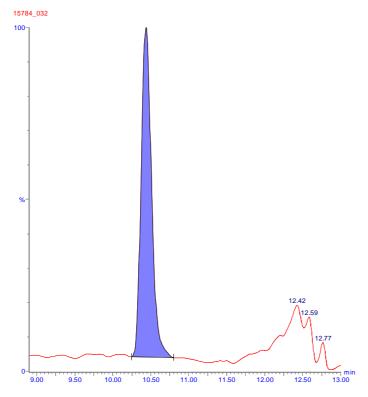
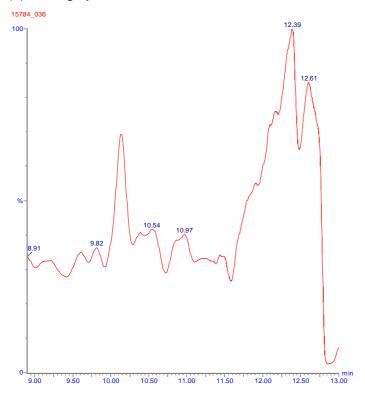




Figure 59. Monoisononyl phthalate spiked into foods at the target LOQ


(a) Cheese blank


(b) Cheese + overspike at 0.05 mg/kg


(c) Pork mince blank

(d) Pork mince + overspike at 0.05 mg/kg

(e) Orange juice blank

(f) Orange juice + overspike at 0.05 mg/kg

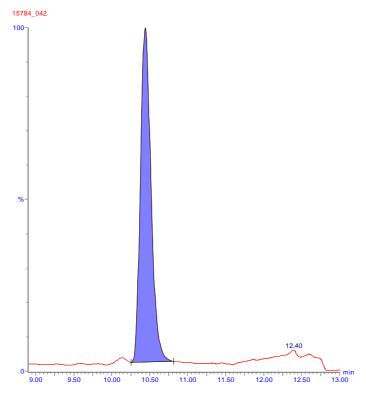


Figure 60. Calibration graph for monoisopropyl phthalate in acetonitrile

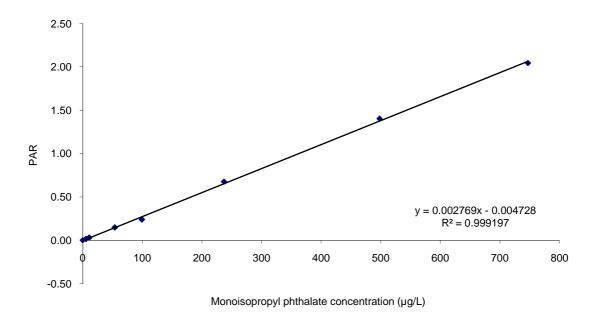


Figure 61. Calibration graph for total monoisobutyl phthalate and mono-n-butyl phthalate in acetonitrile

Figure 62. Calibration graph for mono-n-butyl phthalate in acetonitrile

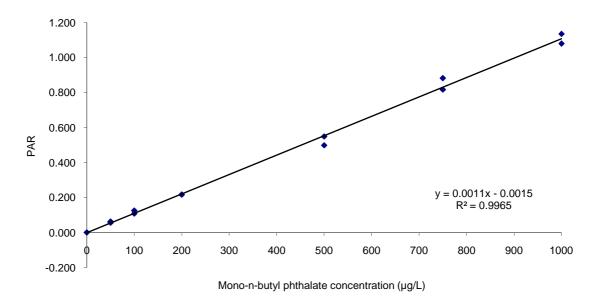


Figure 63. Calibration graph for monobenzyl phthalate in acetonitrile

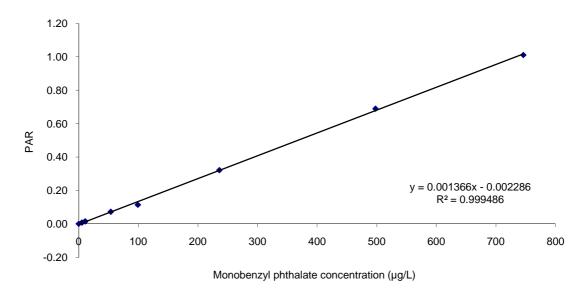


Figure 64. Calibration graph for monocyclohexyl phthalate in acetonitrile

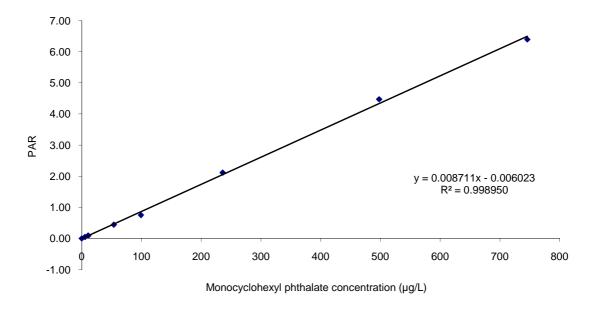


Figure 65. Calibration graph for mono-n-pentyl phthalate in acetonitrile

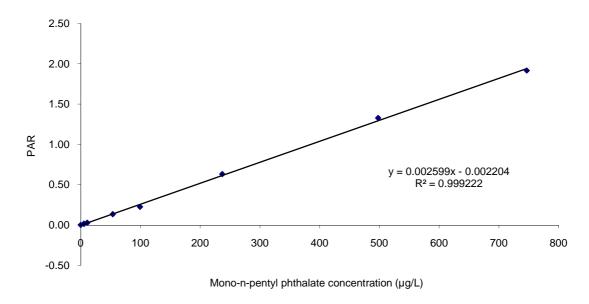


Figure 66. Calibration graph for mono-(2-ethylhexyl) phthalate in acetonitrile

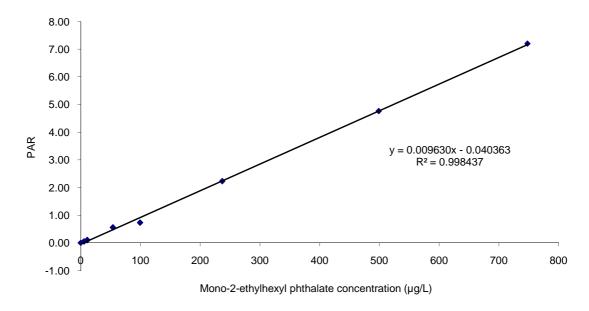


Figure 67. Calibration graph for mono-n-octyl phthalate in acetonitrile

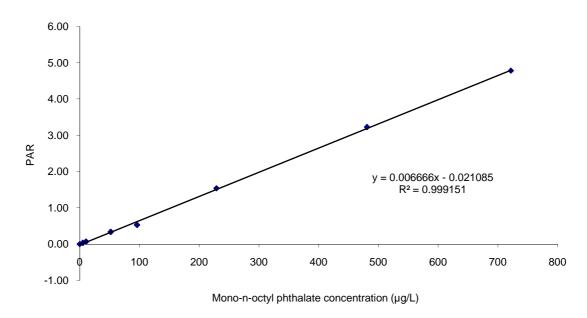


Figure 68. Calibration graph for monoisononyl phthalate in acetonitrile

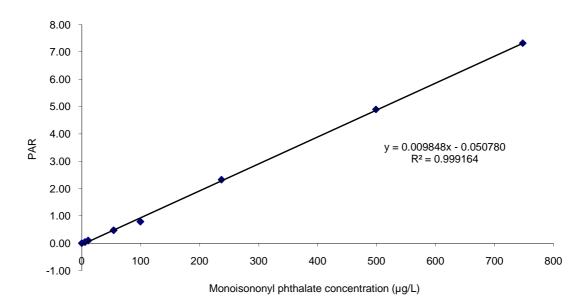
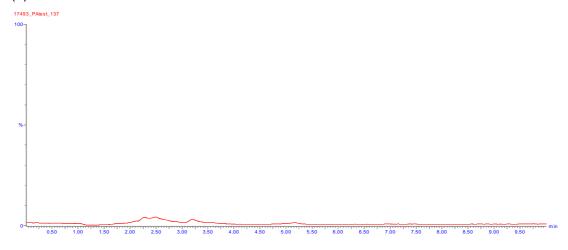
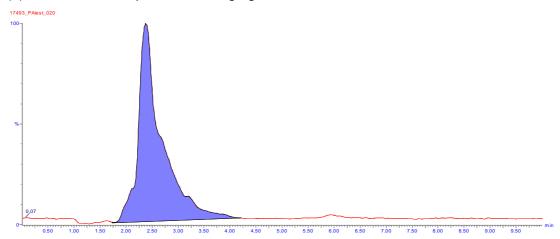
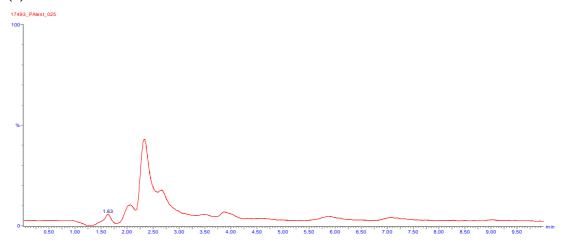
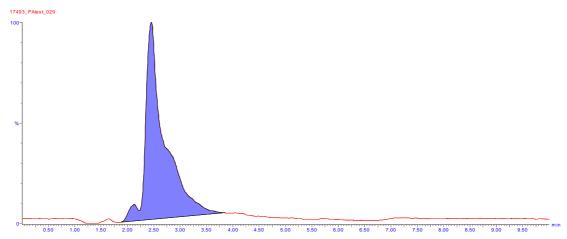
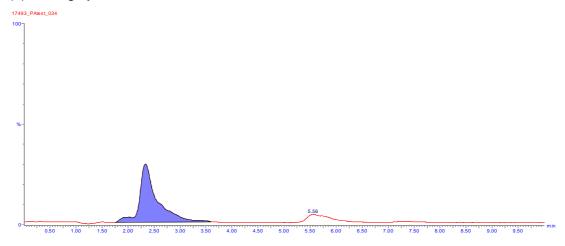




Figure 69. Phthalic acid spiked into foods at the target LOQ


(a) Cheese blank


(b) Cheese + overspike at 0.05 mg/kg


(c) Pork mince blank

(d) Pork mince + overspike at 0.05 mg/kg

(e) Orange juice blank

(f) Orange juice + overspike at 0.05 mg/kg

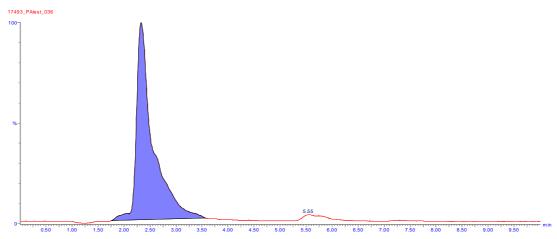


Figure 70. Calibration graph for phthalic acid in acetonitrile

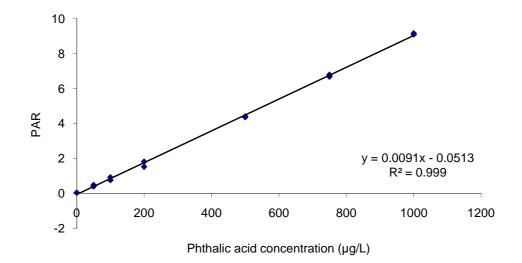
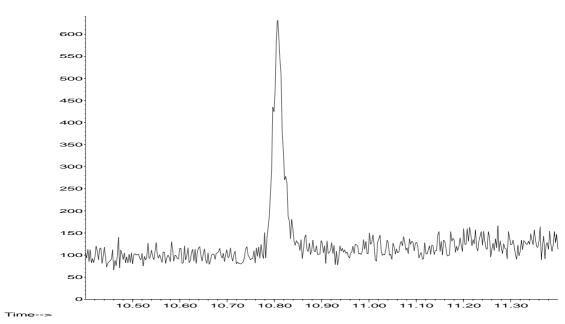
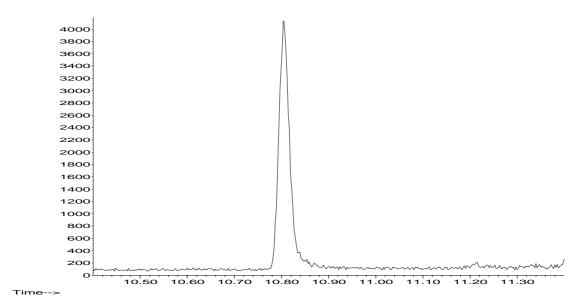
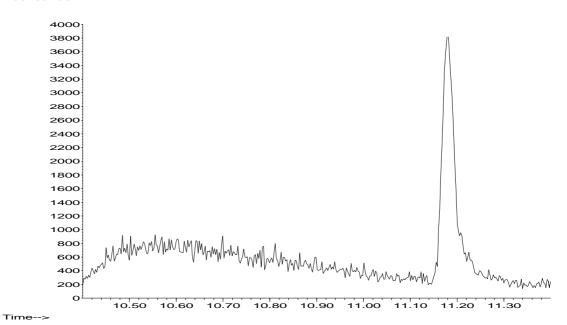



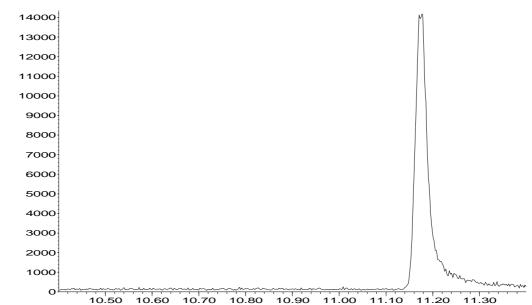
Figure 71. GC-MS selected ion chromatogram for dimethyl phthalate


(a) Cheese blank

Abundance

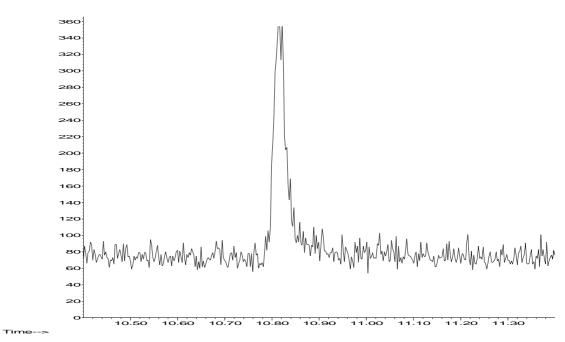

(b) Cheese + overspike at 420 µg/kg

Abundance


(c) Pork mince blank

Abundance

(d) Pork mince + overspike at 420 μg/kg


Abundance

Time-->

(e) Orange juice blank

Abundance

(f) Orange juice + overspike at 420 µg/kg

Abundance

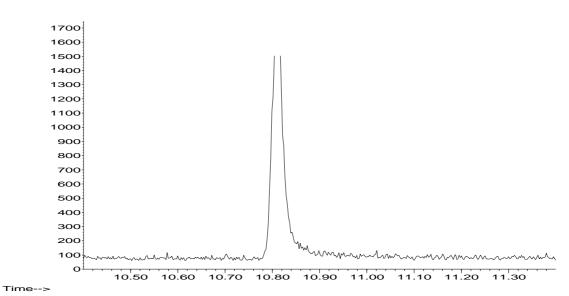


Figure 72. Calibration graph for dimethyl phthalate in acetonitrile

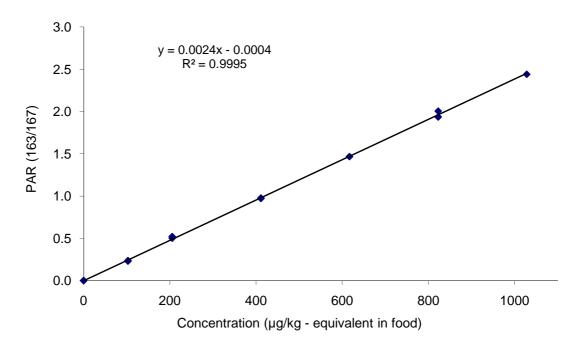


Figure 73. Diisobutyl phthalate concentrations in the lasagne sheets taken at different distances from the packaging

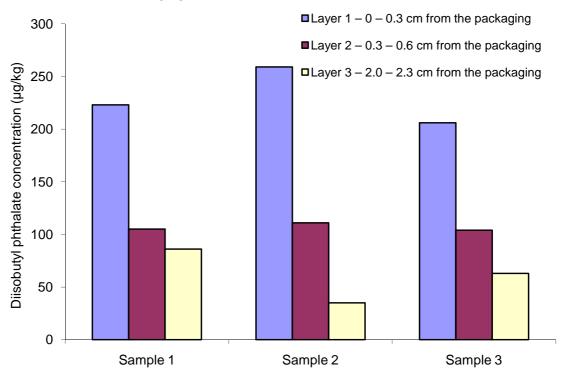


Table 1. Phthalate diester - ions monitored

Phthalate diester	lons monitored (m/z)
Dimethyl phthalate	77,163, 194
Diethyl phthalate	149, 177, 222
Diisopropyl phthalate	149, 192, 209
Diallyl phthalate	104, 149, 189
Diisobutyl phthalate	149, 205, 223
Di-n-butyl phthalate	149, 205, 223
Di-n-pentyl phthalate	149, 219, 237
Di-n-hexyl phthalate	149, 233, 251
Benzyl butyl phthalate	149, 206
Dicyclohexyl phthalate	149, 167, 249
Di-(2-ethylhexyl) phthalate	149, 167, 279
Di-n-heptyl phthalate	149, 167, 265
Di-n-octyl phthalate	149, 167, 279
n-Octyl-n-decyl phthalate	149, 279, 307
Diisononyl phthalate	149, 167, 293
Diisodecyl phthalate	149, 167, 307
Di-n-decyl phthalate	149, 167, 307

Table 2. Limits of detection and quantification of the phthalate diesters in the three food matrices tested

ANALYTE	LOD (µg/kg) in cheese	LOQ (µg/kg) in cheese	LOD (µg/kg) in pork mince	LOQ (µg/kg) in pork mince	LOD (µg/kg) in orange juice	LOQ (µg/kg) in orange juice
Dimethyl phthalate	2.0	6.8	2.0	6.6	3.4	11.5
Diethyl phthalate	1.5	5.1	1.6	5.4	1.7	5.5
Diisopropyl phthalate	0.9	2.7	0.9	2.7	1.6	5.2
Diallyl phthalate	11.1 *	37.0 *	7.3	24.3	7.1	23.7
Diisobutyl phthalate	11.1 #	37.0 #	11.1 #	37.0 #	11.1 #	37.0 #
Di-n-butyl phthalate	4.2 #	14.0 #	4.2 #	14.0 #	4.2 #	14.0 #
Dipentyl phthalate	4.8 ◀	16.0 ◀	1.3 *◀	4.3 *◀	1.1 ◀	3.7 ◀
Di-n-hexyl phthalate	3.2	10.6	0.8	2.5	3.8	12.8
Benzyl butyl phthalate	11.5	38.4	13.3	44.3	7.3	24.3
Dicyclohexyl phthalate	5.8	19.3	5.1	17.0	1.3	4.3
Di-(2-ethylhexyl) phthalate	6.0 *	20.0 *	6.0 *	20.0 *	6.0 *	20.0 *
Di-n-heptyl phthalate	12.4	41.2	7.1	23.8	13.4	44.7
Di-n-octyl phthalate	10.7	35.7	2.1 *	7.0 *	2.1	7.0
n-Octyl-n-decyl phthalate	8.7	29.0	1.8	6.0	2.2	7.3
Diisononyl phthalate	115	385	55	182	26	88
Diisodecyl phthalate	214	714	105	351	50	167
Di-n-decyl phthalate	3.3 *	11.0 *	3.3 *	11.0 *	3.3 *	11.0 *

LOD = Limit of detection

LOQ = Limit of quantification

^{*} Positive response in sample. LOD/LOQ calculated from procedural blanks and procedural spiked samples.

[#] A positive response was detected in the procedural blank samples. LOD and LOQ calculated as 3x and 10x the concentration detected in the procedural blank samples.

[◀] LOD and LOQ values have been calculated assuming 10% of the standard is di-n-pentyl phthalate

Table 3. Repeatability and reproducibility data – dimethyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μ g/kg

Sample	Cheese		Pork	Pork mince		Orange juice	
	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	
Analyst 1 replicate 1	53.7	295.2	48.9	No data	49.6	257.9	
Analyst 1 replicate 2	52.4	284.7	40.4	426.0	50.5	273.1	
Analyst 1 replicate 3	50.5	292.6	57.1	391.6	44.1	284.1	
Analyst 1 replicate 4	51.5	288.4	49.6	321.0	49.2	295.4	
Analyst 1 replicate 5	67.0	278.2	445.8	365.0	52.1	295.5	
Analyst 1 replicate 6	56.9	297.4	44.2	293.3	47.9	268.9	
Analyst 1 replicate 7	76.3	287.6	59.1	292.8	51.2	292.8	
Analyst 1 replicate 8	74.8	293.2	51.3	260.3	48.8	295.4	
Average	60.4	289.7	49.5	335.7	49.2	282.9	
RSD (%)	17.7	2.2	12.7	17.9	5.0	5.2	
Analyst 2 replicate 1	47.6	265.1	44.1	296.3	45.0	274.1	
Analyst 2 replicate 2	45.9	274.8	49.9	304.5	50.9	276.4	
Analyst 2 replicate 3	48.2	273.5	47.4	287.4	43.1	268.8	
Average	47.2	271.1	47.1	296.1	46.3	273.1	
Recovery (%)	81.8	88.3	93.8	98.6	92.6	91.0	

Table 4. Repeatability and reproducibility data – diethyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg

Sample	Che	eese	Pork	Pork mince		Orange juice	
	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	
Analyst 1 replicate 1	53.5	299.8	54.8	249.7	45.9	285.9	
Analyst 1 replicate 2	52.3	289.0	No data	339.9	55.1	291.1	
Analyst 1 replicate 3	48.8	299.3	54.9	228.8	No data	290.2	
Analyst 1 replicate 4	50.6	292.5	39.8	353.8	50.8	289.8	
Analyst 1 replicate 5	57.4	294.0	49.5	301.2	59.8	298.2	
Analyst 1 replicate 6	54.8	293.3	50.7	287.4	48.0	278.4	
Analyst 1 replicate 7	66.2	287.0	32.1	418.0	48.0	272.3	
Analyst 1 replicate 8	48.3	295.0	43.9	319.1	47.0	294.7	
Average	54.0	293.7	46.5	312.2	50.7	287.6	
RSD (%)	10.8	1.5	18.1	19.3	10.0	3.0	
Analyst 2 replicate 1	52.8	290.6	44.1	296.3	37.5	381.2	
Analyst 2 replicate 2	45.9	310.6	49.9	304.5	68.2	238.1	
Analyst 2 replicate 3	49.1	310.4	47.4	287.4	66.2	353.9	
Average	49.3	303.9	47.1	296.1	57.3	324.4	
Recovery (%)	98.5	101.3	93.8	98.6	114.6	108.4	

Table 5. Repeatability and reproducibility data – diisopropyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μ g/kg

Sample	Cheese		Pork	Pork mince		Orange juice	
	50 μg/kg spike	300 µg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 µg/kg spike	
Analyst 1 replicate 1	39.4	249.5	44.7	254.2	28.8	217.5	
Analyst 1 replicate 2	39.8	256.8	48.1	309.7	26.2	251.3	
Analyst 1 replicate 3	41.3	257.6	55.7	302.3	33.0	167.2	
Analyst 1 replicate 4	39.6	238.0	50.4	295.4	23.1	234.6	
Analyst 1 replicate 5	43.5	233.1	48.3	321.6	34.6	No data	
Analyst 1 replicate 6	46.4	259.0	48.1	280.8	No data	215.2	
Analyst 1 replicate 7	44.5	277.8	51.7	307.9	33.5	No data	
Analyst 1 replicate 8	45.8	271.7	52.3	286.6	31.7	230.7	
Average	42.5	255.5	49.9	294.8	30.1	219.4	
RSD (%)	6.7	6.0	6.7	7.1	14.1	13.1	
Analyst 2 replicate 1	47.0	285.6	43.5	285.2	42.7	179.2	
Analyst 2 replicate 2	47.6	286.3	48.0	306.6	38.4	296.8	
Analyst 2 replicate 3	47.4	289.3	46.3	279.4	43.9	250.3	
Average	47.3	287.1	46.0	290.4	41.6	242.1	
Recovery (%)	94.5	95.7	91.9	96.8	83.3	80.7	

Table 6. Repeatability and reproducibility data - diallyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μ g/kg

Sample	Che	eese	Pork	Pork mince		Orange juice	
	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	
Analyst 1 replicate 1	59.0	396.2	46.6	320.3	46.6	294.0	
Analyst 1 replicate 2	63.3	400.1	51.6	321.5	52.5	307.3	
Analyst 1 replicate 3	70.3	403.8	62.0	301.6	52.2	279.2	
Analyst 1 replicate 4	75.1	404.1	53.7	313.0	49.7	298.8	
Analyst 1 replicate 5	78.8	387.3	49.6	319.7	53.2	No data	
Analyst 1 replicate 6	84.3	406.1	47.5	334.6	49.7	334.5	
Analyst 1 replicate 7	82.0	413.3	49.0	355.6	51.4	273.3	
Analyst 1 replicate 8	82.4	425.8	55.1	317.1	53.4	323.7	
Average	74.4	404.6	51.9	322.9	51.1	301.5	
RSD (%)	12.6	2.8	9.7	5.0	4.5	7.4	
Analyst 2 replicate 1	57.6	353.0	44.9	302.6	53.9	285.6	
Analyst 2 replicate 2	58.0	332.7	53.4	323.9	42.5	279.9	
Analyst 2 replicate 3	57.9	355.3	47.8	293.8	41.5	273.9	
Average	57.8	347.0	48.7	306.8	46.0	273.9	
Recovery (%)	115.6	115.7	97.4	102.3	91.9	93.3	

Table 7. Repeatability and reproducibility data – diisobutyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μ g/kg

Sample	Che	eese	Pork	Pork mince		Orange juice	
	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	
Analyst 1 replicate 1	51.3	297.3	45.5	292.5	50.9	300.3	
Analyst 1 replicate 2	56.3	283.0	51.3	295.4	50.4	295.0	
Analyst 1 replicate 3	50.7	282.7	54.6	288.1	53.5	291.9	
Analyst 1 replicate 4	51.7	296.0	52.7	299.4	52.3	301.4	
Analyst 1 replicate 5	51.0	283.2	47.3	324.6	50.0	No data	
Analyst 1 replicate 6	51.9	288.6	49.9	286.9	50.2	291.0	
Analyst 1 replicate 7	50.4	291.7	50.5	336.4	48.9	292.9	
Analyst 1 replicate 8	52.6	282.2	49.9	295.7	49.8	294.5	
Average	52.0	288.1	50.2	302.4	50.8	295.3	
RSD (%)	3.6	2.2	5.7	6.0	2.9	1.4	
Analyst 2 replicate 1	42.1	273.4	43.1	268.6	44.1	276.6	
Analyst 2 replicate 2	46.3	275.7	45.5	299.2	45.3	291.7	
Analyst 2 replicate 3	44.9	275.9	45.5	262.5	45.5	276.1	
Average	44.4	275.0	44.7	276.7	45.0	281.5	
Recovery (%)	88.9	91.7	89.4	92.2	89.9	93.8	

Table 8. Repeatability and reproducibility data - di-n-butyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μ g/kg

Sample	Che	eese	Pork	Pork mince		Orange juice	
	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	
Analyst 1 replicate 1	50.6	311.4	48.5	284.6	51.9	307.1	
Analyst 1 replicate 2	52.0	299.6	54.9	294.9	51.6	301.9	
Analyst 1 replicate 3	54.7	289.9	58.6	288.6	56.1	298.3	
Analyst 1 replicate 4	61.9	302.5	57.5	300.9	53.4	307.4	
Analyst 1 replicate 5	55.2	288.6	49.5	331.2	52.7	No data	
Analyst 1 replicate 6	58.0	289.1	52.1	286.0	50.9	297.4	
Analyst 1 replicate 7	59.4	305.2	55.7	336.3	51.0	306.5	
Analyst 1 replicate 8	57.6	302.4	52.2	300.7	52.8	294.4	
Average	56.2	298.6	53.6	302.9	52.6	301.9	
RSD (%)	6.8	2.8	6.8	6.6	3.2	1.8	
Analyst 2 replicate 1	43.4	269.9	45.2	265.7	48.3	286.6	
Analyst 2 replicate 2	46.4	279.5	44.5	300.5	48.4	296.9	
Analyst 2 replicate 3	45.6	270.2	44.3	263.0	48.3	288.5	
Average	45.1	273.2	44.6	276.4	48.3	290.6	
Recovery (%)	90.3	91.1	89.3	92.1	96.7	96.9	

Table 9. Repeatability and reproducibility data - dipentyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μ g/kg

Sample	Che	ese	Pork mince		Orange juice	
	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike
Analyst 1 replicate 1	57.9	318.8	50.1	313.6	53.9	309.9
Analyst 1 replicate 2	64.4	293.7	57.3	298.0	54.9	312.4
Analyst 1 replicate 3	50.8	376.1	67.0	294.8	68.7	306.2
Analyst 1 replicate 4	52.2	325.8	74.8	301.2	57.8	309.3
Analyst 1 replicate 5	46.2	337.6	60.9	358.9	58.5	No data
Analyst 1 replicate 6	49.2	360.5	47.4	360.3	53.6	314.8
Analyst 1 replicate 7	49.0	305.5	56.5	349.2	52.4	301.7
Analyst 1 replicate 8	55.5	306.1	61.7	296.3	52.2	315.1
Average	53.2	328.0	59.5	321.5	56.5	309.9
RSD (%)	11.1	8.7	14.9	9.1	9.6	1.5
Analyst 2 replicate 1	51.6	313.4	38.8	227.9	47.0	302.4
Analyst 2 replicate 2	59.1	327.6	47.4	251.1	49.7	312.0
Analyst 2 replicate 3	63.8	322.9	44.7	269.7	50.7	297.0
Average	58.2	321.3	43.7	247.9	49.1	303.8
Recovery (%)	116.3	107.1	87.3	82.6	98.3	101.3

Table 10. Repeatability and reproducibility data – di-n-hexyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μ g/kg

Sample	Cheese		Pork	Pork mince		Orange juice	
	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 µg/kg spike	
Analyst 1 replicate 1	59.2	308.2	39.9	369.4	49.1	300.5	
Analyst 1 replicate 2	68.6	286.0	57.4	269.4	51.6	289.2	
Analyst 1 replicate 3	67.8	298.2	53.0	261.1	56.8	282.2	
Analyst 1 replicate 4	50.6	301.0	56.5	291.9	52.5	294.5	
Analyst 1 replicate 5	65.5	300.8	50.0	340.3	49.6	No data	
Analyst 1 replicate 6	58.6	291.8	48.3	366.4	51.4	297.1	
Analyst 1 replicate 7	62.3	333.9	48.2	343.6	48.2	293.4	
Analyst 1 replicate 8	60.0	291.6	51.2	284.0	49.0	289.5	
Average	61.6	301.4	50.6	315.8	51.0	292.3	
RSD (%)	9.5	4.9	10.9	13.9	5.4	2.1	
Analyst 2 replicate 1	45.5	286.1	53.1	259.8	47.8	273.9	
Analyst 2 replicate 2	49.6	294.0	50.5	289.3	46.9	289.6	
Analyst 2 replicate 3	53.3	No data	49.9	258.3	46.0	278.2	
Average	49.5	290.0	51.1	269.2	46.9	280.6	
Recovery (%)	99.0	96.7	102.3	89.7	93.8	93.5	

Table 11. Repeatability and reproducibility data – benzyl butyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg

Sample	Cheese		Pork	Pork mince		Orange juice	
	50 μg/kg spike	300 µg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 µg/kg spike	
Analyst 1 replicate 1	42.8	273.6	41.8	245.7	46.5	293.2	
Analyst 1 replicate 2	46.5	258.1	48.8	253.2	43.3	268.8	
Analyst 1 replicate 3	39.7	262.1	42.7	252.5	45.6	268.9	
Analyst 1 replicate 4	49.6	244.7	46.4	273.1	40.5	272.2	
Analyst 1 replicate 5	46.1	256.6	40.6	283.9	42.6	No data	
Analyst 1 replicate 6	46.0	250.6	45.6	248.8	41.9	234.6	
Analyst 1 replicate 7	44.0	255.4	40.4	279.7	45.4	267.8	
Analyst 1 replicate 8	48.5	254.3	42.5	280.5	44.2	232.0	
Average	45.4	256.9	43.6	264.7	43.8	262.5	
RSD (%)	7.0	3.3	6.9	6.1	4.7	8.3	
Analyst 2 replicate 1	43.8	270.1	45.9	266.9	43.8	280.2	
Analyst 2 replicate 2	47.1	273.2	49.4	299.1	46.5	292.9	
Analyst 2 replicate 3	47.1	274.9	47.3	261.7	47.7	283.1	
Average	46.0	272.9	47.5	275.9	46.0	285.4	
Recovery (%)	92.0	90.9	95.1	92.0	92.1	95.1	

Table 12. Repeatability and reproducibility data - dicyclohexyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μ g/kg

Sample	Che	eese	Pork	Pork mince		Orange juice	
	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	
Analyst 1 replicate 1	48.6	306.5	43.8	272.1	51.3	311.1	
Analyst 1 replicate 2	51.0	292.6	51.7	281.9	52.2	302.4	
Analyst 1 replicate 3	50.3	290.8	52.6	275.9	52.1	302.0	
Analyst 1 replicate 4	50.2	296.5	50.8	295.6	52.1	305.3	
Analyst 1 replicate 5	48.6	284.7	43.5	321.0	51.1	No data	
Analyst 1 replicate 6	48.6	298.9	48.2	285.4	63.5	302.6	
Analyst 1 replicate 7	49.5	301.7	48.5	340.4	50.4	301.5	
Analyst 1 replicate 8	53.0	287.8	48.1	281.5	51.3	301.0	
Average	50.0	294.9	48.4	294.2	53.0	303.7	
RSD (%)	3.1	2.5	7.0	8.2	8.1	1.2	
Analyst 2 replicate 1	46.1	274.8	41.6	254.0	45.0	281.3	
Analyst 2 replicate 2	46.9	280.4	46.0	284.0	45.6	293.1	
Analyst 2 replicate 3	48.9	273.0	45.7	246.5	46.4	278.9	
Average	47.3	276.1	44.4	261.5	45.7	284.5	
Recovery (%)	94.7	92.0	88.9	87.2	91.4	94.8	

Table 13. Repeatability and reproducibility data – di-(2-ethylhexyl) phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg

Sample	Cheese		Pork mince		Orange juice	
	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike
Analyst 1 replicate 1	351.2	628.9	125.0	329.4	56.2	309.7
Analyst 1 replicate 2	303.3	651.0	144.9	394.0	69.5	311.9
Analyst 1 replicate 3	343.4	690.7	134.6	348.9	56.3	300.5
Analyst 1 replicate 4	422.9	820.4	152.1	346.8	55.3	306.0
Analyst 1 replicate 5	465.4	577.7	121.8	398.3	53.5	No data
Analyst 1 replicate 6	374.9	622.6	140.0	407.9	55.2	301.9
Analyst 1 replicate 7	326.1	578.1	139.6	479.8	52.0	300.2
Analyst 1 replicate 8	450.1	765.9	171.2	365.6	54.0	294.9
Average	379.7	666.9	141.1	383.8	56.5	303.6
RSD (%)	15.8	13.1	11.1	12.5	9.6	2.0
Analyst 2 replicate 1	37.3	273.0	25.7	258.3	58.1	315.2
Analyst 2 replicate 2	50.1	226.5	53.3	280.7	57.5	322.6
Analyst 2 replicate 3	35.9	285.4	58.3	278.1	57.0	313.5
Average	41.1	261.6	45.8	272.4	57.5	317.1
Recovery (%)	82.2	87.2	91.5	90.8	115.0	105.7

When determining the repeatability the phthalate concentrations in the unspiked foodstuffs were not determined and therefore the replicate results for Analyst 1 have not been corrected for any background levels present in the foodstuffs.

Table 14. Repeatability and reproducibility data - di-n-heptyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μ g/kg

Sample	Cheese		Pork mince		Orange juice	
	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike
Analyst 1 replicate 1	63.9	311.2	43.8	277.4	52.7	297.8
Analyst 1 replicate 2	63.2	299.4	53.2	287.9	54.3	303.9
Analyst 1 replicate 3	63.1	278.5	55.1	277.9	52.9	296.7
Analyst 1 replicate 4	72.1	257.9	42.4	295.2	56.0	310.0
Analyst 1 replicate 5	60.2	301.6	40.8	326.8	49.9	No data
Analyst 1 replicate 6	57.4	231.9	48.7	316.4	52.9	300.2
Analyst 1 replicate 7	55.4	332.0	52.0	349.1	50.1	295.2
Analyst 1 replicate 8	67.3	303.4	49.8	283.9	53.1	297.6
Average	62.8	289.5	48.2	301.8	52.7	300.2
RSD (%)	8.5	11.0	11.0	8.7	3.8	1.7
Analyst 2 replicate 1	40.5	281.5	39.0	267.2	46.8	280.9
Analyst 2 replicate 2	46.4	278.8	60.3	286.4	49.8	295.2
Analyst 2 replicate 3	45.2	287.2	55.6	266.4	47.3	285.9
Average	44.1	282.5	51.6	273.3	48.0	287.4
Recovery (%)	88.1	94.2	103.3	91.1	95.9	95.8

Table 15. Repeatability and reproducibility data – di-n-octyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg

Sample	Cheese		Pork mince		Orange juice	
	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike
Analyst 1 replicate 1	82.5	309.3	34.6	247.2	48.4	299.7
Analyst 1 replicate 2	60.4	300.0	35.3	291.9	50.9	287.5
Analyst 1 replicate 3	57.0	291.1	48.5	261.4	50.2	286.9
Analyst 1 replicate 4	55.7	297.9	40.7	277.1	52.2	302.5
Analyst 1 replicate 5	56.6	294.3	37.1	299.1	51.0	No data
Analyst 1 replicate 6	60.0	302.5	45.9	309.6	47.6	296.6
Analyst 1 replicate 7	57.9	324.7	41.6	327.2	48.5	294.8
Analyst 1 replicate 8	50.8	289.1	42.7	273.0	50.2	298.8
Average	60.1	301.1	40.8	285.8	49.9	295.2
RSD (%)	15.9	3.8	12.1	9.2	3.1	2.0
Analyst 2 replicate 1	46.4	254.2	38.7	227.2	42.8	270.9
Analyst 2 replicate 2	49.8	265.5	42.0	270.1	43.8	282.1
Analyst 2 replicate 3	48.6	474.6	39.4	236.1	43.9	272.8
Average	48.3	331.4	40.0	244.5	43.5	275.2
Recovery (%)	96.5	110.5	80.1	81.5	87.1	91.7

Table 16. Repeatability and reproducibility data – n-octyl-n-decyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μg/kg

Sample	Cheese		Pork mince		Orange juice	
	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike
Analyst 1 replicate 1	51.8	281.1	48.5	262.1	51.8	309.0
Analyst 1 replicate 2	60.9	308.5	39.6	264.1	51.3	315.4
Analyst 1 replicate 3	57.7	301.1	42.0	269.7	53.7	320.2
Analyst 1 replicate 4	46.5	292.4	44.1	273.5	52.8	323.3
Analyst 1 replicate 5	58.9	296.3	50.5	282.1	52.8	No data
Analyst 1 replicate 6	48.0	299.1	42.4	252.0	52.7	322.3
Analyst 1 replicate 7	63.4	313.2	51.9	205.7	52.8	335.6
Analyst 1 replicate 8	55.4	332.2	35.9	305.1	52.0	331.1
Average	55.3	303.0	44.4	264.3	52.5	322.4
RSD (%)	11.0	5.1	12.5	10.8	1.5	2.8
Analyst 2 replicate 1	51.4	294.1	51.2	371.1	42.4	298.2
Analyst 2 replicate 2	45.2	301.0	48.5	337.8	44.4	338.5
Analyst 2 replicate 3	58.8	283.5	54.4	369.2	50.2	345.9
Average	51.8	292.9	51.4	359.4	45.6	327.5
Recovery (%)	103.6	97.6	102.8	119.8	91.3	109.2

Table 17. Repeatability and reproducibility data – diisononyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 1 and 5 mg/kg

Sample	Che	ese	Pork mince		Orang	e juice
	1 mg/kg spike	5 mg/kg spike	1 mg/kg spike	5 mg/kg spike	1 mg/kg spike	5 mg/kg spike
Analyst 1 replicate 1	1.1	5.2	1.5	4.6	0.8	4.0
Analyst 1 replicate 2	1.2	6.4	1.5	3.1	0.6	3.7
Analyst 1 replicate 3	1.3	5.9	1.6	4.0	0.7	4.8
Analyst 1 replicate 4	1.4	4.8	1.2	3.5	0.7	5.1
Analyst 1 replicate 5	1.4	3.6	1.2	5.0	0.8	3.7
Analyst 1 replicate 6	1.4	6.1	1.4	No data	0.8	4.9
Analyst 1 replicate 7	1.4	5.0	1.1	4.4	0.7	3.9
Analyst 1 replicate 8	1.6	4.5	1.1	4.9	0.8	4.2
Average	1.3	5.2	1.3	4.2	0.8	4.3
RSD (%)	10.5	17.5	16.0	16.3	7.0	13.4
Analyst 2 replicate 1	1.0	6.0	0.9	3.9	1.0	4.8
Analyst 2 replicate 2	1.1	5.2	0.6	5.5	1.1	7.0
Analyst 2 replicate 3	0.9	5.3	0.7	49.	1.0	No data
Average	1.0	5.5	0.7	4.8	1.0	5.9
Recovery (%)	102.6	110.1	67.6	94.8	102.8	118.1

Concentrations normalised to 1 and 5 mg/kg for clarity.

Table 18. Repeatability and reproducibility data – diisodecyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 1 and 5 mg/kg

Sample	Che	eese	Pork mince		Orang	e juice
	1 mg/kg spike	5 mg/kg spike	1 mg/kg spike	5 mg/kg spike	1 mg/kg spike	5 mg/kg spike
Analyst 1 replicate 1	0.9	4.1	1.0	3.6	0.7	3.5
Analyst 1 replicate 2	0.8	4.7	1.1	3.0	0.8	3.6
Analyst 1 replicate 3	0.9	5.1	1.2	3.2	0.7	4.2
Analyst 1 replicate 4	0.8	6.4	0.9	2.8	0.7	4.6
Analyst 1 replicate 5	0.8	3.9	0.9	3.9	0.7	3.4
Analyst 1 replicate 6	1.1	4.1	1.2	No data	0.7	4.3
Analyst 1 replicate 7	1.2	4.5	0.8	3.3	0.7	3.5
Analyst 1 replicate 8	1.2	4.3	0.8	4.5	0.8	3.7
Average	1.0	4.6	1.0	3.5	0.7	3.8
RSD (%)	18.2	17.1	15.1	16.3	7.0	11.8
Analyst 2 replicate 1	0.6	5.7	0.9	5.8	1.0	5.0
Analyst 2 replicate 2	1.0	6.3	0.6	4.0	1.1	6.2
Analyst 2 replicate 3	1.0	5.0	0.6	5.3	1.0	6.6
Average	0.9	5.7	0.7	4.4	1.0	5.9
Recovery (%)	89.3	107.5	72.0	87.1	100.2	118.4

Concentrations normalised to 1 and 5 mg/kg for clarity.

Table 19. Repeatability and reproducibility data - di-n-decyl phthalate: Determined concentration in the three selected foodstuffs spiked at nominal concentrations of 50 and 300 μ g/kg

Sample	le Cheese		Pork	mince	Orange juice	
	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 μg/kg spike	50 μg/kg spike	300 µg/kg spike
Analyst 1 replicate 1	42.9	193.4	26.6	231.9	55.6	402.4
Analyst 1 replicate 2	65.5	203.7	31.7	267.6	48.1	405.7
Analyst 1 replicate 3	51.6	220.2	48.0	234.5	53.9	386.3
Analyst 1 replicate 4	64.6	195.1	34.4	271.0	65.9	393.5
Analyst 1 replicate 5	39.7	208.8	29.9	287.7	61.1	274.7
Analyst 1 replicate 6	47.2	207.9	41.0	294.5	51.6	405.0
Analyst 1 replicate 7	58.4	214.3	42.1	323.2	59.5	415.5
Analyst 1 replicate 8	54.9	204.4	36.8	268.4	57.1	419.9
Average	53.1	206.0	36.3	272.4	56.6	387.9
RSD (%)	18.0	4.4	19.6	11.1	9.9	12.1
Analyst 2 replicate 1	39.7	213.9	40.5	211.1	43.4	281.4
Analyst 2 replicate 2	43.2	247.2	42.0	216.7	40.1	289.7
Analyst 2 replicate 3	45.5	410.9	35.6	216.7	42.3	290.7
Average	42.8	290.7	39.4	214.8	41.9	287.1
Recovery (%)	85.7	96.9	78.8	71.6	83.9	95.7

Concentrations normalised to 50 and 300 µg/kg for clarity.

Table 20. Monophthalate esters - transitions and collision energies

Analyte	Transitions	Collision energy (eV)
Monoisopropyl phthalate	206.8 → 120.8	17
	206.8 → 137.9	10
Total mono-n-butyl phthalate and	220.9 → 177.0	10
monoisobutyl phthalate	220.9 → 133.9	13
Mono-n-butyl-phthalate ONLY	220.9 → 69.0	10
Monobenzyl phthalate	255.0 → 106.9	15
	255.0 → 182.8	12
Monocyclohexyl phthalate	246.9 → 97.0	15
	246.9 → 146.9	15
Mono-n-pentyl phthalate	234.9 → 85.0	15
	234.9 → 191.1	10
Mono-2-ethylhexyl phthalate	277.1 → 133.9	15
	277.1 → 127.0	15
Mono-n-octyl phthalate	277.1 → 127.0	18
	277.1 → 233.0	15
Monoisononyl phthalate	291.0 → 140.9	18
	291.0 → 247.0	15

Table 21. Limits of detection and quantification of the phthalate monoesters in the three food matrices tested

ANALYTE	LOD (µg/kg) in cheese	LOQ (µg/kg) in cheese	LOD (µg/kg) in pork mince	LOQ (µg/kg) in pork mince	LOD (µg/kg) in orange juice	LOQ (µg/kg) in orange juice
Monoisopropyl phthalate	1.8	6.0	1.9	6.3	1.7	5.6
Total monoisobutyl phthalate and mono-n-butyl phthalate	4.1	13.5	2.8	9.3	4.9	16.2
Mono-n-butyl phthalate	2.0	6.6	4.1	13.7	4.2	13.8
Monobenzyl phthalate	1.9	6.3	2.0	6.6	1.7	5.6
Monocyclohexyl phthalate	1.7	5.7	1.7	5.7	1.6	5.5
Mono-n-pentyl phthalate	1.8	5.9	1.8	5.9	1.7	5.6
Mono-2-ethylhexyl phthalate	2.0	6.7	6.1	20.4	1.7	5.6
Mono-n-octyl phthalate	1.7	5.7	1.7	5.6	1.7	5.6
Monoisononyl phthalate	3.4	11.4	2.6	8.6	1.7	5.7

Table 22. Repeatability and reproducibility data – monoisopropyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 μ g/kg

Sample	Cheese	Pork mince	Orange juice
	50 μg/kg spike	50 μg/kg spike	50 μg/kg spike
Analysis 1 replicate 1	39.8	32.3	51.6
Analysis 1 replicate 2	38.5	32.0	48.6
Analysis 1 replicate 3	40.0	29.7	53.4
Analysis 1 replicate 4	43.0	28.2	54.0
Analysis 1 replicate 5	39.0	25.4	50.6
Analysis 1 replicate 6	40.5	35.7	54.3
Average	40.1	30.6	52.1
RSD (%)	4.0	11.7	4.3
Recovery (%)	85.4	65.0	110.8
Analysis 2 replicate 1	42.7	28.2	43.3
Analysis 2 replicate 2	40.6	28.1	45.5
Analysis 2 replicate 3	35.4	27.7	44.2
Average	39.6	28.0	44.3

Table 23. Repeatability and reproducibility data – monoisobutyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 μ g/kg

Comple	Cheese	Pork mince	Orange juice
Sample	50 μg/kg spike	50 μg/kg spike	50 μg/kg spike
Analysis 1 replicate 1	48.6	41.5	47.1
Analysis 1 replicate 2	57.0	43.0	40.0
Analysis 1 replicate 3	59.3	58.4	42.9
Analysis 1 replicate 4	41.7	48.2	52.6
Analysis 1 replicate 5	37.1	44.2	50.7
Analysis 1 replicate 6	58.2	60.4	30.7
Average	50.3	49.3	44.0
RSD (%)	18.7	16.6	18.3
Recovery (%)	100.6	98.6	88.0
Analysis 2 replicate 1	57.8	36.8	37.0
Analysis 2 replicate 2	43.5	46.8	43.3
Analysis 2 replicate 3	54.0	50.5	37.6
Average	51.7	44.7	39.3

Table 24. Repeatability and reproducibility data – mono-n-butyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 µg/kg

Comple	Cheese	Pork mince	Orange juice
Sample	50 μg/kg spike	50 μg/kg spike	50 μg/kg spike
Analysis 1 replicate 1	37.6	41.5	54.5
Analysis 1 replicate 2	59.0	55.0	45.5
Analysis 1 replicate 3	47.7	48.4	57.0
Analysis 1 replicate 4	45.2	53.9	53.8
Analysis 1 replicate 5	55.8	59.0	49.8
Analysis 1 replicate 6	40.8	59.0	46.9
Average	47.7	52.8	51.2
RSD (%)	17.5	12.9	8.9
Recovery (%)	95.3	105.6	102.5
Analysis 2 replicate 1	52.3	51.1	48.3
Analysis 2 replicate 2	55.6	56.3	54.7
Analysis 2 replicate 3	34.0	63.3	53.3
Average	47.3	56.9	52.1

Table 25. Repeatability and reproducibility data – monobenzyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 μ g/kg

Sample	Cheese	Pork mince	Orange juice
	50 μg/kg spike	50 μg/kg spike	50 μg/kg spike
Analysis 1 replicate 1	49.1	42.4	56.5
Analysis 1 replicate 2	47.8	42.9	55.4
Analysis 1 replicate 3	47.9	44.9	56.7
Analysis 1 replicate 4	52.1	47.9	57.3
Analysis 1 replicate 5	55.5	44.2	54.5
Analysis 1 replicate 6	49.6	48.0	60.6
Average	50.3	45.0	56.8
RSD (%)	5.9	5.4	3.7
Recovery (%)	107.1	95.7	120.9
Analysis 2 replicate 1	51.8	45.1	52.3
Analysis 2 replicate 2	54.5	53.2	55.3
Analysis 2 replicate 3	57.6	43.0	54.9
Average	54.6	47.1	54.2

Table 26. Repeatability and reproducibility data – monocyclohexyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 $\mu g/kg$

Sample	Cheese	Pork mince	Orange juice
	50 μg/kg spike	50 μg/kg spike	50 μg/kg spike
Analysis 1 replicate 1	49.8	56.3	56.9
Analysis 1 replicate 2	50.0	60.1	55.5
Analysis 1 replicate 3	50.1	59.8	57.5
Analysis 1 replicate 4	51.6	54.7	59.3
Analysis 1 replicate 5	46.7	55.0	57.6
Analysis 1 replicate 6	48.9	56.0	64.6
Average	49.5	57.0	58.6
RSD (%)	3.3	4.2	5.4
Recovery (%)	105.3	121.3	124.7
Analysis 2 replicate 1	54.9	61.4	49.0
Analysis 2 replicate 2	52.6	60.5	47.3
Analysis 2 replicate 3	48.8	56.7	46.6
Average	52.1	59.5	47.6

Table 27. Repeatability and reproducibility data – mono-n-pentyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 μ g/kg

Sample	Cheese	Pork mince	Orange juice
	50 μg/kg spike	50 μg/kg spike	50 μg/kg spike
Analysis 1 replicate 1	54.2	51.7	48.7
Analysis 1 replicate 2	53.4	54.1	50.5
Analysis 1 replicate 3	54.7	54.5	53.3
Analysis 1 replicate 4	56.7	51.0	49.6
Analysis 1 replicate 5	51.8	50.8	50.2
Analysis 1 replicate 6	54.0	52.7	48.9
Average	54.1	52.5	50.2
RSD (%)	3.0	3.0	3.4
Recovery (%)	115.1	111.7	106.8
Analysis 2 replicate 1	63.7	59.9	55.5
Analysis 2 replicate 2	62.6	61.0	53.6
Analysis 2 replicate 3	56.5	56.6	54.4
Average	60.9	59.2	54.5

Table 28. Repeatability and reproducibility data – mono-2-ethylhexyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 μ g/kg

Sample	Cheese	Pork mince	Orange juice
	50 μg/kg spike	50 μg/kg spike	50 μg/kg spike
Analysis 1 replicate 1	58.6	50.5	48.1
Analysis 1 replicate 2	52.4	47.8	48.1
Analysis 1 replicate 3	53.7	51.3	48.5
Analysis 1 replicate 4	51.8	53.7	47.0
Analysis 1 replicate 5	50.5	43.2	46.6
Analysis 1 replicate 6	54.3	51.5	49.2
Average	53.5	49.7	47.9
RSD (%)	5.3	7.4	2.0
Recovery (%)	111.6	100.4	101.9
Analysis 2 replicate 1	53.0	45.6	56.0
Analysis 2 replicate 2	55.2	43.8	57.0
Analysis 2 replicate 3	54.2	43.1	55.7
Average	54.1	44.2	56.2

Table 29. Repeatability and reproducibility data – mono-n-octyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 μ g/kg

Sample	Cheese	Pork mince	Orange juice
	50 μg/kg spike	50 μg/kg spike	50 μg/kg spike
Analysis 1 replicate 1	47.7	42.3	48.2
Analysis 1 replicate 2	46.3	39.1	47.1
Analysis 1 replicate 3	46.3	42.3	49.1
Analysis 1 replicate 4	45.3	43.6	46.5
Analysis 1 replicate 5	43.6	35.5	46.9
Analysis 1 replicate 6	45.6	43.5	47.2
Average	45.8	41.1	47.5
RSD (%)	3.0	7.7	2.0
Recovery (%)	94.3	85.0	101.1
Analysis 2 replicate 1	44.5	39.2	44.6
Analysis 2 replicate 2	48.0	42.5	45.7
Analysis 2 replicate 3	45.2	38.3	46.0
Average	48.9	40.0	45.4

Table 30. Repeatability and reproducibility data – monoisononyl phthalate: Determined concentration in the three selected foodstuffs spiked at a nominal concentration of 50 $\mu g/kg$

Sample	Cheese	Pork mince	Orange juice
	50 μg/kg spike	50 μg/kg spike	50 μg/kg spike
Analysis 1 replicate 1	44.3	38.6	46.7
Analysis 1 replicate 2	45.2	39.2	47.5
Analysis 1 replicate 3	45.9	38.4	48.9
Analysis 1 replicate 4	44.0	37.9	49.6
Analysis 1 replicate 5	42.5	35.3	46.7
Analysis 1 replicate 6	46.0	38.5	48.2
Average	44.6	38.0	47.9
RSD (%)	3.0	3.6	2.5
Recovery (%)	95.0	80.8	102.0
Analysis 2 replicate 1	60.9	49.7	52.2
Analysis 2 replicate 2	62.1	50.2	53.6
Analysis 2 replicate 3	57.4	51.6	53.5
Average	60.1	50.5	53.1

Table 31. Repeatability and reproducibility data – phthalic acid. Concentration determined in the three selected foodstuffs spiked at a nominal concentration of 50 μ g/kg

Commis	Cheese	Pork mince	Orange juice
Sample	50 μg/kg spike	50 μg/kg spike	50 μg/kg spike
Analysis 1 replicate 1	54.0	39.7	58.5
Analysis 1 replicate 2	44.4	34.8	58.9
Analysis 1 replicate 3	47.6	46.5	59.6
Analysis 1 replicate 4	46.0	46.7	58.8
Analysis 1 replicate 5	48.4	47.4	57.3
Analysis 1 replicate 6	43.6	46.1	56.4
Average	47.3	43.5	58.2
RSD (%)	7.9	11.8	2.0
Recovery (%)	95	87	116
Analysis 2 replicate 1	48.3	52.3	57.4
Analysis 2 replicate 2	45.4	57.4	50.2
Analysis 2 replicate 3	41.1	54.2	Lost
Average	44.9	54.6	53.8

Table 32. Limits of detection and quantification of the dimethyl phthalate in the three food matrices tested

LOD (µg/kg) in cheese	LOQ (µg/kg) in cheese	LOD (µg/kg) in pork mince	LOQ (µg/kg) in pork mince	LOD (µg/kg) in orange juice	LOQ (µg/kg) in orange juice
9.92	33.1	15.2	50.7	25.6	85.3

Table 33. Repeatability and reproducibility data – Determined concentration of dimethyl phthalate in the three selected foodstuffs spiked at nominal concentrations of 420 μ g/kg

Samula	Cheese	Pork mince	Orange juice
Sample	420 μg/kg spike*	420 μg/kg spike*	420 µg/kg spike*
Analysis 1 replicate 1	418	351	311
Analysis 1 replicate 2	359	411	428
Analysis 1 replicate 3	332	336	423
Analysis 1 replicate 4	390	442	424
Analysis 1 replicate 5	390	415	352
Analysis 1 replicate 6	No data	387	389
Average	378	390	388
RSD (%)	8.8	10	12
Analysis 2 replicate 1	377	370	422
Analysis 2 replicate 2	444	391	361
Analysis 2 replicate 3	397	350	474
Average	406	370	419
Recovery (%)	97	88	100

^{*} Concentrations normalised to 420 µg/kg for clarity

Table 34. Sample details for the 20 TDS samples

Fera LIMS sample number	TDS sample number	Food group	Food type
S08-032193	13003578	1	Bread
S08-032194	13003592	15	Fresh fruit
S08-032195	13003593	16	Fruit products
S08-032196	13003596	19	Dairy products
S08-032197	13003585	8	Oils and fats
S08-032198	13003595	18	Milk
S08-032199	13003597	20	Nuts
S08-032200	13003594	17	Beverages
S08-032201	13003582	5	Meat products
S08-032202	13003581	4	Offal
S08-032203	13003588	11	Green vegetables
S08-032204	13003586	9	Eggs
S08-032205	13003579	2	Miscellaneous cereals
S08-032206	13003584	7	Fish
S08-032207	13003587	10	Sugars and preserves
S08-032208	I3003591	14	Canned vegetables
S08-032209	13003583	6	Poultry
S08-032210	13003580	3	Carcass meat
S08-032211	13003590	13	Other vegetables
S08-032212	13003589	12	Potatoes

Table 35. Phthalate diester concentrations measured in the 20 TDS samples

Fera LIMS sample number	Dimethyl phthalate	Diethyl phthalate	Diisopropyl phthalate
S08-032193	< LOD	< LOQ	< LOD
	(LOD = 6.7 μg/kg)	(LOQ = 9.4 μg/kg)	(LOD = 1.5 μg/kg)
S08-032194	< LOD	< LOQ	< LOD
	(LOD = 0.9 μg/kg)	(LOQ = 6.8 μg/kg)	(LOD = 0.7 μg/kg)
S08-032195	< LOD	< LOD	< LOD
	(LOD = 7.5 μg/kg)	(LOD = 8.7 μg/kg)	(LOD = 4.4 μg/kg)
S08-032196	< LOD	< LOD	< LOD
	(LOD = 3.7 μg/kg)	(LOD = 2.2 μg/kg)	(LOD = 2.2 μg/kg)
S08-032197	< LOD	< LOD	< LOD
	(LOD = 4.6 μg/kg)	(LOD = 20.5 μg/kg)	(LOD = 6.0 μg/kg)
S08-032198	< LOD	< LOD	< LOD
	(LOD = 18.4 μg/kg)	(LOD = 4.5 μg/kg)	(LOD = 1.6 μg/kg)
S08-032199	< LOD	< LOQ	< LOD
	(LOD = 4.7 μg/kg)	(LOQ = 10.7 μg/kg)	(LOD = 3.8 μg/kg)
S08-032200	< LOD	< LOD	< LOD
	(LOD = 0.9 μg/kg)	(LOD = 1.1 μg/kg)	(LOD = 0.7 μg/kg)
S08-032201	< LOD	39.9 µg/kg – failed	< LOD
	(LOD = 2.8 μg/kg)	confirmation	(LOD = 3.3 μg/kg)
S08-032202	< LOD	< LOD	< LOD
	(LOD = 5.7 μg/kg)	(LOD = 5.8 μg/kg)	(LOD = 3.1 μg/kg)
S08-032203	< LOD	51.8 µg/kg – failed	< LOD
	(LOD = 13.5 μg/kg)	confirmation	(LOD = 19.3 μg/kg)
S08-032204	< LOD	< LOD	< LOD
	(LOD = 9.8 μg/kg)	(LOD = 2.8 μg/kg)	(LOD = 1.5 μg/kg)
S08-032205	< LOD (LOD = 4.9 μg/kg)	13.4 μg/kg	< LOD (LOD = 1.5 μg/kg)
S08-032206	< LOD	< LOD	< LOQ
	(LOD = 3.7 μg/kg)	(LOD = 5.5 μg/kg)	(LOQ = 10.0 μg/kg)
S08-032207	< LOD	< LOD	< LOD
	(LOD = 3.7 μg/kg)	(LOD = 12.0 μg/kg)	(LOD = 4.8 μg/kg)
S08-032208	< LOD	< LOD	< LOD
	(LOD = 4.7 μg/kg)	(LOD = 2.6 μg/kg)	(LOD = 2.6 μg/kg)
S08-032209	< LOD	< LOD	< LOD
	(LOD = 3.8 μg/kg)	(LOD = 7.0 μg/kg)	(LOD = 4.9 μg/kg)
S08-032210	< LOD	< LOD	< LOD
	(LOD = 19.0 μg/kg)	(LOD = 12.1 μg/kg)	(LOD = 6.4 μg/kg)
S08-032211	< LOD	< LOD	< LOD
	(LOD = 10.3 μg/kg)	(LOD = 6.9 μg/kg)	(LOD = 3.9 μg/kg)
S08-032212	< LOD	< LOD	< LOD
	(LOD = 5.8 μg/kg)	(LOD = 7.0 μg/kg)	(LOD = 3.8 μg/kg)

Table 35 continued. Phthalate diester concentrations measured in the 20 TDS samples

Fera LIMS sample number	Dially phthalate	Diisobutyl phthalate	Di-n-butyl phthalate
S08-032193	< LOD (LOD = 7.1 μ/kg)	16.6 μg/kg	16.2 μg/kg
S08-032194	< LOD	< LOQ	< LOQ
	(LOD = 5.2 μg/kg)	(LOQ = 16.5 μg/kg)	(LOQ = 14.9 μg/kg)
S08-032195	< LOD	< LOD	< LOQ
	(LOD = 21.0 μg/kg)	(LOD = 4.3 μg/kg)	(LOQ = 12.1 μg/kg)
S08-032196	< LOD	< LOQ	< LOQ
	(LOD = 6.0 μg/kg)	(LOQ = 8.3 μg/kg)	(LOQ = 7.5 μg/kg)
S08-032197	< LOD (LOD = 30.5 μg/kg)	41.3 μg/kg	16.0 μg/kg
S08-032198	< LOD	< LOQ	< LOQ
	(LOD = 5.2 μg/kg)	(LOQ = 5.8 μg/kg)	(LOQ = 4.6 μg/kg)
S08-032199	< LOD (LOD = 15.8 μg/kg)	49.0 μg/kg	28.3 μg/kg
S08-032200	$<$ LOD (LOD = 3.7 μ g/kg)	< LOD (LOD = 12.4 μg/kg)	2.4 µg/kg – failed confirmation
S08-032201	< LOD (LOD = 12.4 μg/kg)	18.0 µg/kg – failed confirmation	15.4 μg/kg
S08-032202	< LOD	6.4 μg/kg – failed	< LOD
	(LOD = 11.7 μg/kg)	confirmation	(LOD = 8.4 μg/kg)
S08-032203	< LOD	< LOD	< LOQ
	(LOD = 34.9 μg/kg)	(LOD = 11.9 μg/kg)	(LOQ = 15.2 μg/kg)
S08-032204	$<$ LOD (LOD = 7.7 μ g/kg)	< LOQ (LOQ = 5.9 μg/kg)	< LOQ (LOQ = 4.9 μg/kg)
S08-032205	< LOD (LOD = 5.3 μg/kg)	80.8 μg/kg	13.8 μg/kg
S08-032206	< LOD (LOD = 13.1 μg/kg)	17.6 µg/kg – failed confirmation	9.3 µg/kg
S08-032207	< LOD	< LOQ	6.7 μg/kg – failed
	(LOD = 13.2 μg/kg)	(LOQ = 13.5 μg/kg)	confirmation
S08-032208	< LOD	< LOQ	< LOQ
	(LOD = 7.9 μg/kg)	(LOQ = 5.6 μg/kg)	(LOQ = 4.6 μg/kg)
S08-032209	< LOD	< LOD	< LOD
	(LOD = 18.8 μg/kg)	(LOD = 7.8 μg/kg)	(LOD = 6.5 μg/kg)
S08-032210	< LOD (LOD = 15.7 μg/kg)	5.3 μg/kg – failed confirmation	6.3 µg/kg
S08-032211	< LOD	8.9 μg/kg – failed	3.5 µg/kg – failed
	(LOD = 10.7 μg/kg)	confirmation	confirmation
S08-032212	< LOD	< LOQ	< LOQ
	(LOD = 10.1 μg/kg)	(LOQ = 11.8 μg/kg)	(LOQ = 9.6 μg/kg)

Table 35 continued. Phthalate diester concentrations measured in the 20 TDS samples

Fera LIMS sample number	Di-n-pentyl phthalate	Di-n-hexyl phthalate	Benzyl butyl phthalate
S08-032193	< LOQ (LOQ = 11.3 μg/kg)	< LOQ (LOQ = 16.0 μg/kg)	8.1 µg/kg
S08-032194	< LOD	< LOD	< LOQ
	(LOD = 3.2 μg/kg)	(LOD = 12.1 μg/kg)	(LOQ = 39.7 μg/kg)
S08-032195	< LOD	< LOD	< LOD
	(LOD = 10.2 μg/kg)	(LOD = 5.7 μg/kg)	(LOD = 16.5 μg/kg)
S08-032196	< LOD	< LOD	< LOD
	(LOD = 4.3 μg/kg)	(LOD = 5.0 μg/kg)	(LOD = 8.9 μg/kg)
S08-032197	< LOQ	< LOD	< LOD
	(LOQ = 4.8 µg/kg)	(LOD = 23.3 μg/kg)	(LOD = 30.5 μg/kg)
S08-032198	$<$ LOQ (LOQ = 4.9 μ g/kg)	< LOD (LOD = 2.4 μg/kg)	< LOD (LOD = 6.2 μg/kg)
S08-032199	< LOD	< LOD	< LOD
	(LOD = 27.6 μg/kg)	(LOD = 10.0 μg/kg)	(LOD = 10.7 μg/kg)
S08-032200	$<$ LOD (LOD = 0.7 μ g/kg)	< LOD (LOD = 0.8 μg/kg)	< LOD (LOD = 2.0 μg/kg)
S08-032201	< LOD	< LOD	< LOD
	(LOD = 13.3 μg/kg)	(LOD = 9.5 μg/kg)	(LOD = 12.8 μg/kg)
S08-032202	< LOD	< LOD	< LOD
	(LOD = 30.4 μg/kg)	(LOD = 14.6 μg/kg)	(LOD = 15.6 μg/kg)
S08-032203	< LOD	< LOD	< LOD
	(LOD = 10.9 μg/kg)	(LOD = 2.5 μg/kg)	(LOD = 5.8 μg/kg)
S08-032204	< LOQ	< LOD	< LOD
	(LOQ = 9.8 μg/kg)	(LOD = 4.1 μg/kg)	(LOD = 9.1 μg/kg)
S08-032205	< LOD	< LOD	< LOQ
	(LOD = 25.3 μg/kg)	(LOD = 2.5 μg/kg)	(LOQ = 15.5 μg/kg)
S08-032206	< LOD	< LOD	8.8 µg/kg – failed
	(LOD = 32.0 μg/kg)	(LOD = 8.3 μg/kg)	confirmation
S08-032207	< LOD	< LOD	< LOD
	(LOD = 18.5 μg/kg)	(LOD = 6.1 μg/kg)	(LOD = 10.5 μg/kg)
S08-032208	< LOD	< LOD	< LOD
	(LOD = 5.8 μg/kg)	(LOD = 1.6 μg/kg)	(LOD = 4.7 μg/kg)
S08-032209	< LOD	< LOD	< LOD
	(LOD = 20.5 μg/kg)	(LOD = 9.0 μg/kg)	(LOD = 14.0 μg/kg)
S08-032210	< LOD	< LOD	< LOD
	(LOD = 10.1 μg/kg)	(LOD = 6.3 μg/kg)	(LOD = 11.2 μg/kg)
S08-032211	< LOD	< LOD	< LOD
	(LOD = 22.0 μg/kg)	(LOD = 3.6 μg/kg)	(LOD = 7.4 μg/kg)
S08-032212	< LOD	< LOD	< LOD
	(LOD = 8.5 μg/kg)	(LOD = 3.4 μg/kg)	(LOD = 7.5 μg/kg)

Table 35 continued. Phthalate diester concentrations measured in the 20 TDS samples

Fera LIMS sample number	Dicyclohexyl phthalate	Di-(2-ethylhexyl) phthalate	Diheptyl phthalate
S08-032193	< LOD (LOD = 3.6 μg/kg)	124.6 µg/kg	< LOD (LOD = 9.3 μg/kg)
S08-032194	< LOD (LOD = 4.6 μg/kg)	< LOQ (LOQ = 16.6 μg/kg)	< LOD (LOD = 6.2 μg/kg)
S08-032195	< LOD (LOD = 9.3 μg/kg)	< LOQ (LOQ = 29.0 μg/kg)	< LOD (LOD = 27.6 μg/kg)
S08-032196	< LOD (LOD = 12.8 μg/kg)	140.7 μg/kg	< LOD (LOD = 21.6 μg/kg)
S08-032197	< LOD (LOD = 31.3 μg/kg)	105.5 μg/kg	< LOD (LOD = 39.6 μg/kg)
S08-032198	< LOD (LOD = 3.1 μg/kg)	< LOQ (LOQ = 29.9 μg/kg)	< LOD (LOD = 13.5 μg/kg)
S08-032199	< LOD (LOD = 12.0 μg/kg)	111.8 µg/kg	< LOD (LOD = 27.0 μg/kg)
S08-032200	< LOD (LOD = 0.8 μg/kg)	< LOQ (LOQ = 10.4 μg/kg)	< LOD (LOD = 4.9 μg/kg)
S08-032201	< LOD (LOD = 8.3 μg/kg)	329.1 µg/kg	< LOD (LOD = 36.2 μg/kg)
S08-032202	98.1 µg/kg – failed confirmation	< LOQ (LOQ = 32.4 μg/kg)	< LOD (LOD = 25.8 μg/kg)
S08-032203	< LOD (LOD = 8.1 μg/kg)	< LOQ (LOQ = 13.6 μg/kg)	< LOD (LOD = 11.5 μg/kg)
S08-032204	< LOD (LOD = 9.8 μg/kg)	< LOQ (LOQ = 42.7 μg/kg)	< LOD (LOD = 24.7 μg/kg)
S08-032205	< LOD (LOD = 3.9 μg/kg)	104.5 μg/kg	< LOD (LOD = 16.1 μg/kg)
S08-032206	7.1 μg/kg – failed confirmation	789.1 µg/kg	< LOD (LOD = 16.3 μg/kg)
S08-032207	< LOD (LOD = 6.6 μg/kg)	115.6 µg/kg	< LOD (LOD = 22.3 μg/kg)
S08-032208	< LOD (LOD = 3.7 μg/kg)	< LOQ (LOQ = 21.7 μg/kg)	< LOD (LOD = 16.6 μg/kg)
S08-032209	< LOD (LOD = 13.2 μg/kg)	322.1 μg/kg	< LOD (LOD = 37.7 μg/kg)
S08-032210	< LOD (LOD = 7.0 μg/kg)	89.7 μg/kg	< LOD (LOD = 20.1 μg/kg)
S08-032211	< LOD (LOD = 4.0 μg/kg)	34.8 μg/kg	< LOD (LOD = 26.1 μg/kg)
S08-032212	< LOD (LOD = 4.5 μg/kg)	< LOQ (LOQ = 33.2 μg/kg)	< LOD (LOD = 33.2 μg/kg)

Table 35 continued. Phthalate diester concentrations measured in the 20 TDS samples

Fera LIMS sample number	Dioctyl phthalate	n-Octyl-n-decyl phthalate	Diisononyl phthalate
S08-032193	< LOD	< LOD	< LOD
	(LOD = 7.1 μg/kg)	(LOD = 12.2 μg/kg)	(LOD = 71.9 μg/kg)
S08-032194	< LOD	< LOD	< LOD
	(LOD = 8.3 μg/kg)	(LOD = 5.0 μg/kg)	(LOD = 190.0 μg/kg)
S08-032195	< LOD	< LOD	< LOD
	(LOD = 5.6 μg/kg)	(LOD = 3.3 μg/kg)	(LOD = 142.5 μg/kg)
S08-032196	< LOD	< LOD	< LOD
	(LOD = 14.0 μg/kg)	(LOD = 19.9 μg/kg)	(LOD = 508.3 μg/kg)
S08-032197	< LOD	< LOD	< LOD
	(LOD = 9.6 μg/kg)	(LOD = 8.4 μg/kg)	(LOD = 649.0 μg/kg)
S08-032198	< LOD	< LOD	< LOD
	(LOD = 3.3 μg/kg)	(LOD = 10.7 μg/kg)	(LOD = 271.9 μg/kg)
S08-032199	< LOD	< LOD	< LOD
	(LOD = 16.8 μg/kg)	(LOD = 34.5 μg/kg)	(LOD = 309.9 μg/kg)
S08-032200	< LOD	< LOD	< LOD
	(LOD = 2.9 μg/kg)	(LOD = 34.9 μg/kg)	(LOD = 42.6 μg/kg)
S08-032201	< LOD	< LOD	< LOD
	(LOD = 14.8 μg/kg)	(LOD = 22.3 μg/kg)	(LOD = 316.2 μg/kg)
S08-032202	< LOD	< LOD	< LOD
	(LOD = 9.5 μg/kg)	(LOD = 11.1 μg/kg)	(LOD = 128.6 μg/kg)
S08-032203	< LOQ	< LOD	< LOD
	(LOQ = 10.1 μg/kg)	(LOD = 5.6 μg/kg)	(LOD = 71.9 μg/kg)
S08-032204	< LOD	< LOD	< LOD
	(LOD = 7.9 μg/kg)	(LOD = 43.8 μg/kg)	(LOD = 185.0 μg/kg)
S08-032205	< LOD	< LOD	< LOD
	(LOD = 5.5 μg/kg)	(LOD = 16.9 μg/kg)	(LOD = 107.4 μg/kg)
S08-032206	$<$ LOD (LOD = 6.1 μ g/kg)	< LOD (LOD = 19.2 μg/kg)	< LOD (LOD = 116.2 μg/kg)
S08-032207	< LOD	< LOD	< LOD
	(LOD = 5.8 μg/kg)	(LOD = 15.7 μg/kg)	(LOD = 212.0 μg/kg)
S08-032208	< LOD	< LOD	< LOD
	(LOD = 3.3 μg/kg)	(LOD = 10.6 μg/kg)	(LOD = 57.8 μg/kg)
S08-032209	< LOD	< LOD	< LOD
	(LOD = 12.8 μg/kg)	(LOD = 12.0 μg/kg)	(LOD = 259.5 μg/kg)
S08-032210	< LOD	< LOD	< LOD
	(LOD = 7.5 μg/kg)	(LOD = 13.3 μg/kg)	(LOD = 165.1 μg/kg)
S08-032211	< LOD	< LOD	< LOD
	(LOD = 8.2 μg/kg)	(LOD = 13.9 μg/kg)	(LOD = 126.5 μg/kg)
S08-032212	< LOD	< LOD	< LOD
	(LOD = 4.1 μg/kg)	(LOD = 9.6 μg/kg)	(LOD = 175.8 μg/kg)

Table 35 continued. Phthalate diester concentrations measured in the 20 TDS samples

Fera LIMS sample number	Diisodecyl phthalate	Di-n-decyl phthalate
S08-032193	< LOD (LOD = 383.6 μg/kg)	< LOQ (LOQ = 19.1 μg/kg)
S08-032194	< LOD (LOD = 129.4 μg/kg)	< LOD (LOD = 5.0 μg/kg)
S08-032195	< LOD (LOD = 158.3 μg/kg)	< LOD (LOD = 8.3 μg/kg)
S08-032196	< LOD (LOD = 708.7 μg/kg)	< LOD (LOD = 33.3 μg/kg)
S08-032197	< LOD (LOD = 495.7 μg/kg)	< LOD (LOD = 24.6 μg/kg)
S08-032198	< LOD (LOD = 728.5 µg/kg)	< LOD (LOD = 11.4 μg/kg)
S08-032199	< LOD (LOD = 826.8 μg/kg)	< LOD (LOD = 38.1 μg/kg)
S08-032200	< LOD (LOD = 84.5 μg/kg)	< LOD (LOD = 1.6 μg/kg)
S08-032201	< LOD (LOD = 498.5 µg/kg)	< LOD (LOD = 22.1 μg/kg)
S08-032202	< LOD (LOD = 259.2 μg/kg)	< LOD (LOD = 8.5 μg/kg)
S08-032203	< LOD (LOD = 139.6 µg/kg)	< LOD (LOD = 2.6 μg/kg)
S08-032204	< LOD (LOD = 378.5 μg/kg)	< LOD (LOD = 18.4 μg/kg)
S08-032205	< LOD (LOD = 498.2 μg/kg)	< LOD (LOD = 9.2 μg/kg)
S08-032206	< LOD (LOD = 240.1 µg/kg)	< LOD (LOD = 7.3 μg/kg)
S08-032207	< LOD (LOD = 836.0 µg/kg)	< LOD (LOD = 17.0 μg/kg)
S08-032208	< LOD (LOD = 233.8 μg/kg)	< LOD (LOD = 6.4 μg/kg)
S08-032209	< LOD (LOD = 464.3 µg/kg)	< LOD (LOD = 19.4 μg/kg)
S08-032210	< LOD (LOD = 401.9 μg/kg)	< LOD (LOD = 11.5 μg/kg)
S08-032211	< LOD (LOD = 282.3 μg/kg)	< LOD (LOD = 9.9 μg/kg)
S08-032212	< LOD (LOD = 575.4 μg/kg)	< LOD (LOD = 14.2 μg/kg)

Table 36. Phthalate monoester concentrations measured in the 20 TDS samples

Fera LIMS sample number	Monoisopropyl phthalate	Monoisobutyl phthalate	Mono-n-butyl phthalate
S08-032193	< LOD	< LOD	< LOQ
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOQ = 27 μg/kg)
S08-032194	< LOD	< LOD	< LOQ
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOQ = 27 μg/kg)
S08-032195	< LOD	< LOD	< LOQ
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOQ = 27 μg/kg)
S08-032196	< LOD	< LOD	< LOQ
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOQ = 27 μg/kg)
S08-032197	< LOD	< LOD	< LOQ
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOQ = 27 μg/kg)
S08-032198	< LOD	< LOD	< LOD
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)
S08-032199	< LOD	< LOD	< LOQ
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOQ = 27 μg/kg)
S08-032200	< LOD	< LOD	< LOD
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)
S08-032201	< LOD (LOD = 8.0 μg/kg)	< LOD (LOD = 8.0 μg/kg)	32 µg/kg
S08-032202	< LOD	< LOD	< LOD
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)
S08-032203	< LOD	< LOD	< LOQ
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOQ = 27 μg/kg)
S08-032204	< LOD	< LOD	< LOQ
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOQ = 27 μg/kg)
S08-032205	< LOD	< LOD	< LOQ
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOQ = 27 μg/kg)
S08-032206	< LOD (LOD = 8.0 μg/kg)	< LOD (LOD = 8.0 μg/kg)	52 µg/kg
S08-032207	< LOD	< LOD	< LOD
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)
S08-032208	< LOD	< LOD	< LOQ
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOQ = 27 μg/kg)
S08-032209	< LOD	< LOD	< LOQ
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOQ = 27 μg/kg)
S08-032210	< LOD (LOD = 8.0 μg/kg)	< LOD (LOD = 8.0 μg/kg)	29 µg/kg
S08-032211	< LOD	< LOD	< LOD
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)
S08-032212	< LOD	< LOD	< LOD
	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)	(LOD = 8.0 μg/kg)

Table 36 continued. Phthalate monoester concentrations measured in the 20 TDS samples

Fera LIMS sample number	Mono-n-pentyl phthalate	Monocyclohexyl phthalate	Monobenzyl phthalate	
S08-032193	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032194	< LOD	< LOD	< LOD	
	(LOD = 15 µg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032195	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032196	< LOD	< LOD	< LOD	
	(LOD = 15 µg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032197	< LOD	< LOD	< LOD	
	(LOD = 15 µg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032198	< LOD	< LOD	< LOD	
	(LOD = 15 µg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032199	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032200	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032201	< LOD	< LOD	< LOD	
	(LOD = 15 µg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032202	< LOD	< LOD	< LOD	
	(LOD = 15 µg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032203	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032204	< LOD	< LOD	< LOD	
	(LOD = 15 µg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032205	< LOD	< LOD	< LOD	
	(LOD = 15 µg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032206	< LOD	< LOD	< LOD	
	(LOD = 15 µg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032207	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032208	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032209	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032210	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032211	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	
S08-032212	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 7.0 μg/kg)	(LOD = 7.0 μg/kg)	

Table 36 continued. Phthalate monoester concentrations measured in the 20 TDS samples

Fera LIMS sample number	Mono-(2-ethylhexyl) phthalate	Mono-n-octyl phthalate	Monoiisononyl phthalate	
S08-032193	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032194	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032195	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032196	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032197	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032198	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032199	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032200	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032201	< LOQ	< LOD	< LOD	
	(LOQ = 50 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032202	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032203	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032204	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032205	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032206	< LOQ	< LOD	< LOD	
	(LOQ = 50 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032207	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032208	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032209	54 μg/kg	< LOD (LOD = 15 μg/kg)	< LOD (LOD = 15 μg/kg)	
S08-032210	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032211	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	
S08-032212	< LOD	< LOD	< LOD	
	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	(LOD = 15 μg/kg)	

Table 37. Sample details and phthalic acid concentrations measured in the 20 TDS samples

Fera LIMS sample number	Phthalic acid concentration (µg/kg)
S08-032193	27
S08-032194	150 #
S08-032195	190 #
S08-032196	360 #
S08-032197	36
S08-032198	66
S08-032199	270 #
S08-032200	100
S08-032201	< LOQ (LOQ = 24 μg/kg)
S08-032202	< LOQ (LOQ = 340 μg/kg)
S08-032203	89
S08-032204	35
S08-032205	140 #
S08-032206	< LOD (LOD = 23 μg/kg)
S08-032207	110
S08-032208	84
S08-032209	130 #
S08-032210	36
S08-032211	99
S08-032212	84

[#] Outside calibration range. Concentration indicative.

Table 38. Sample details and phthalic acid concentrations measured in the 20 TDS samples

Fera LIMS sample number	Measured total phthalate concentration (μg/kg) #
S08-032193	187
S08-032194	90
S08-032195	361
S08-032196	157
S08-032197	90
S08-032198	74
S08-032199	479
S08-032200	53
S08-032201	163
S08-032202	144
S08-032203	202
S08-032204	102
S08-032205	340
S08-032206	206
S08-032207	67
S08-032208	162
S08-032209	177
S08-032210	116
S08-032211	206
S08-032212	163

[#] Calculated as dimethyl phthalate equivalents

Table 39. Sample details – phthalate source studies

LIMS number	Foodstuff	Description of packaging	Packaging size	Mass / volume of food
S09-003788	Damson jam	Glass jar, metal closure with a PVC gasket	0.946 g	340 g
S09-003789	Tomato pesto	Glass jar, metal closure with a PVC gasket	0.353 g	190 g
S09-003790	Pickled red cabbage	Glass jar, metal closure with a PVC gasket	0.432 g	710 g
S09-003791	Pudliszki goulash	Glass jar, metal closure with a PVC gasket	0.365 g	520 g
S09-003792	Bolognese sauce	Glass jar, metal closure with a PVC gasket	0.327 g	320 g
S09-003793	Tomato relish	Glass jar, metal closure with a PVC gasket	0.301 g	310 g
S09-003794	Strawberry yoghurt	Plastic container with foiled lidding	4.06 dm ²	500 g
S09-003795	Date and walnut loaf	Cartonboard tray, paper case in a plastic bag	4.12 dm ²	205 g
S09-003796	Chocolate	Paper/foil/plastic laminate	0.34 dm ²	25 g
S09-003797	Cashew nuts	Plastic bag	5.60 dm ²	300 g
S09-003798	Apricots	Plastic bag	5.60 dm ²	250 g
S09-003799	Mint sauce	Glass jar, metal closure with a PVC gasket	0.298 g	175 g
S09-003800	Green pesto	Glass jar, metal closure with a PVC gasket	0.347 g	120 g
S09-003801	Peach yoghurt	Plastic container and lid	2.30 dm ²	150 g
S09-003802	Fruit drink	Paper/foil/plastic laminate	3.00 dm ²	288 ml
S09-003803	Southern fried chicken breast	Plastic bag	11.0 dm ²	380 g
S09-003804	Ham and cheese wrap	Plastic bag in a cartonboard box	4.37 dm ²	100 g
S09-003805	Battered fish fingers	Cartonboard box	10.8 dm ²	284 g
S09-003806	Pork pie	Paper wrap	3.96 dm ²	140 g
S09-003807	Crispbreads	Cartonboard box with plastic bag liner	5.85 dm ²	150 g
S09-003808	Lasagne sheets	Cartonboard box with plastic window	6.75 dm ²	500 g
S09-003809	Tofu	Foil lined pouch	3.15 dm ²	349 g

Table 39 continued. Sample details – phthalate source studies

LIMS number	Foodstuff	Description of packaging	Packaging size	Mass / volume of food
S09-003810	Sage and onion stuffing	Cartonboard box with plastic bag liner	6.41 dm ²	100 g
S09-003811	Mulligatawny soup	Paper/plastic laminate	4.34 dm ²	600 g
S09-003812	Porridge	Cartonboard box with paper/plastic laminate bag liner	2.50 dm ²	30 g
S09-003813	Cookies	Cartonboard box with plastic window	4.66 dm ²	225 g
S09-003814	Butter	Plastic wrap	3.30 dm ²	500 g
S09-003815	Hot cross buns	Cartonbaordtray in plastic bag	3.72 dm ²	300 g
S09-003816	Raisins	Cartonboard box	1.35 dm ²	43 g

Table 40. Concentrations of the phthalates detected in the gaskets and packaging materials

LIMS code	Foodstuff	Dimethyl phthalate	Diethyl phthalate	Diisobutyl phthalate	Di-n-butyl phthalate	Di-(2- ethylhexyl) phthalate	Diisononyl phthalate	Diisodecyl phthalate
S09-003793	Tomato relish	< LOQ	< LOQ	5.2 mg/kg	< LOQ	2.8 mg/kg	10.9 mg/kg	3.9 mg/kg
S09-003794	Strawberry yoghurt	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	146.5 µg/dm²	< LOQ
S09-003802	Fruit drink	< LOQ	< LOQ	10.5 μg/dm ²	1.9 µg/dm ²	4.0 μg/dm ²	< LOQ	< LOQ
S09-003803	Southern fried chicken breast	< LOQ	< LOQ	4.0 µg/dm ²	< LOQ	10.5 μg/dm ²	< LOQ	< LOQ
S09-003804	Ham and cheese wrap	< LOQ	< LOQ	< LOQ	< LOQ	6.8 µg/dm ²	< LOQ	< LOQ
S09-003807	Crispbreads	1.1 µg/dm²	1.6 µg/dm ²	80.3 μg/dm ²	14.4 µg/dm²	51.5 μg/dm ²	13.1 µg/dm²	< LOQ
S09-003808	Lasagne sheets	1.2 μg/dm ²	< LOQ	147 μg/dm ²	3.9 µg/dm ²	18.3 μg/dm ²	< LOQ	< LOQ
S09-003809	Tofu	< LOQ	< LOQ	8.4 μg/dm ²	1.6 μg/dm ²	2.2 μg/dm ²	< LOQ	< LOQ
S09-003810	Sage and onion stuffing	< LOQ	< LOQ	15.1 µg/dm²	2.5 μg/dm ²	14.4 μg/dm²	< LOQ	< LOQ

Table 41. Calculated concentrations in the foods assuming 100% transfer from the gaskets and packaging materials

LIMS code	Foodstuff	Dimethyl phthalate	Diethyl phthalate	Diisobutyl phthalate	Di-n-butyl phthalate	Di-(2- ethylhexyl) phthalate	Diisononyl phthalate	Diisodecyl phthalate
S09-003793	Tomato relish	< LOQ	< LOQ	5 μg/kg	< LOQ	3 µg/kg	11 µg/kg	4 μg/kg
S09-003794	Strawberry yoghurt	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	1200 µg/kg	< LOQ
S09-003802	Fruit drink	< LOQ	< LOQ	109 μg/kg	20 μg/kg	40 μg/kg	< LOQ	< LOQ
S09-003803	Southern fried chicken breast	< LOQ	< LOQ	116 µg/kg	< LOQ	304 μg/kg	< LOQ	< LOQ
S09-003804	Ham and cheese wrap	< LOQ	< LOQ	< LOQ	< LOQ	212 μg/kg	< LOQ	< LOQ
S09-003807	Crispbreads	43 µg/kg	63 µg/kg	3139 µg/kg	563 µg/kg	2013 μg/kg	512 µg/kg	< LOQ
S09-003808	Lasagne sheets	16 µg/kg	< LOQ	1961 µg/kg	52 μg/kg	244 μg/kg	< LOQ	< LOQ
S09-003809	Tofu	< LOQ	< LOQ	76 µg/kg	14 μg/kg	20 μg/kg	< LOQ	< LOQ
S09-003810	Sage and onion stuffing	< LOQ	< LOQ	967 µg/kg	160 µg/kg	922 μg/kg	< LOQ	< LOQ

Table 42. Measured diisobutyl phthalate concentrations in the lasagne sheets taken at different distances from the packaging

Sample	Layer 1 0 – 0.3 cm from the packaging	Layer 2 0.3 – 0.6 cm from the packaging	Layer 3 2.0 – 2.3 cm from the packaging
Sample 1	223	105	86
Sample 2	259	111	35
Sample 3	206	104	63

Table 43. Retail food sample details

Sample code	Product description
S09-017239	Scottish mussels in shell
S09-017240	Ox liver
S09-017241	Breast of lamb
S09-017242	Granary loaf
S09-017243	Sea bass fillets
S09-017244	Salmon fillets
S09-017245	Jersey milk
S09-017246	British double cream
S09-017247	Lard
S09-017248	British Wiltshire cured thick cut gammon steak
S09-017249	Lasagne
S09-017250	Blue Stilton
S09-017251	British lean beef steak mince (12% fat)
S09-017252	Chocolate sponge sandwich
S09-017253	Large free range eggs
S09-017254	Fisherman's bake
S09-017255	Cornflakes
S09-017256	Infant milk - ready to use
S09-017257	Apple, peach & mango fruit pots
S09-017258	Bourbon creams
S09-017259	White bread rolls
S09-017260	Conger eel
S09-017261	Shin of beef
S09-017262	Pigs liver
S09-017263	Diced lamb
S09-017264	Boneless chicken breasts
S09-017265	Calves liver - sliced
S09-017266	Red mullet
S09-017267	Lemon sole
S09-017268	Sprats
S09-017269	Dairy butter
S09-017270	Cornish clotted cream
S09-017271	Traditional Normandy camembert
S09-017272	Goose fat
S09-017273	Ripple roll
S09-017274	Rice pudding
S09-017275	Ginger biscuits
S09-017276	Organic extra virgin olive oil

Table 43 continued. Retail food sample details

Sample code	Product description
S09-017277	Fish pie
S09-017278	Lasagne
S09-017279	Fresh filtered whole milk
S09-017280	Greek style natural probiotic yoghurt
S09-017281	Jumbo salted cod cutlets
S09-017282	Matzos
S09-017283	Egg pasta lasagne
S09-017284	Mackerel fillets in oil
S09-017285	Infant milk - ready to use
S09-017286	Olive pomace oil blend
S09-017287	Lasagne
S09-017288	Organic cod fish fingers
S09-017289	Rosemary & garlic lamb chipolatas
S09-017290	Unsalted butter
S09-017291	Large roast chicken - whole
S09-017292	Belgian biscuit collection
S09-017293	Wholemeal pitta
S09-017294	Wheat cereal
S09-017295	Grapeseed oil
S09-017296	Organic follow-on milk – ready to use
S09-017297	Lasagne
S09-017298	Vegetable fat spread
S09-017299	New Zealand lamb offal - liver
S09-017300	Neck cutlets
S09-017301	Chicken thighs - bone-in/ skin on
S09-017302	Beef topside
S09-017303	Pork chops - bone-in/ skin on
S09-017304	Welsh lambs liver
S09-017305	Welsh breakfast sausage
S09-017306	Gingerbread ghosties
S09-017307	Brown bread
S09-017308	Farmhouse fruit cake
S09-017309	Fresh eggs - 12 Class A mixed weight
S09-017310	Wild local caught trout fillets
S09-017311	Lamb mince
S09-017312	Turkey breast roast
S09-017313	Swordfish
S09-017314	Fresh baby hake

Table 43 continued. Retail food sample details

Sample code	Product description
S09-017315	Pure vegetable oil
S09-017316	Infant milk - ready to use
S09-017317	Diced chicken
S09-017318	Lemon curd yogurt
S09-017319	Duck eggs
S09-017320	Free range chicken
S09-017321	Rolled pork shoulder joint
S09-017322	Beer & treacle back bacon
S09-017323	Pigs liver
S09-017324	Dressed crab
S09-017325	Sprats (large)
S09-017326	Bloater
S09-017327	Whole smoked eel
S09-017328	Lorne sausage
S09-017329	Smoked ham shank
S09-017330	Refined vegetable fat
S09-017331	Infant milk - formula
S09-017332	Half spring chicken
S09-017333	Tilapia
S09-017334	Grated Emmental
S09-017335	Fresh tuna
S09-017336	Salmon fillets
S09-017337	Halal chicken liver
S09-017338	Halal lamb carcase pieces
S09-017339	Fresh British pork leg joint
S09-017340	Salmon in dill sauce - frozen steam meal
S09-017341	British chicken livers
S09-017342	Whitebait IQF
S09-017343	Beef dripping
S09-017344	Duck eggs
S09-017345	Microwaveable porage oats - syrup swirl
S09-017346	Rye wholemeal bread
S09-017347	Milk brioche rolls
S09-017348	Brie
S09-017349	Sirloin steaks
S09-017350	Pork sausage
S09-017351	Lamb loin chops
S09-017352	Pecan & maple crisp

Table 43 continued. Retail food sample details

Sample code	Product description
S09-017353	De-luxe muesli
S09-017354	Craster kipper fillets
S09-017355	Salmon
S09-017356	Cream crackers
S09-017357	Sunflower oil
S09-017358	Six fresh barn eggs - medium, class A
S09-017359	Turkey breast steaks
S09-017360	Wild Alaskan salmon fillets
S09-017361	Fillets of anchovies
S09-017362	Lamb hotpot
S09-017363	Rice cereal
S09-017364	Angel slices
S09-017365	Growing up milk for toddlers – ready to use
S09-017366	Cookies
S09-017367	Cauliflower & broccoli cheese
S09-017368	Free range eggs - large
S09-017369	Wild fallow venison liver
S09-017370	Belly of pork (rind on)
S09-017371	Iced fairy cakes
S09-017372	Wild pink salmon
S09-017373	Scottish smoked peppered mackerel
S09-017374	Sausages
S09-017375	Prime gammon joint - unsmoked
S09-017376	Naturally smoked haddock fillets
S09-017377	Spare rib of pork joint
S09-017378	Smoked salmon slices
S09-017379	Extra thick real cream - UHT
S09-017380	Cereal
S09-017381	Infant milk - formula
S09-017382	Organic wholemeal bread
S09-017383	Goat milk nutrition
S09-017384	Wild Alaskan salmon fillets
S09-017385	Soya infant formula
S09-017386	Turkey
S09-017387	Turkey breast butter basted
S09-017388	Organic free range British eggs - mixed weight
S09-017389	Sliced white plain bread
S09-017390	Beef sausages

Table 43 continued. Retail food sample details

Sample code	Product description
S09-017391	2 River cobbler fillets
S09-017392	Garnished turkey drumsticks
S09-017393	Eye roast joint
S09-017394	Frying steak
S09-017395	Herring fillets
S09-017396	Boneless pork chops
S09-017397	Boneless stuffed chicken
S09-017398	Trout fillet
S09-017399	Streaky bacon
S09-017400	Organic Irish oak smoked salmon
S09-017401	Traditionally smoked mackerel fillets
S09-017402	Raspberry and coconut cakes
S09-017403	Soya infant formula
S09-017404	Toasted sesame oil
S09-017405	South Pacific sardines in tomato sauce
S09-017406	Infant milk - formula
S09-017407	Honey cereal
S09-017408	Halal bone-in chicken thigh pieces
S09-017409	British pork mince
S09-017410	Organic bone-in lamb shoulder roast
S09-017411	Organic beef stew with potatoes
S09-017412	Strawberry dairy dessert
S09-017413	Groundnut oil
S09-017414	Infant milk - formula
S09-017415	Rye crispbread
S09-017416	Organic gingerbread men
S09-017417	Iced cake
S09-017418	Organic infant milk - formula
S09-017419	Cottage pie
S09-017420	Halibut
S09-017421	Trout
S09-017422	Whitebait
S09-017423	Trout
S09-017424	Fruity malt loaf - sliced
S09-017425	Follow-on milk - ready to use
S09-017426	Breaded chicken pieces
S09-017427	Salmon en croute
S09-017428	Wątróbki rybne - cod liver in brine

Table 43 continued. Retail food sample details

Sample code	Product description
S09-017429	Follow-on milk - ready to use
S09-017430	Infant milk - formula
S09-017431	Biscotti
S09-017432	Wild fallow venison liver
S09-017433	Free range belly pork
S09-017434	Yellowfin tuna
S09-017435	Mackerel fillets
S09-017436	Mackerel
S09-017437	Organic whole milk
S09-017438	Sardines
S09-017439	British turkey mince
S09-017440	Foie de lotte (monkfish liver)
S09-017441	Dressed crab
S09-017442	Kipper fillets
S09-017443	Sea bream
S09-017444	Herrings
S09-017445	Red sea bream
S09-017446	Farmed sea bass
S09-017447	Mackerel
S09-017448	Lard
S09-017449	Pork sausages
S09-017450	English minced lamb
S09-017451	Turkey leg
S09-017452	Boneless leg of pork
S09-017453	Whole herring
S09-017454	Organic whole milk
S09-017455	Sardines
S09-017456	Whole kippers
S09-017457	Organic British free range chicken thigh fillets
S09-017458	British turkey lean mince
S09-017459	Extra virgin olive oil
S09-017460	Classic pork sausage - 16
S09-017461	New Zealand farm assured lamb mince
S09-017462	Extra virgin olive oil
S09-017463	Lard
S09-017464	Free range turkey breast mince
S09-017465	Welsh farm assured whole milk
S09-017466	Dressed crab

Table 43 continued. Retail food sample details

Sample code	Product description
S09-017467	Mackerel
S09-017468	IQF whitebait
S09-017469	Whitebait
S09-017470	Minced lamb
S09-017471	Minced beef
S09-017472	Boneless leg of pork
S09-017473	Minced beef
S09-017474	Salted butter
S09-017475	Newmarket sausages
S09-017476	Farmed sea bass fillets
S09-017477	Lard
S09-017478	Free range chicken legs
S09-017479	Turkey mince
S09-017480	Boneless leg of pork
S09-017481	Farmhouse butter
S09-017482	Whole milk
S09-017483	Fresh sardines
S09-017484	Blended olive pomace oil
S09-017485	Salmon steaks
S09-017486	Sardines – fresh
S09-017487	Smoked mackerel
S09-017488	Sardines
S09-017489	Olive pomace oil
S09-017490	Smoked salmon
S09-017491	Hebridean white crab meat
S09-017492	Salmon
S09-017493	Smoked mackerel
S09-017494	Minced beef
S09-017495	Smoked salmon
S09-017496	British turkey drumsticks
S09-017497	Butter ghee
S09-017498	Wild salmon steaks
S09-017499	Wild Solway salmon

Table 44. Retail food sample results

	S09-017239	S09-017240	S09-017241	S09-017242	S09-017243
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 0.7 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$
DED	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 6.0 \mu g/kg)$	$(LOD = 4.4 \mu g/kg)$	$(LOD = 12.4 \mu g/kg)$	$(LOD = 1.7 \mu g/kg)$	$(LOD = 1.6 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOQ	< LOD
DIFF	$(LOD = 3.8 \mu g/kg)$	$(LOD = 2.1 \mu g/kg)$	$(LOD = 8.9 \mu g/kg)$	$(LOQ = 3.3 \mu g/kg)$	$(LOD = 1.2 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAF	$(LOD = 14.6 \mu g/kg)$	$(LOD = 11.5 \mu g/kg)$	$(LOD = 40.3 \mu g/kg)$	$(LOD = 13.4 \mu g/kg)$	$(LOD = 4.1 \mu g/kg)$
DiBP	< LOD	< LOD	< LOD	67.4 ug/kg	< LOD
DIDP	$(LOD = 3.7 \mu g/kg)$	$(LOD = 33.2 \mu g/kg)$	$(LOD = 33.2 \mu g/kg)$	67.4 μg/kg	$(LOD = 33.2 \mu g/kg)$
DBP	< LOD	< LOD	< LOD	< LOQ	< LOD
DDF	$(LOD = 2.3 \mu g/kg)$	$(LOD = 24.6 \mu g/kg)$	(LOD = 24.6 µg/kg)	(LOQ = 26.6 µg/kg)	$(LOD = 24.6 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	6.0 µg/kg	< LOD
DFF	$(LOD = 1.8 \mu g/kg)$	$(LOD = 1.2 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	(not confirmed)	$(LOD = 0.8 \mu g/kg)$
DHP	56.4 μg/kg	< LOD	< LOD	11.2 μg/kg	< LOD
DITIF	(not confirmed)	$(LOD = 1.6 \mu g/kg)$	$(LOD = 6.9 \mu\text{g/kg})$	(not confirmed)	$(LOD = 2.8 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 27.9 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$	$(LOD = 15.1 \mu g/kg)$	$(LOD = 8.6 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHF	$(LOD = 4.0 \mu g/kg)$	$(LOD = 2.6 \mu g/kg)$	$(LOD = 10.0 \mu g/kg)$	$(LOD = 6.2 \mu g/kg)$	$(LOD = 4.4 \mu g/kg)$
DEHP	< LOQ	< LOD	< LOQ	< LOQ	< LOQ
DETTE	$(LOQ = 27.2 \mu g/kg)$	$(LOD = 26.3 \mu g/kg)$	(LOQ = 87.6 μg/kg)	$(LOQ = 92.1 \mu g/kg)$	$(LOQ = 87.6 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 12.2 \mu g/kg)$	$(LOD = 2.0 \mu g/kg)$	$(LOD = 30.1 \mu g/kg)$	$(LOD = 2.9 \mu g/kg)$	$(LOD = 6.0 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 285.8 \mu g/kg)$	$(LOD = 157.1 \mu g/kg)$	$(LOD = 358.2 \mu g/kg)$	$(LOD = 164.2 \mu g/kg)$	$(LOD = 449.7 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
אטוטר	$(LOD = 98.9 \mu g/kg)$	$(LOD = 76.5 \mu g/kg)$	$(LOD = 257.3 \mu g/kg)$	$(LOD = 101.0 \mu g/kg)$	(LOD = 273.6 µg/kg)
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	(LOD = 12.5 μg/kg)	$(LOD = 15.4 \mu g/kg)$	(LOD = 10.0 μg/kg)	(LOD = 15.1 μg/kg)	$(LOD = 13.0 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017244	S09-017245	S09-017246	S09-017247	S09-017248
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 1.5 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 4.7 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOQ	< LOD
DEF	$(LOD = 2.9 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$	$(LOQ = 15.2 \mu g/kg)$	$(LOD = 1.9 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 2.2 \mu g/kg)$	$(LOD = 1.4 \mu g/kg)$	$(LOD = 4.0 \mu g/kg)$	$(LOD = 4.1 \mu g/kg)$	$(LOD = 1.4 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAF	$(LOD = 7.1 \mu g/kg)$	$(LOD = 6.2 \mu g/kg)$	$(LOD = 12.9 \mu g/kg)$	$(LOD = 10.1 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$
DiBP	< LOD	< LOD	< LOD	< LOQ	< LOD
DIDE	$(LOD = 33.2 \mu g/kg)$	$(LOD = 33.2 \mu g/kg)$	$(LOD = 12.1 \mu g/kg)$	$(LOQ = 40.4 \mu g/kg)$	$(LOD = 12.1 \mu g/kg)$
DBP	< LOD	< LOD	< LOQ	141 0 μα/κα	< LOD
DDF	$(LOD = 24.6 \mu g/kg)$	$(LOD = 24.6 \mu g/kg)$	$(LOQ = 50.4 \mu g/kg)$	141.0 μg/kg	$(LOD = 15.1 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DFF	$(LOD = 2.5 \mu g/kg)$	$(LOD = 1.1 \mu g/kg)$	$(LOD = 16.9 \mu g/kg)$	$(LOD = 7.4 \mu g/kg)$	$(LOD = 2.0 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
סחר	$(LOD = 3.8 \mu g/kg)$	$(LOD = 1.2 \mu g/kg)$	$(LOD = 20.8 \mu g/kg)$	$(LOD = 13.9 \mu g/kg)$	$(LOD = 2.7 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
ББР	$(LOD = 6.8 \mu g/kg)$	$(LOD = 2.6 \mu g/kg)$	$(LOD = 28.7 \mu g/kg)$	$(LOD = 17.3 \mu g/kg)$	$(LOD = 7.9 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 6.1 \mu g/kg)$	$(LOD = 1.7 \mu g/kg)$	$(LOD = 42.6 \mu g/kg)$	$(LOD = 21.3 \mu g/kg)$	$(LOD = 5.9 \mu g/kg)$
DEHP	< LOD	109 6 ug/kg	227 0 ug/kg	119 Q ug/kg	< LOQ
DEITE	$(LOD = 26.3 \mu g/kg)$	108.6 μg/kg	327.9 μg/kg	118.9 μg/kg	$(LOQ = 93.3 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 5.2 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$	$(LOD = 37.8 \mu g/kg)$	$(LOD = 40.2 \mu g/kg)$	$(LOD = 15.0 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 372.0 \mu g/kg)$	$(LOD = 360.6 \mu g/kg)$	$(LOD = 631.7 \mu g/kg)$	$(LOD = 4222.6 \mu g/kg)$	$(LOD = 770.9 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטף	$(LOD = 387.7 \mu g/kg)$	$(LOD = 156.2 \mu g/kg)$	$(LOD = 483.8 \mu g/kg)$	$(LOD = 4293.9 \mu g/kg)$	$(LOD = 533.3 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 13.3 \mu g/kg)$	$(LOD = 51.8 \mu g/kg)$	$(LOD = 67.7 \mu g/kg)$	(LOD = 175.7 μg/kg)	$(LOD = 10.0 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017249	S09-017250	S09-017251	S09-017252	S09-017253
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 1.5 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	(LOD = 12.0 μg/kg)
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 3.1 \mu\text{g/kg})$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 3.2 \mu g/kg)$	$(LOD = 1.8 \mu g/kg)$	$(LOD = 15.7 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIPP	$(LOD = 2.3 \mu g/kg)$	$(LOD = 2.0 \mu g/kg)$	$(LOD = 2.5 \mu g/kg)$	$(LOD = 1.2 \mu g/kg)$	$(LOD = 6.5 \mu g/kg)$
DAD	< LOD	< LOD	< LOD	34.3 µg/kg	< LOD
DAP	$(LOD = 9.2 \mu g/kg)$	$(LOD = 6.4 \mu g/kg)$	$(LOD = 8.5 \mu g/kg)$	(not confirmed)	$(LOD = 37.0 \mu g/kg)$
DiBP	< LOD	< LOQ	< LOD	< LOD	< LOD
DIDP	$(LOD = 19.0 \mu g/kg)$	$(LOQ = 40.4 \mu g/kg)$	$(LOD = 12.1 \mu g/kg)$	(LOD = 19.0 µg/kg)	$(LOD = 19.0 \mu g/kg)$
DBP	< LOD	< LOD	< LOQ	< LOD	< LOD
DDP	$(LOD = 19.5 \mu g/kg)$	$(LOD = 15.1 \mu g/kg)$	$(LOQ = 50.4 \mu g/kg)$	(LOD = 19.5 µg/kg)	(LOD = 19.5 μg/kg)
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DPP	$(LOD = 1.78 \mu g/kg)$	$(LOD = 3.1 \mu g/kg)$	$(LOD = 4.7 \mu g/kg)$	$(LOD = 1.9 \mu g/kg)$	$(LOD = 4.0 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DUL	$(LOD = 1.9 \mu g/kg)$	$(LOD = 15.2 \mu g/kg)$	$(LOD = 6.6 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 4.1 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 4.9 \mu g/kg)$	$(LOD = 32.8 \mu g/kg)$	$(LOD = 12.7 \mu g/kg)$	$(LOD = 3.9 \mu g/kg)$	(LOD = 10.8 μg/kg)
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 2.6 \mu g/kg)$	(LOD = 24.5)	$(LOD = 10.3 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$
DEHP	< LOQ	406.2 ug/kg	255 9 ug/kg	< LOQ	< LOD
DEFIF	$(LOQ = 81.7 \mu g/kg)$	496.3 μg/kg	255.8 μg/kg	$(LOQ = 81.7 \mu g/kg)$	$(LOD = 24.5 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 1.7 \mu g/kg)$	$(LOD = 5.6 \mu g/kg)$	$(LOD = 15.3 \mu g/kg)$	$(LOD = 2.9 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$
DIND	< LOD	3055.4 µg/kg same	< LOD	< LOD	< LOD
DiNP	$(LOD = 121.9 \mu g/kg)$	profile	$(LOD = 877.7 \mu g/kg)$	$(LOD = 204.4 \mu g/kg)$	$(LOD = 357.7 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטף	$(LOD = 88.0 \mu g/kg)$	$(LOD = 277.8 \mu g/kg)$	$(LOD = 722.6 \mu g/kg)$	$(LOD = 83.3 \mu g/kg)$	$(LOD = 253.0 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 1.7 \mu g/kg)$	$(LOD = 34.5 \mu g/kg)$	$(LOD = 31.1 \mu g/kg)$	(LOD = 11.8 μg/kg)	$(LOD = 11.0 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017254	S09-017255	S09-017256	S09-017257	S09-017258
DMD	< LOD	< LOD	< LOD	< LOD	< LOD
DMP	$(LOD = 1.5 \mu g/kg)$	$(LOD = 5.3 \mu g/kg)$	(LOD = 15.6 µg/kg)	$(LOD = 1.5 \mu g/kg)$	$(LOD = 24.5 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 1.5 \mu g/kg)$	$(LOD = 13.7 \mu g/kg)$	$(LOD = 34.7 \mu g/kg)$	$(LOD = 13.8 \mu g/kg)$	(LOD = 17.5 μg/kg)
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 1.2 \mu g/kg)$	$(LOD = 7.1 \mu g/kg)$	$(LOD = 30.5 \mu g/kg)$	$(LOD = 9.6 \mu g/kg)$	$(LOD = 13.4 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 4.2 \mu g/kg)$	$(LOD = 43.9 \mu g/kg)$	$(LOD = 107.3 \mu g/kg)$	$(LOD = 35.7 \mu g/kg)$	$(LOD = 50.3 \mu g/kg)$
DiBP	< LOQ	< LOQ	< LOD	< LOD	< LOQ
DIDE	$(LOQ = 10.2 \mu g/kg)$	$(LOQ = 63.5 \mu g/kg)$	$(LOD = 19.0 \mu g/kg)$	$(LOD = 19.0 \mu g/kg)$	$(LOQ = 43.1 \mu g/kg)$
DBP	< LOQ	< LOD	< LOD	< LOD	50.7 µg/kg
DBF	$(LOQ = 17.3 \mu g/kg)$	$(LOD = 19.5 \mu g/kg)$	$(LOD = 19.5 \mu g/kg)$	$(LOD = 19.5 \mu g/kg)$	59.7 μg/kg
DPP	No data	< LOD	< LOD	< LOD	No data
DFF	No data	$(LOD = 4.1 \mu g/kg)$	$(LOD = 22.0 \mu g/kg)$	$(LOD = 5.6 \mu g/kg)$	No data
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DITIE	$(LOD = 3.3 \mu g/kg)$	$(LOD = 4.4 \mu g/kg)$	$(LOD = 23.5 \mu g/kg)$	$(LOD = 5.7 \mu g/kg)$	(LOD = 24.8 μg/kg)
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 5.9 \mu g/kg)$	$(LOD = 11.6 \mu g/kg)$	(LOD = 36.3 µg/kg)	$(LOD = 12.9 \mu g/kg)$	$(LOD = 51.1 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHF	$(LOD = 4.2 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$	$(LOD = 21.1 \mu g/kg)$	$(LOD = 8.4 \mu g/kg)$	$(LOD = 35.1 \mu g/kg)$
DEHP	< LOQ	< LOD	< LOQ	< LOD	< LOQ
DLITE	$(LOQ = 42.3 \mu g/kg)$	$(LOD = 24.5 \mu g/kg)$	$(LOQ = 81.7 \mu g/kg)$	$(LOD = 24.5 \mu g/kg)$	$(LOQ = 138.4 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 8.1 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 77.2 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	(LOD = 86.8 μg/kg)
DiNP	< LOD	< LOD	< LOD	< LOD	< LOQ
DINE	$(LOD = 155.9 \mu g/kg)$	$(LOD = 198.9 \mu g/kg)$	(LOD = 806.6 μg/kg)	$(LOD = 102.3 \mu g/kg)$	(LOQ = 7042.6 μg/kg)
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
טוטר	$(LOD = 136.7 \mu g/kg)$	$(LOD = 89.9 \mu g/kg)$	$(LOD = 1687.3 \mu g/kg)$	$(LOD = 110.1 \mu g/kg)$	(LOD = 1639.2 μg/kg)
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
אטט	$(LOD = 12.1 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 58.6 \mu g/kg)$	(LOD = 3.8 µg/kg)	(LOD = 115.5 μg/kg)

Table 44 continued. Retail food sample results

	S09-017259	S09-017260	S09-017261	S09-017262	S09-017263
DMD	< LOD				
DMP	$(LOD = 3.0 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 1.4 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$
DEP	< LOD				
DEP	$(LOD = 10.8 \mu g/kg)$	$(LOD = 4.1 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$	$(LOD = 5.6 \mu g/kg)$	$(LOD = 7.2 \mu g/kg)$
DiPP	< LOD				
DIFF	$(LOD = 6.5 \mu g/kg)$	$(LOD = 2.6 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$
DAP	< LOD				
DAF	$(LOD = 23.0 \mu g/kg)$	$(LOD = 10.4 \mu g/kg)$	$(LOD = 11.5 \mu g/kg)$	$(LOD = 14.5 \mu g/kg)$	$(LOD = 16.1 \mu g/kg)$
DiBP	16.7 μα/κα	< LOD	< LOD	< LOD	< LOD
DIDE	16.7 μg/kg	$(LOD = 3.3 \mu g/kg)$	$(LOD = 2.1 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	$(LOD = 2.7 \mu g/kg)$
DBP	< LOQ	< LOQ	< LOQ	< LOD	< LOD
DBF	$(LOQ = 12.0 \mu g/kg)$	$(LOQ = 23.2 \mu g/kg)$	$(LOQ = 6.7 \mu g/kg)$	$(LOD = 7.0 \mu g/kg)$	$(LOD = 2.5 \mu g/kg)$
DPP	No data	< LOD	< LOD	< LOD	< LOD
DFF	No data	$(LOD = 1.6 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 2.9 \mu g/kg)$	$(LOD = 1.9 \mu g/kg)$
DHP	< LOD				
DITIE	$(LOD = 6.8 \mu g/kg)$	$(LOD = 1.7 \mu g/kg)$	$(LOD = 2.0 \mu g/kg)$	$(LOD = 2.5 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$
BBP	< LOD				
DDF	$(LOD = 22.7 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 6.1 \mu g/kg)$	$(LOD = 6.2 \mu g/kg)$	$(LOD = 8.6 \mu g/kg)$
DCHP	< LOD				
DCITIF	$(LOD = 11.0 \mu g/kg)$	$(LOD = 2.1 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$	$(LOD = 3.2 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$
DEHP	92.3 μg/kg	< LOQ	< LOQ	< LOD	< LOQ
DLITE	92.3 μg/kg	$(LOQ = 94.9 \mu g/kg)$	$(LOQ = 27.2 \mu g/kg)$	$(LOD = 2.9 \mu g/kg)$	$(LOQ = 27.2 \mu g/kg)$
DOP	< LOD				
DOF	$(LOD = 7.3 \mu g/kg)$	$(LOD = 1.6 \mu g/kg)$	$(LOD = 9.3 \mu g/kg)$	$(LOD = 2.0 \mu g/kg)$	$(LOD = 13.4 \mu g/kg)$
DiNP	< LOD				
DIN	$(LOD = 186.4 \mu g/kg)$	$(LOD = 104.0 \mu g/kg)$	$(LOD = 170.1 \mu g/kg)$	$(LOD = 76.9 \mu g/kg)$	$(LOD = 108.3 \mu g/kg)$
DiDP	< LOD				
סוטר	$(LOD = 62.2 \mu g/kg)$	$(LOD = 58.6 \mu g/kg)$	$(LOD = 58.2 \mu g/kg)$	$(LOD = 42.8 \mu g/kg)$	$(LOD = 43.9 \mu g/kg)$
DDP	< LOD				
סטר	$(LOD = 10.7 \mu g/kg)$	$(LOD = 2.1 \mu g/kg)$	$(LOD = 1.2 \mu g/kg)$	$(LOD = 1.7 \mu g/kg)$	$(LOD = 5.1 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017264	S09-017265	S09-017266	S09-017267	S09-017268
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 2.2 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 1.53 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOQ	< LOD
DEP	$(LOD = 4.6 \mu g/kg)$	$(LOD = 7.1 \mu g/kg)$	$(LOD = 4.4 \mu g/kg)$	$(LOQ = 17.5 \mu g/kg)$	$(LOD = 8.6 \mu g/kg)$
DiPP	< LOD	< LOD	< LOQ	< LOD	< LOD
DIFF	$(LOD = 3.0 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$	$(LOQ = 11.0 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 5.9 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	(LOD =11.9 μg/kg)	$(LOD = 18.9 \mu g/kg)$	$(LOD = 14.3 \mu g/kg)$	$(LOD = 16.7 \mu g/kg)$	(LOD =18.8 μg/kg)
DiBP	< LOD	< LOD	< LOQ	< LOD	< LOD
DIDP	$(LOD = 3.3 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$	$(LOQ = 7.5 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$
DBP	< LOD	< LOD	< LOD	< LOD	< LOD
DBP	$(LOD = 7.0 \mu g/kg)$	$(LOD = 8.3 \mu g/kg)$	$(LOD = 8.3 \mu g/kg)$	$(LOD = 8.3 \mu g/kg)$	$(LOD = 7.0 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DFF	$(LOD = 1.7 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 2.7 \mu g/kg)$	$(LOD = 2.4 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	$(LOD = 1.9 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 2.9 \mu g/kg)$	$(LOD = 2.7 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 5.1 \mu g/kg)$	$(LOD = 5.3 \mu g/kg)$	$(LOD = 4.5 \mu g/kg)$	$(LOD = 5.1 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 3.1 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$	$(LOD = 8.8 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$
DEHP	< LOD	< LOD	< LOQ	< LOD	< LOD
DEFIF	$(LOD = 28.5 \mu g/kg)$	$(LOD = 19.3 \mu g/kg)$	$(LOQ = 64.24 \mu g/kg)$	$(LOD = 19.3 \mu g/kg)$	$(LOD = 28.5 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 2.1 \mu g/kg)$	$(LOD = 2.0 \mu g/kg)$	$(LOD = 10.3 \mu g/kg)$	$(LOD = 6.3 \mu g/kg)$	$(LOD = 2.0 \mu g/kg)$
DIND	< LOD	< LOD	< LOD	< LOD	< LOD
DiNP	$(LOD = 126.5 \mu g/kg)$	$(LOD = 86.9 \mu g/kg)$	$(LOD = 495.4 \mu g/kg)$	(LOD =175.7 µg/kg)	(LOD = 86.9 μg/kg)
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 50.4 \mu g/kg)$	$(LOD = 72.4 \mu g/kg)$	$(LOD = 319.7 \mu g/kg)$	$(LOD = 209.1 \mu g/kg)$	$(LOD = 72.4 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 1.7 \mu g/kg)$	$(LOD = 1.8 \mu g/kg)$	(LOD = 18.4 μg/kg)	(LOD = 9.9 µg/kg)	$(LOD = 1.8 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017269	S09-017270	S09-017271	S09-017272	S09-017273
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 1.5 \mu g/kg)$	$(LOD = 6.2 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 4.4 \mu g/kg)$	$(LOD = 7.9 \mu g/kg)$	$(LOD = 3.4 \mu g/kg)$	$(LOD = 12.7 \mu g/kg)$	$(LOD = 2.4 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 2.8 \mu g/kg)$	$(LOD = 5.7 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$	$(LOD = 11.4 \mu g/kg)$	$(LOD = 1.2 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAF	$(LOD = 10.7 \mu g/kg)$	(LOD = 21.6 μg/kg)	(LOD =8.8 μg/kg)	$(LOD = 30.9 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$
DiBP	23.6 µg/kg	196 O ug/kg	< LOD	29.8 μg/kg	< LOQ
DIDE	(not confirmed)	186.0 μg/kg	$(LOD = 3.3 \mu g/kg)$	(not confirmed)	$(LOQ = 10.2 \mu g/kg)$
DBP	< LOQ	< LOQ	< LOD	18.1 μg/kg	< LOD
DDF	$(LOQ = 8.2 \mu g/kg)$	(LOQ = 27.6 µg/kg)	$(LOD = 7.0 \mu g/kg)$	(not confirmed)	$(LOD = 5.2 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	No data	No data
DFF	$(LOD = 6.3 \mu g/kg)$	$(LOD = 5.3 \mu g/kg)$	$(LOD = 3.1 \mu g/kg)$	No data	No data
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHF	$(LOD = 8.5 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$	$(LOD = 3.4 \mu g/kg)$	$(LOD = 50.8 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 12.1 \mu g/kg)$	$(LOD = 8.8 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$	$(LOD = 36.6 \mu g/kg)$	$(LOD = 6.8 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DOM	$(LOD = 11.4 \mu g/kg)$	$(LOD = 8.5 \mu g/kg)$	$(LOD = 4.8 \mu g/kg)$	$(LOD = 59.1 \mu g/kg)$	$(LOD = 11.7 \mu g/kg)$
DEHP	346.6 µg/kg	690.0 µg/kg	< LOQ	128.7 μg/kg	133.8 μg/kg
DLITE	340.0 μg/kg	090.0 μg/kg	$(LOQ = 94.9 \mu g/kg)$	(not confirmed)	(not confirmed)
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOI	$(LOD = 50.2 \mu g/kg)$	$(LOD = 27.4 \mu g/kg)$	$(LOD = 12.7 \mu g/kg)$	$(LOD = 321.1 \mu g/kg)$	$(LOD = 86.1 \mu g/kg)$
DiNP	1499.6 μg/kg	< LOD	< LOD	< LOD	< LOQ
DIN	(same profile)	$(LOD = 1097.7 \mu g/kg)$	$(LOD = 642.1 \mu g/kg)$	$(LOD = 6216.3 \mu g/kg)$	$(LOQ = 707.5 \mu g/kg)$
DiDP	< LOD	< LOD	No data	< LOD	< LOD
סוטר	$(LOD = 914.5 \mu g/kg)$	$(LOD = 517.2 \mu g/kg)$	ino data	$(LOD = 4783.6 \mu g/kg)$	$(LOD = 323.5 \mu g/kg)$
DDP	< LOD	< LOD	No data	< LOD	< LOD
דטט	$(LOD = 91.5 \mu g/kg)$	(LOD = 132.3 μg/kg)	NO dala	$(LOD = 515.1 \mu g/kg)$	$(LOD = 12.6 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017274	S09-017275	S09-017276	S09-017277	S09-017278
DMP	< LOD	< LOD	5.5 μg/kg	< LOD	< LOD
DIVIP	$(LOD = 2.2 \mu g/kg)$	$(LOD = 5.3 \mu g/kg)$	(not confirmed)	$(LOD = 1.5 \mu g/kg)$	$(LOD = 1.4 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 1.5 \mu g/kg)$	$(LOD = 6.9 \mu g/kg)$	$(LOD = 4.1 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 1.1 \mu g/kg)$	$(LOD = 5.1 \mu g/kg)$	$(LOD = 2.7 \mu g/kg)$	$(LOD = 2.5 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 4.2 \mu g/kg)$	$(LOD = 19.3 \mu g/kg)$	$(LOD = 7.7 \mu g/kg)$	(LOD =10.29 µg/kg)	$(LOD = 11.4 \mu g/kg)$
DiBP	< LOQ	15.8 μg/kg	40.4	< LOD	< LOD
DIDP	$(LOQ = 10.2 \mu g/kg)$	(not confirmed)	49.4 μg/kg	$(LOD = 3.3 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$
DBP	< LOQ	< LOQ	FC 9a/ka	< LOD	< LOD
DDP	$(LOQ = 17.3 \mu g/kg)$	$(LOQ = 19.3 \mu g/kg)$	56.8 μg/kg	$(LOD = 7.0 \mu g/kg)$	$(LOD = 8.3 \mu g/kg)$
DPP	< LOD	No data	< LOD	< LOD	< LOD
DFF	$(LOD = 10.1 \mu g/kg)$	เพีย นิสเส	$(LOD = 13.1 \mu g/kg)$	$(LOD = 1.8 \mu g/kg)$	$(LOD = 1.8 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	$(LOD = 3.3 \mu g/kg)$	$(LOD = 13.9 \mu g/kg)$	$(LOD = 9.5 \mu g/kg)$	$(LOD = 1.8 \mu g/kg)$	$(LOD = 1.9 \mu g/kg)$
BBP	< LOD	< LOD		< LOD	< LOD
DDF	$(LOD = 6.1 \mu g/kg)$	$(LOD = 23.6 \mu g/kg)$	2083.8 μg/kg	$(LOD = 3.9 \mu g/kg)$	$(LOD = 4.1 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 4.0 \mu g/kg)$	$(LOD = 18.4 \mu g/kg)$	$(LOD = 10.5 \mu g/kg)$	$(LOD = 2.5 \mu g/kg)$	$(LOD = 2.4 \mu g/kg)$
DEHP	57.4 ug/kg	100.9 μα/κα	6446.9 μα/κα	< LOD	< LOD
DEFIE	57.4 μg/kg	109.8 μg/kg	6446.8 μg/kg	$(LOD = 28.5 \mu g/kg)$	$(LOD = 19.3 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 4.0 \mu g/kg)$	$(LOD = 14.6 \mu g/kg)$	$(LOD = 26.8 \mu g/kg)$	$(LOD = 2.0 \mu g/kg)$	$(LOD = 1.9 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 354.9 \mu g/kg)$	$(LOD = 491.0 \mu g/kg)$	$(LOD = 4752.3 \mu g/kg)$	$(LOD = 93.7 \mu g/kg)$	(LOD = 81.2 μg/kg)
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 199.0 \mu g/kg)$	$(LOD = 461.5 \mu g/kg)$	$(LOD = 1967.0 \mu g/kg)$	$(LOD = 67.4 \mu g/kg)$	$(LOD = 51.7 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 7.4 \mu g/kg)$	$(LOD = 27.8 \mu g/kg)$	(LOD = 17.5 μg/kg)	(LOD = 2.2 µg/kg)	$(LOD = 1.9 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017279	S09-017280	S09-017281	S09-017282	S09-017283
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 3.0 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 3.7 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 3.4 \mu g/kg)$	$(LOD = 2.6 \mu g/kg)$	$(LOD = 3.1 \mu g/kg)$	$(LOD = 2.6 \mu g/kg)$	$(LOD = 4.7 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 2.3 \mu g/kg)$	$(LOD = 2.1 \mu g/kg)$	$(LOD = 2.1 \mu g/kg)$	$(LOD = 1.9 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 9.5 \mu g/kg)$	$(LOD = 6.8 \mu g/kg)$	$(LOD = 7.3 \mu g/kg)$	$(LOD = 7.3 \mu g/kg)$	$(LOD = 8.4 \mu g/kg)$
DiBP	< LOD	< LOD	< LOD	< LOD	20.0
DIDP	$(LOD = 3.3 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	29.9 μg/kg
DBP	< LOD	< LOD	< LOD	< LOD	< LOQ
DDP	$(LOD = 4.2 \mu\text{g/kg})$	$(LOD = 3.7 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$	$(LOQ = 17.3 \mu g/kg)$
DPP	< LOD	No doto	< LOD	< LOD	< LOD
DFF	$(LOD = 2.7 \mu g/kg)$	No data	$(LOD = 1.4 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 1.4 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	$(LOD = 5.6 \mu g/kg)$	$(LOD = 5.6 \mu g/kg)$	$(LOD = 7.8 \mu g/kg)$	$(LOD = 5.6 \mu g/kg)$	$(LOD = 4.8 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 8.4 \mu g/kg)$	$(LOD = 7.8 \mu g/kg)$	(LOD = 19.1 µg/kg)	$(LOD = 13.0 \mu g/kg)$	$(LOD = 9.3 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 6.3 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$	$(LOD = 8.4 \mu g/kg)$	$(LOD = 7.3 \mu g/kg)$	$(LOD = 6.2 \mu g/kg)$
DEHP	< LOQ		< LOQ	< LOQ	< LOQ
DEFIE	$(LOQ = 51.4 \mu g/kg)$	78.1 μg/kg	$(LOQ = 42.3 \mu g/kg)$	$(LOQ = 42.3 \mu g/kg)$	$(LOQ = 42.3 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 9.3 \mu g/kg)$	$(LOD = 28.2 \mu g/kg)$	$(LOD = 16.1 \mu g/kg)$	$(LOD = 23.5 \mu g/kg)$	$(LOD = 8.6 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOQ
DINE	$(LOD = 291.1 \mu g/kg)$	$(LOD = 368.2 \mu g/kg)$	$(LOD = 194.4 \mu g/kg)$	(LOD = 229.6 µg/kg)	(LOQ = 775.2 µg/kg)
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 210.5 \mu g/kg)$	$(LOD = 478.4 \mu g/kg)$	$(LOD = 145.8 \mu g/kg)$	$(LOD = 136.4 \mu g/kg)$	$(LOD = 80.4 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 24.2 \mu g/kg)$	$(LOD = 48.4 \mu g/kg)$	(LOD = 12.9 μg/kg)	(LOD = 19.9 μg/kg)	$(LOD = 45.8 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017284	S09-017285	S09-017286	S09-017287	S09-017288
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 3.7 \mu g/kg)$	$(LOD = 3.7 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$
DEP	< LOQ	< LOD	< LOD	< LOD	< LOD
DEP	$(LOQ = 11.5 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$	$(LOD = 4.9 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 5.6 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 2.8 \mu g/kg)$	$(LOD = 4.0 \mu g/kg)$	$(LOD = 4.1 \mu g/kg)$	$(LOD = 1.2 \mu g/kg)$	$(LOD = 4.0 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 7.3 \mu g/kg)$	$(LOD = 14.6 \mu g/kg)$	$(LOD = 11.1 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	(LOD = 12.0 μg/kg)
DiBP	< LOQ	< LOQ	15.3 μg/kg	< LOD	< LOD
DIDP	$(LOQ = 7.4 \mu g/kg)$	$(LOQ = 7.4 \mu g/kg)$	(not confirmed)	$(LOD = 2.2 \mu g/kg)$	$(LOD = 5.8 \mu g/kg)$
DBP	< LOQ	< LOQ	18.0 μg/kg	< LOD	< LOQ
DDP	$(LOQ = 12.4 \mu g/kg)$	$(LOQ = 12.4 \mu g/kg)$	(not confirmed)	$(LOD = 3.7 \mu g/kg)$	$(LOQ = 18.0 \mu g/kg)$
DPP	< LOD	< LOD	< LOQ	< LOD	No data
DPP	$(LOD = 2.5 \mu g/kg)$	$(LOD = 4.0 \mu g/kg)$	$(LOQ = 48.1 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	No data
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	$(LOD = 11.0 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$	$(LOD = 54.0 \mu g/kg)$	$(LOD = 0.9 \mu g/kg)$	(LOD = 10.5 μg/kg)
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 13.4 \mu g/kg)$	$(LOD = 8.4 \mu g/kg)$	$(LOD = 43.5 \mu g/kg)$	$(LOD = 1.9 \mu g/kg)$	(LOD = 16.3 μg/kg)
DCHP	No data	< LOD	< LOD	< LOD	< LOD
DCHP	No data	$(LOD = 6.1 \mu g/kg)$	(LOD = 17.8 μg/kg)	$(LOD = 1.1 \mu g/kg)$	(LOD = 12.5 μg/kg)
DEHP	0.4.0.0.0//	< LOQ	422 6 112/102	< LOD	57.2 μg/kg
DEUL	84.8 μg/kg	$(LOQ = 49.9 \mu g/kg)$	433.6 μg/kg	$(LOD = 15.0 \mu g/kg)$	(not confirmed)
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 80.0 \mu g/kg)$	$(LOD = 10.7 \mu g/kg)$	$(LOD = 78.0 \mu g/kg)$	$(LOD = 12.9 \mu g/kg)$	$(LOD = 23.4 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 478.8 \mu g/kg)$	$(LOD = 354.2 \mu g/kg)$	(LOD = 1432.8 μg/kg)	$(LOD = 85.7 \mu g/kg)$	$(LOD = 698.0 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 629.8 \mu g/kg)$	$(LOD = 346.1 \mu g/kg)$	(LOD = 1391.6 μg/kg)	$(LOD = 43.1 \mu g/kg)$	$(LOD = 355.9 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 9.6 \mu g/kg)$	$(LOD = 13.9 \mu g/kg)$	$(LOD = 82.3 \mu g/kg)$	$(LOD = 12.9 \mu g/kg)$	(LOD = 31.6 μg/kg)

Table 44 continued. Retail food sample results

	S09-017289	S09-017290	S09-017291	S09-017292	S09-017293
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 3.0 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 5.3 \mu g/kg)$	$(LOD = 4.5 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$
DEP	< LOQ	< LOD	< LOD	< LOD	< LOD
DEP	$(LOQ = 18.7 \mu g/kg)$	$(LOD = 10.1 \mu g/kg)$	$(LOD = 6.5 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	$(LOD = 6.5 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 4.8 \mu g/kg)$	$(LOD = 8.3 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$	$(LOD = 4.5 \mu g/kg)$	$(LOD = 4.9 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 14.7 \mu g/kg)$	$(LOD = 22.9 \mu g/kg)$	$(LOD = 16.9 \mu g/kg)$	$(LOD = 12.9 \mu g/kg)$	(LOD = 15.3 μg/kg)
DiBP	< LOD	< LOD	< LOD	< LOQ	< LOD
DIDP	$(LOD = 5.8 \mu g/kg)$	$(LOD = 9.3 \mu g/kg)$	$(LOD = 5.8 \mu g/kg)$	$(LOQ = 19.3 \mu g/kg)$	$(LOD = 5.8 \mu g/kg)$
DBP	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ
DDP	$(LOQ = 11.4 \mu g/kg)$	$(LOQ = 24.9 \mu g/kg)$	$(LOQ = 11.4 \mu g/kg)$	$(LOQ = 15.5 \mu g/kg)$	$(LOQ = 12.9 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	No data	No data
DPP	$(LOD = 4.0 \mu g/kg)$	$(LOD = 4.9 \mu g/kg)$	$(LOD = 4.4 \mu g/kg)$	No data	No data
DHP	< LOQ	< LOD	< LOD	< LOD	< LOD
DUL	$(LOQ = 30.9 \mu g/kg)$	$(LOD = 18.2 \mu g/kg)$	$(LOD = 9.1 \mu g/kg)$	$(LOD = 14.9 \mu g/kg)$	(LOD = 11.7 μg/kg)
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 16.6 \mu g/kg)$	$(LOD = 20.8 \mu g/kg)$	$(LOD = 15.5 \mu g/kg)$	$(LOD = 18.2 \mu g/kg)$	$(LOD = 22.7 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
рспР	$(LOD = 12.8 \mu g/kg)$	$(LOD = 34.6 \mu g/kg)$	$(LOD = 11.6 \mu g/kg)$	$(LOD = 18.3 \mu g/kg)$	$(LOD = 18.8 \mu g/kg)$
DEHP	163.1 μg/kg	2591.5 μg/kg	196.5 μg/kg	218.5 μg/kg	93.7 μg/kg
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 17.9 \mu g/kg)$	$(LOD = 44.4 \mu g/kg)$	$(LOD = 49.2 \mu g/kg)$	(LOD = 25.8 µg/kg)	(LOD = 12.9 μg/kg)
D:ND	C2F 7//	< LOD	< LOD	< LOD	< LOD
DiNP	635.7 μg/kg	$(LOD = 2742.7 \mu g/kg)$	$(LOD = 450.6 \mu g/kg)$	$(LOD = 710.5 \mu g/kg)$	$(LOD = 474.9 \mu g/kg)$
DiDB	< LOD	< LOD	< LOD	< LOD	< LOD
DiDP	$(LOD = 441.6 \mu g/kg)$	$(LOD = 2714.3 \mu g/kg)$	$(LOD = 359.4 \mu g/kg)$	(LOD = 832.0 µg/kg)	$(LOD = 434.2 \mu g/kg)$
DDD	< LOD	< LOD	< LOD	< LOD	< LOD
DDP	$(LOD = 23.2 \mu g/kg)$	$(LOD = 93.6 \mu g/kg)$	$(LOD = 72.3 \mu g/kg)$	$(LOD = 94.5 \mu g/kg)$	$(LOD = 32.8 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017294	S09-017295	S09-017296	S09-017297	S09-017298
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 3.7 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 4.2 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 3.1 \mu g/kg)$	(LOD = 11.5 μg/kg)
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIPP	$(LOD = 3.1 \mu g/kg)$	$(LOD = 2.0 \mu g/kg)$	$(LOD = 2.6 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$	$(LOD = 9.7 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 11.5 \mu g/kg)$	$(LOD = 7.5 \mu g/kg)$	$(LOD = 29.3 \mu g/kg)$	$(LOD = 8.2 \mu g/kg)$	(LOD = 27.7 μg/kg)
D:DD	< LOQ	< LOD	< LOD	< LOD	< LOD
DiBP	$(LOQ = 10.2 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 4.9 \mu g/kg)$	$(LOD = 5.8 \mu g/kg)$	$(LOD = 10.4 \mu g/kg)$
DBP	< LOQ	< LOQ	< LOD	< LOD	< LOQ
DBP	$(LOQ = 17.3 \mu g/kg)$	$(LOQ = 12.4 \mu g/kg)$	$(LOD = 6.1 \mu g/kg)$	$(LOD = 2.6 \mu g/kg)$	$(LOQ = 24.4 \mu g/kg)$
DPP	< LOD	No data	< LOD	< LOD	
DPP	$(LOD = 2.2 \mu g/kg)$	No data	$(LOD = 14.2 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$	No data
DHP	< LOD	< LOD	< LOD	< LOD	69.9 µg/kg
DUL	$(LOD = 5.8 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	$(LOD = 14.3 \mu g/kg)$	$(LOD = 3.1 \mu g/kg)$	(not confirmed)
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 11.6 \mu g/kg)$	$(LOD = 6.3 \mu g/kg)$	$(LOD = 34.0 \mu g/kg)$	$(LOD = 7.1 \mu g/kg)$	(LOD = 33.3 µg/kg)
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 7.3 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	$(LOD = 14.3 \mu g/kg)$	$(LOD = 3.9 \mu g/kg)$	(LOD = 31.9 μg/kg)
DEHP	40.1 ug/kg	< LOQ	< LOQ	< LOQ	150 9 ug/kg
DETTP	49.1 μg/kg	$(LOQ = 49.9 \mu g/kg)$	$(LOQ = 39.5 \mu g/kg)$	(LOQ = 36.8 µg/kg)	159.8 µg/kg
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 8.9 \mu g/kg)$	$(LOD = 25.9 \mu g/kg)$	$(LOD = 25.0 \mu g/kg)$	$(LOD = 3.2 \mu g/kg)$	$(LOD = 71.3 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 308.2 \mu g/kg)$	$(LOD = 361.4 \mu g/kg)$	(LOD = 1170.9 µg/kg)	(LOD = 391.94 µg/kg)	(LOD = 615.7 µg/kg)
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
אטוט	$(LOD = 186.5 \mu g/kg)$	$(LOD = 333.1 \mu g/kg)$	(LOD = 581.6 μg/kg)	(LOD = 161.8 μg/kg)	(LOD = 969.86 µg/kg)
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 10.8 \mu g/kg)$	$(LOD = 16.3 \mu g/kg)$	$(LOD = 33.9 \mu g/kg)$	$(LOD = 7.4 \mu g/kg)$	$(LOD = 125.3 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017299	S09-017300	S09-017301	S09-017302	S09-017303
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 7.8 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 4.4 \mu g/kg)$	$(LOD = 3.4 \mu g/kg)$	$(LOD = 3.4 \mu g/kg)$	$(LOD = 4.8 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 2.8 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$	$(LOD = 2.5 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 2.5 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 21.4 \mu g/kg)$	$(LOD = 8.5 \mu g/kg)$	$(LOD = 9.5 \mu g/kg)$	$(LOD = 12.3 \mu g/kg)$	$(LOD = 9.5 \mu g/kg)$
DiBP	< LOD	< LOD	< LOD	< LOQ	< LOD
DIDP	$(LOD = 5.1 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	$(LOD = 3.2 \mu g/kg)$	(LOQ = 10.8 µg/kg)	$(LOD = 3.2 \mu g/kg)$
DBP	< LOD	< LOD	< LOD	35.8 µg/kg	< LOD
DDP	$(LOD = 7.3 \mu g/kg)$	$(LOD = 9.8 \mu g/kg)$	$(LOD = 7.3 \mu g/kg)$	(not confirmed)	$(LOD = 7.3 \mu g/kg)$
DPP	36.3 µg/kg	< LOD	< LOD	< LOD	< LOD
DFF	(not confirmed)	$(LOD = 5.0 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$	$(LOD = 9.1 \mu g/kg)$	$(LOD = 7.9 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	$(LOD = 5.6 \mu g/kg)$	$(LOD = 10.5 \mu g/kg)$	$(LOD = 12.7 \mu g/kg)$	(LOD = 16.8 µg/kg)	$(LOD = 20.2 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 12.1 \mu g/kg)$	$(LOD = 20.2 \mu g/kg)$	(LOD = 21.6 µg/kg)	(LOD = 28.2 µg/kg)	(LOD = 41.6 μg/kg)
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 11.4 \mu g/kg)$	$(LOD = 13.7 \mu g/kg)$	(LOD = 16.0 μg/kg)	$(LOD = 23.4 \mu g/kg)$	$(LOD = 26.2 \mu g/kg)$
DEHP	< LOD	< LOD	GE Aug/kg	< LOQ	< LOD
DEUL	$(LOD = 10.4 \mu g/kg)$	$(LOD = 18.1 \mu g/kg)$	65.4 μg/kg	$(LOQ = 76.7 \mu g/kg)$	$(LOD = 31.2 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 8.7 \mu g/kg)$	$(LOD = 19.6 \mu g/kg)$	(LOD = 26.8 μg/kg)	$(LOD = 8.6 \mu g/kg)$	$(LOD = 29.6 \mu g/kg)$
DiNP	< LOD	< LOD	1819.6 µg/kg	< LOD	< LOD
DINE	$(LOD = 491.0 \mu g/kg)$	$(LOD = 336.8 \mu g/kg)$	(same profile)	$(LOD = 541.2 \mu g/kg)$	$(LOD = 421.7 \mu g/kg)$
DiDP	< LOD	< LOD	< LOQ	< LOD	< LOD
סוטר	$(LOD = 332.2 \mu g/kg)$	$(LOD = 321.9 \mu g/kg)$	(LOQ = 1945.8 µg/kg)	$(LOD = 57.9 \mu g/kg)$	$(LOD = 212.0 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOQ
טטר	$(LOD = 10.8 \mu g/kg)$	$(LOD = 28.7 \mu g/kg)$	(LOD = 84.7 μg/kg)	(LOD = 64.8 μg/kg)	$(LOQ = 169.2 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017304	S09-017305	S09-017306	S09-017307	S09-017308
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIE	$(LOD = 10.6 \mu g/kg)$	$(LOD = 3.7 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$
DEP	< LOD	< LOD	< LOQ	< LOD	< LOD
DEP	$(LOD = 8.6 \mu g/kg)$	$(LOD = 6.4 \mu g/kg)$	(LOQ = 22.6 µg/kg)	$(LOD = 4.8 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 9.7 \mu g/kg)$	$(LOD = 4.5 \mu g/kg)$	$(LOD = 6.6 \mu g/kg)$	$(LOD = 3.5 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 68.7 \mu g/kg)$	$(LOD = 18.9 \mu g/kg)$	$(LOD = 20.1 \mu g/kg)$	$(LOD = 12.4 \mu g/kg)$	$(LOD = 6.5 \mu g/kg)$
DiBP	< LOD	< LOD	142.3 μg/kg	21.5 µg/kg	46.4 ug/kg
DIDP	$(LOD = 12.2 \mu g/kg)$	$(LOD = 4.1 \mu g/kg)$	(not confirmed)	(not confirmed)	46.1 μg/kg
DBP	< LOD	< LOD	39.8 µg/kg	< LOQ	13.7 μg/kg
DDP	$(LOD = 10.8 \mu g/kg)$	$(LOD = 7.3 \mu g/kg)$	(not confirmed)	(LOQ = 17.8 µg/kg)	(not confirmed)
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DFF	$(LOD = 6.4 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 7.1 \mu g/kg)$	$(LOD = 6.6 \mu g/kg)$	$(LOD = 2.5 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	$(LOD = 8.4 \mu g/kg)$	$(LOD = 9.2 \mu g/kg)$	$(LOD = 13.9 \mu g/kg)$	$(LOD = 6.8 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 14.2 \mu g/kg)$	$(LOD = 18.5 \mu g/kg)$	$(LOD = 20.2 \mu g/kg)$	(LOD = 17.0 μg/kg)	$(LOD = 6.6 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 9.3 \mu g/kg)$	$(LOD = 11.9 \mu g/kg)$	$(LOD = 20.0 \mu g/kg)$	(LOD = 10.8 µg/kg)	$(LOD = 3.9 \mu g/kg)$
DEHP	83.7 µg/kg	166.1 μg/kg	01.3 ug/kg	< LOQ	245 0 ug/kg
DETTE	(not confirmed)	166.1 μg/kg	91.3 μg/kg	$(LOQ = 55.4 \mu g/kg)$	245.0 μg/kg
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 26.1 \mu g/kg)$	$(LOD = 22.9 \mu g/kg)$	$(LOD = 31.1 \mu g/kg)$	$(LOD = 8.5 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 576.8 \mu g/kg)$	$(LOD = 345.9 \mu g/kg)$	$(LOD = 1317.3 \mu g/kg)$	$(LOD = 410.8 \mu g/kg)$	$(LOD = 108.4 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 616.0 \mu g/kg)$	$(LOD = 258.9 \mu g/kg)$	$(LOD = 876.3 \mu g/kg)$	$(LOD = 279.8 \mu g/kg)$	$(LOD = 276.5 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 21.5 \mu g/kg)$	$(LOD = 41.1 \mu g/kg)$	(LOD = 59.8 μg/kg)	(LOD = 12.5 μg/kg)	$(LOD = 15.7 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017309	S09-017310	S09-017311	S09-017312	S09-017313
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 4.1 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOQ
DEP	$(LOD = 16.7 \mu g/kg)$	$(LOD = 5.6 \mu g/kg)$	$(LOD = 8.7 \mu g/kg)$	$(LOD = 3.1 \mu g/kg)$	$(LOQ = 10.0 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 11.6 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$	$(LOD = 6.2 \mu g/kg)$	$(LOD = 2.1 \mu g/kg)$	$(LOD = 2.4 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 40.3 \mu g/kg)$	$(LOD = 14.1 \mu g/kg)$	$(LOD = 21.8 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$	$(LOD = 8.5 \mu g/kg)$
DiBP	< LOD	< LOD	< LOD	< LOD	< LOQ
DIDP	$(LOD = 11.5 \mu g/kg)$	$(LOD = 6.9 \mu g/kg)$	$(LOD = 8.2 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	$(LOQ = 15.4 \mu g/kg)$
DBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDP	$(LOD = 9.5 \mu g/kg)$	$(LOD = 12.0 \mu g/kg)$	$(LOD = 7.5 \mu g/kg)$	$(LOD = 7.1 \mu g/kg)$	(LOD = 12.6 μg/kg)
DPP	< LOD	< LOD	< LOD	32.3 μg/kg	< LOD
DPP	$(LOD = 9.3 \mu g/kg)$	$(LOD = 7.3 \mu g/kg)$	$(LOD = 7.2 \mu g/kg)$	(not confirmed)	(LOD = 12.0 μg/kg)
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DUL	$(LOD = 13.6 \mu g/kg)$	$(LOD = 19.8 \mu g/kg)$	$(LOD = 8.2 \mu g/kg)$	$(LOD = 7.2 \mu g/kg)$	(LOD = 17.7 μg/kg)
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 23.9 \mu g/kg)$	$(LOD = 31.3 \mu g/kg)$	$(LOD = 15.1 \mu g/kg)$	(LOD = 16.5 µg/kg)	$(LOD = 26.9 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 17.4 \mu g/kg)$	$(LOD = 29.2 \mu g/kg)$	$(LOD = 10.5 \mu g/kg)$	$(LOD = 11.1 \mu g/kg)$	(LOD = 11.7 μg/kg)
DEHP	< LOD	< LOD	190.7 μα/κα	< LOD	< LOQ
DETTP	$(LOD = 16.5 \mu g/kg)$	$(LOD = 36.9 \mu g/kg)$	189.7 μg/kg	$(LOD = 18.1 \mu g/kg)$	$(LOQ = 61.8 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 32.8 \mu g/kg)$	$(LOD = 46.5 \mu g/kg)$	$(LOD = 29.1 \mu g/kg)$	$(LOD = 15.5 \mu g/kg)$	$(LOD = 41.1 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 434.6 \mu g/kg)$	(LOD = 2193.8 µg/kg)	$(LOD = 143.6 \mu g/kg)$	$(LOD = 236.6 \mu g/kg)$	(LOD = 757.2 µg/kg)
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 461.8 \mu g/kg)$	$(LOD = 546.8 \mu g/kg)$	$(LOD = 142.8 \mu g/kg)$	$(LOD = 178.3 \mu g/kg)$	$(LOD = 684.5 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 38.5 \mu g/kg)$	$(LOD = 78.2 \mu g/kg)$	$(LOD = 11.7 \mu g/kg)$	$(LOD = 17.7 \mu g/kg)$	$(LOD = 81.9 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017314	S09-017315	S09-017316	S09-017317	S09-017318
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 5.3 \mu g/kg)$	$(LOD = 5.3 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 3.1 \mu g/kg)$	$(LOD = 6.0 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 4.6 \mu g/kg)$	$(LOD = 9.1 \mu g/kg)$	$(LOD = 4.7 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$	$(LOD = 2.7 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIPP	$(LOD = 3.5 \mu g/kg)$	$(LOD = 6.5 \mu g/kg)$	$(LOD = 3.7 \mu g/kg)$	$(LOD = 1.4 \mu g/kg)$	$(LOD = 2.0 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 14.0 \mu g/kg)$	$(LOD = 22.8 \mu g/kg)$	$(LOD = 10.8 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$	$(LOD = 6.4 \mu g/kg)$
D:DD	< LOD	< LOD	< LOD	< LOD	< LOQ
DiBP	$(LOD = 4.6 \mu g/kg)$	$(LOD = 6.2 \mu g/kg)$	$(LOD = 5.8 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	$(LOQ = 15.4 \mu g/kg)$
DBP	< LOD	< LOD	< LOD	< LOD	< LOD
DBP	$(LOD = 7.1 \mu g/kg)$	$(LOD = 5.1 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	$(LOD = 7.1 \mu g/kg)$	$(LOD = 7.1 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	< LOQ
DPP	$(LOD = 7.9 \mu g/kg)$	$(LOD = 5.8 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 2.9 \mu g/kg)$	$(LOQ = 22.5 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	$(LOD = 13.5 \mu g/kg)$	$(LOD = 8.4 \mu g/kg)$	$(LOD = 17.0 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 10.5 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 22.2 \mu g/kg)$	$(LOD = 15.0 \mu g/kg)$	$(LOD = 14.5 \mu g/kg)$	$(LOD = 8.7 \mu g/kg)$	$(LOD = 15.9 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 13.3 \mu g/kg)$	$(LOD = 10.6 \mu g/kg)$	$(LOD = 22.9 \mu g/kg)$	$(LOD = 5.6 \mu g/kg)$	$(LOD = 26.1 \mu g/kg)$
DEHP	< LOQ	< LOD	< LOQ	< LOD	102.2 ug/kg
DEFIF	$(LOQ = 61.8 \mu g/kg)$	$(LOD = 14.6 \mu g/kg)$	$(LOQ = 67.4 \mu g/kg)$	$(LOD = 18.1 \mu g/kg)$	102.2 μg/kg
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 18.0 \mu g/kg)$	$(LOD = 21.3 \mu g/kg)$	$(LOD = 60.4 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$	$(LOD = 32.8 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOQ	< LOD
DINE	$(LOD = 1247.0 \mu g/kg)$	$(LOD = 575.8 \mu g/kg)$	$(LOD = 506.8 \mu g/kg)$	$(LOQ = 722.7 \mu g/kg)$	$(LOD = 883.6 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 415.2 \mu g/kg)$	$(LOD = 482.0 \mu g/kg)$	$(LOD = 416.6 \mu g/kg)$	(LOD = 144.5 μg/kg)	$(LOD = 349.4 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 25.4 \mu g/kg)$	$(LOD = 24.0 \mu g/kg)$	$(LOD = 77.0 \mu g/kg)$	$(LOD = 9.6 \mu g/kg)$	$(LOD = 54.3 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017319	S09-017320	S09-017321	S09-017322	S09-017323
DMP	< LOD	< LOD	< LOD	44.7 μg/kg	< LOD
DIVIE	$(LOD = 4.5 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 3.1 \mu g/kg)$	(not confirmed)	$(LOD = 0.7 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 7.7 \mu g/kg)$	$(LOD = 1.7 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 1.4 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 7.9 \mu g/kg)$	$(LOD = 1.1 \mu g/kg)$	$(LOD = 1.7 \mu g/kg)$	$(LOD = 2.7 \mu g/kg)$	$(LOD = 0.9 \mu\text{g/kg})$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 27.3 \mu g/kg)$	$(LOD = 5.8 \mu g/kg)$	$(LOD = 5.9 \mu g/kg)$	$(LOD = 15.9 \mu g/kg)$	$(LOD = 4.9 \mu g/kg)$
DiBP	< LOD	< LOD	< LOQ	< LOD	< LOD
DIDP	$(LOD = 9.8 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$	$(LOQ = 10.8 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$
DBP	< LOD	< LOD	< LOD	< LOD	< LOD
DBP	$(LOD = 13.3 \mu g/kg)$	$(LOD = 4.9 \mu g/kg)$	$(LOD = 7.3 \mu g/kg)$	$(LOD = 4.9 \mu g/kg)$	$(LOD = 4.9 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	No data	No data
DFF	$(LOD = 25.9 \mu g/kg)$	$(LOD = 1.2 \mu g/kg)$	$(LOD = 2.9 \mu g/kg)$	No data	NO data
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHF	$(LOD = 28.8 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 6.0 \mu g/kg)$	$(LOD = 20.6 \mu g/kg)$	$(LOD = 2.1 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
BBF	$(LOD = 45.8 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	$(LOD = 11.1 \mu g/kg)$	$(LOD = 42.3 \mu g/kg)$	$(LOD = 5.5 \mu\text{g/kg})$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 36.0 \mu g/kg)$	$(LOD = 3.1 \mu g/kg)$	$(LOD = 8.3 \mu g/kg)$	$(LOD = 28.0 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$
DEHP	< LOD	21.7 μα/κα	< LOQ	< LOQ	< LOD
DEHIE	$(LOD = 39.3 \ 0 \ \mu g/kg)$	31.7 μg/kg	$(LOQ = 62.2 \mu g/kg)$	$(LOQ = 29.6 \mu g/kg)$	$(LOD = 8.9 \mu g/kg)$
DOP	< LOQ	< LOD	< LOD	< LOD	< LOD
DOP	$(LOQ = 188.4 \mu g/kg)$	$(LOD = 3.5 \mu g/kg)$	$(LOD = 28.8 \mu g/kg)$	$(LOD = 33.2 \mu g/kg)$	$(LOD = 2.6 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 1360.5 \mu g/kg)$	$(LOD = 176.8 \mu g/kg)$	$(LOD = 712.5 \mu g/kg)$	$(LOD = 1096.7 \mu g/kg)$	$(LOD = 108.4 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
טוטר	$(LOD = 886.1 \mu g/kg)$	$(LOD = 97.7 \mu g/kg)$	$(LOD = 526.2 \mu g/kg)$	$(LOD = 847.0 \mu g/kg)$	$(LOD = 99.6 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 184.4 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	$(LOD = 101.3 \mu g/kg)$	$(LOD = 34.1 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017324	S09-017325	S09-017326	S09-017327	S09-017328
DMD	< LOD	< LOD	< LOD	16.8 μg/kg	< LOD
DMP	$(LOD = 0.7 \mu g/kg)$	$(LOD = 3.1 \mu g/kg)$	$(LOD = 1.9 \mu g/kg)$	(not confirmed)	$(LOD = 0.7 \mu g/kg)$
DED	< LOD	< LOD	2.9 µg/kg	< LOD	< LOD
DEP	$(LOD = 3.1 \mu g/kg)$	$(LOD = 11.1 \mu g/kg)$	(not confirmed)	$(LOD = 2.1 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$
DiPP	< LOD	< LOD	4.3 μg/kg	< LOD	< LOD
DIPP	$(LOD = 1.8 \mu g/kg)$	$(LOD = 8.0 \mu g/kg)$	(not confirmed)	$(LOD = 1.6 \mu g/kg)$	$(LOD = 1.9 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 7.9 \mu g/kg)$	$(LOD = 38.4 \mu g/kg)$	$(LOD = 10.8 \mu g/kg)$	$(LOD = 6.9 \mu g/kg)$	$(LOD = 9.2 \mu g/kg)$
D:DD		< LOD	< LOD	< LOD	< LOD
DiBP	61.9 µg/kg	$(LOD = 11.7 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$	(LOD = 16.5 μg/kg)
DDD	< LOD	< LOD	< LOD	< LOD	< LOD
DBP	$(LOD = 4.9 \mu g/kg)$	$(LOD = 13.6 \mu g/kg)$	$(LOD = 4.9 \mu g/kg)$	$(LOD = 4.9 \mu\text{g/kg})$	$(LOD = 12.1 \mu g/kg)$
DDD	< LOD	No doto	No doto	< LOD	
DPP	$(LOD = 2.3 \mu g/kg)$	No data	No data	$(LOD = 44.7 \mu g/kg)$	No data
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	$(LOD = 3.3 \mu g/kg)$	$(LOD = 24.3 \mu g/kg)$	$(LOD = 9.0 \mu g/kg)$	$(LOD = 10.0 \mu g/kg)$	$(LOD = 1.4 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDP	$(LOD = 7.3 \mu g/kg)$	$(LOD = 26.8 \mu g/kg)$	$(LOD = 13.0 \mu g/kg)$	$(LOD = 10.4 \mu g/kg)$	$(LOD = 2.7 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 5.4 \mu g/kg)$	$(LOD = 99.3 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$	$(LOD = 14.7 \mu g/kg)$	$(LOD = 2.4 \mu g/kg)$
DEHP	< LOQ		< LOD	< LOD	70.9
DEFIE	$(LOQ = 29.6 \mu g/kg)$	96.2 μg/kg	$(LOD = 8.9 \mu g/kg)$	$(LOD = 32.0 \mu g/kg)$	70.8 μg/kg
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 5.5 \mu g/kg)$	$(LOD = 35.0 \mu g/kg)$	$(LOD = 14.1 \mu g/kg)$	$(LOD = 33.5 \mu g/kg)$	$(LOD = 3.9 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 477.6 \mu g/kg)$	(LOD = 1178.8 μg/kg)	$(LOD = 601.7 \mu g/kg)$	$(LOD = 1958.1 \mu g/kg)$	(LOD = 225.5 µg/kg)
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
אטוט	$(LOD = 242.9 \mu g/kg)$	$(LOD = 418.0 \mu g/kg)$	$(LOD = 481.6 \mu g/kg)$	$(LOD = 1324.3 \mu g/kg)$	$(LOD = 359.7 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
אטט	$(LOD = 33.1 \mu g/kg)$	$(LOD = 26.4 \mu g/kg)$	$(LOD = 26.3 \mu g/kg)$	(LOD = 118.2 μg/kg)	$(LOD = 138.1 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017329	S09-017330	S09-017331	S09-017332	S09-017333
DMP	9.8 μg/kg	< LOD	< LOD	< LOD	< LOD
DIVIP	(not confirmed)	$(LOD = 3.8 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 7.5 \mu g/kg)$
DEP	0.8 μg/kg	< LOD	< LOD	< LOD	< LOD
DEP	(not confirmed)	$(LOD = 2.8 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 2.4 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 1.6 \mu g/kg)$	$(LOD = 1.9 \mu g/kg)$	$(LOD = 0.9 \mu g/kg)$	$(LOD = 1.6 \mu g/kg)$	$(LOD = 4.4 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 7.5 \mu g/kg)$	$(LOD = 7.0 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	$(LOD = 7.8 \mu g/kg)$	(LOD = 32.2 μg/kg)
DiBP	< LOD	18.0 μg/kg	12.1 μα/κα	< LOD	< LOD
DIDE	$(LOD = 16.5 \mu g/kg)$	(not confirmed)	13.1 µg/kg	$(LOD = 3.2 \mu g/kg)$	$(LOD = 8.0 \mu g/kg)$
DBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDP	$(LOD = 12.1 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	$(LOD = 5.5 \mu\text{g/kg})$	$(LOD = 15.0 \mu g/kg)$
DPP	No data	91.5 μg/kg	< LOD	No data	No data
DFF	No data	(not confirmed)	$(LOD = 1.1 \mu g/kg)$	No data	NO data
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHF	$(LOD = 2.9 \mu g/kg)$	$(LOD = 9.7 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 3.0 \mu\text{g/kg})$	$(LOD = 11.7 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 6.5 \mu g/kg)$	$(LOD = 13.8 \mu g/kg)$	$(LOD = 3.4 \mu g/kg)$	$(LOD = 5.6 \mu\text{g/kg})$	$(LOD = 18.9 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	No data
DCHF	$(LOD = 5.3 \mu g/kg)$	$(LOD = 10.8 \mu g/kg)$	$(LOD = 2.1 \mu g/kg)$	$(LOD = 5.9 \mu g/kg)$	NO data
DEHP	113.9 µg/kg	< LOQ	< LOQ	< LOQ	< LOQ
DLITE	113.9 μg/kg	$(LOQ = 61.1 \mu g/kg)$	$(LOQ = 62.0 \mu g/kg)$	$(LOQ = 62.0 \mu g/kg)$	$(LOQ = 61.1 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 7.6 \mu g/kg)$	$(LOD = 18.5 \mu g/kg)$	$(LOD = 3.5 \mu g/kg)$	$(LOD = 13.1 \mu g/kg)$	$(LOD = 12.4 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DIMP	$(LOD = 290.0 \mu g/kg)$	$(LOD = 360.0 \mu g/kg)$	$(LOD = 230.5 \mu g/kg)$	$(LOD = 1044.9 \mu g/kg)$	$(LOD = 515.7 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
טוטר	(LOD = 285.8 μg/kg)	$(LOD = 518.1 \mu g/kg)$	$(LOD = 140.4 \mu g/kg)$	$(LOD = 624.9 \mu g/kg)$	$(LOD = 311.9 \mu g/kg)$
DDP	< LOD	< LOD	< LOQ	< LOD	< LOD
DDF	$(LOD = 25.2 \mu g/kg)$	$(LOD = 43.4 \mu g/kg)$	$(LOQ = 25.6 \mu g/kg)$	(LOD = 12.6 µg/kg)	$(LOD = 30.1 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017334	S09-017335	S09-017336	S09-017337	S09-017338
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIE	$(LOD = 1.1 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 3.7 \mu g/kg)$	$(LOD = 0.7 \mu\text{g/kg})$	$(LOD = 3.6 \mu g/kg)$
DEP	271.9 μg/kg	< LOD	< LOD	< LOD	< LOD
DEF	27 1.9 μg/kg	$(LOD = 2.6 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$	$(LOD = 1.0 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$
DiPP	< LOD	8.8 µg/kg	< LOQ	< LOD	< LOD
DIFF	$(LOD = 1.6 \mu g/kg)$	(not confirmed)	$(LOQ = 10.9 \mu g/kg)$	$(LOD = 0.8 \mu\text{g/kg})$	$(LOD = 1.7 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAI	$(LOD = 7.0 \mu g/kg)$	$(LOD = 8.3 \mu g/kg)$	(LOD = 12.9 μg/kg)	$(LOD = 4.2 \mu g/kg)$	$(LOD = 11.7 \mu g/kg)$
D:DD	< LOD	< LOD	< LOD	< LOD	< LOD
DiBP	$(LOD = 16.5 \mu g/kg)$	$(LOD = 16.5 \mu g/kg)$	$(LOD = 8.7 \mu g/kg)$	$(LOD = 3.2 \mu\text{g/kg})$	$(LOD = 16.5 \mu g/kg)$
	< LOD	< LOD	< LOD	< LOD	< LOD
DBP	$(LOD = 12.1 \mu g/kg)$	$(LOD = 12.1 \mu g/kg)$	$(LOD = 7.4 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	$(LOD = 12.1 \mu g/kg)$
	(=== === F99)	(=== :=: p.g. :g)		(=== ==================================	(======================================
DPP	No data	No data	< LOD (1.00)	No data	No data
			$(LOD = 6.1 \mu g/kg)$		
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
Di ii	$(LOD = 8.0 \mu\text{g/kg})$	$(LOD = 3.1 \mu g/kg)$	$(LOD = 8.2 \mu g/kg)$	$(LOD = 8.0 \mu\text{g/kg})$	$(LOD = 4.4 \mu g/kg)$
DDD	< LOD	< LOD	< LOD	< LOD	< LOD
BBP	$(LOD = 10.0 \mu g/kg)$	$(LOD = 7.8 \mu g/kg)$	$(LOD = 12.2 \mu g/kg)$	$(LOD = 18.9 \mu g/kg)$	$(LOD = 10.9 \mu g/kg)$
50115	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 11.3 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$	$(LOD = 9.2 \mu g/kg)$	$(LOD = 9.2 \mu g/kg)$	$(LOD = 6.9 \mu g/kg)$
DELLO	, , , , , , , , , , , , , , , , , , , ,	< LOQ	< LOQ	< LOD	< LOQ
DEHP	366.3 µg/kg	$(LOQ = 63.5 \mu g/kg)$	$(LOQ = 61.1 \mu g/kg)$	$(LOD = 18.6 \mu g/kg)$	$(LOQ = 61.4 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 23.0 \mu g/kg)$	$(LOD = 5.1 \mu g/kg)$	(LOD = 13.6 µg/kg)	$(LOD = 29.2 \mu g/kg)$	$(LOD = 10.3 \mu g/kg)$
DiNP	< LOD	644.3 μg/kg	< LOD	< LOD	< LOD
DINE	$(LOD = 671.6 \mu g/kg)$	(same profile)	$(LOD = 731.8 \mu g/kg)$	$(LOD = 1385.2 \mu g/kg)$	(LOD = 788.6 μg/kg)
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 737.3 \mu g/kg)$	$(LOD = 292.2 \mu g/kg)$	$(LOD = 398.2 \mu g/kg)$	$(LOD = 780.7 \mu g/kg)$	$(LOD = 454.5 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
DDI	$(LOD = 77.0 \mu g/kg)$	$(LOD = 17.6 \mu g/kg)$	$(LOD = 52.9 \mu g/kg)$	$(LOD = 51.0 \mu g/kg)$	$(LOD = 35.6 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017339	S09-017340	S09-017341	S09-017342	S09-017343
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 1.5 \mu g/kg)$	$(LOD = 15.7 \mu g/kg)$	$(LOD = 7.4 \mu g/kg)$	$(LOD = 11.1 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 1.6 \mu g/kg)$	$(LOD = 13.9 \mu g/kg)$	$(LOD = 17.3 \mu g/kg)$	$(LOD = 71.0 \mu g/kg)$	$(LOD = 2.4 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	23.3 µg/kg	< LOD
DIFF	$(LOD = 0.9 \mu g/kg)$	$(LOD = 8.6 \mu g/kg)$	$(LOD = 9.7 \mu g/kg)$	(not confirmed)	$(LOD = 2.0 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 4.5 \mu g/kg)$	$(LOD = 35.8 \mu g/kg)$	$(LOD = 57.5 \mu g/kg)$	(LOD = 174.9 μg/kg)	$(LOD = 8.0 \mu g/kg)$
DiBP	< LOD	< LOD	< LOD	< LOD	15.6 µg/kg
DIDE	$(LOD = 16.5 \mu g/kg)$	$(LOD = 7.2 \mu g/kg)$	$(LOD = 8.0 \mu g/kg)$	$(LOD = 43.8 \mu g/kg)$	(not confirmed)
DBP	< LOD	< LOD	< LOD	< LOD	< LOQ
DDF	$(LOD = 12.1 \mu g/kg)$	$(LOD = 5.9 \mu g/kg)$	$(LOD = 76.3 \mu g/kg)$	$(LOD = 63.2 \mu g/kg)$	$(LOQ = 18.4 \mu g/kg)$
DPP	No data	< LOD	< LOD	< LOD	No data
DFF	No data	$(LOD = 14.2 \mu g/kg)$	$(LOD = 31.7 \mu g/kg)$	$(LOD = 50.7 \mu g/kg)$	No data
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHF	$(LOD = 1.8 \mu g/kg)$	$(LOD = 13.5 \mu g/kg)$	$(LOD = 65.7 \mu g/kg)$	$(LOD = 54.4 \mu g/kg)$	$(LOD = 10.0 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 4.4 \mu g/kg)$	$(LOD = 23.1 \mu g/kg)$	$(LOD = 90.8 \mu g/kg)$	$(LOD = 127.1 \mu g/kg)$	$(LOD = 18.6 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 3.0 \mu g/kg)$	$(LOD = 15.5 \mu g/kg)$	$(LOD = 38.0 \mu g/kg)$	$(LOD = 54.8 \mu g/kg)$	$(LOD = 15.8 \mu g/kg)$
DEHP	< LOQ	< LOQ	94.3 μg/kg	< LOD	< LOQ
DETTE	$(LOQ = 61.4 \mu g/kg)$	$(LOQ = 61.1 \mu g/kg)$	(not confirmed)	$(LOD = 18.3 \mu g/kg)$	$(LOQ = 62.0 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 3.7 \mu g/kg)$	$(LOD = 11.5 \mu g/kg)$	$(LOD = 32.1 \mu g/kg)$	$(LOD = 48.1 \mu g/kg)$	$(LOD = 26.2 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DIME	$(LOD = 226.4 \mu g/kg)$	$(LOD = 341.0 \mu g/kg)$	$(LOD = 422.6 \mu g/kg)$	$(LOD = 951.4 \mu g/kg)$	$(LOD = 941.7 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
טוטר	$(LOD = 171.3 \mu g/kg)$	(LOD = 183.3 μg/kg)	$(LOD = 211.2 \mu g/kg)$	$(LOD = 434.7 \mu g/kg)$	$(LOD = 1704.9 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 11.2 \mu g/kg)$	$(LOD = 18.8 \mu g/kg)$	$(LOD = 16.2 \mu g/kg)$	(LOD = 16.4 μg/kg)	$(LOD = 26.9 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017344	S09-017345	S09-017346	S09-017347	S09-017348
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 2.2 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 0.8 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 1.6 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 2.4 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOQ	< LOD
DIFF	$(LOD = 0.9 \mu g/kg)$	$(LOD = 1.6 \mu g/kg)$	$(LOD = 1.4 \mu g/kg)$	$(LOQ = 5.5 \mu g/kg)$	$(LOD = 1.7 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 5.4 \mu g/kg)$	$(LOD = 8.1 \mu g/kg)$	$(LOD = 8.9 \mu g/kg)$	$(LOD = 8.1 \mu g/kg)$	$(LOD = 9.2 \mu g/kg)$
DiBP	< LOD	< LOQ	100.0	< LOQ	< LOD
DIDP	$(LOD = 3.2 \mu g/kg)$	$(LOQ = 10.5 \mu g/kg)$	108.2 μg/kg	$(LOQ = 10.5 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$
DBP	< LOD	< LOD	28.1 μg/kg	< LOQ	< LOD
DDP	$(LOD = 5.5 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	(not confirmed)	$(LOQ = 18.4 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	
DPP	$(LOD = 1.0 \mu g/kg)$	$(LOD = 17.1 \mu g/kg)$	(LOD = 10.8 µg/kg)	$(LOD = 14.0 \mu g/kg)$	No data
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	$(LOD = 2.6 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$	$(LOD = 3.7 \mu g/kg)$	$(LOD = 7.3 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 5.5 \mu g/kg)$	$(LOD = 11.3 \mu g/kg)$	$(LOD = 8.7 \mu g/kg)$	$(LOD = 11.4 \mu g/kg)$	(LOD = 13.6 μg/kg)
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 3.7 \mu g/kg)$	$(LOD = 9.3 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	$(LOD = 11.1 \mu g/kg)$	$(LOD = 9.5 \mu g/kg)$
DEHP	< LOQ	< LOQ	< LOQ	< LOD	< LOQ
DEFIE	$(LOQ = 62.0 \mu g/kg)$	$(LOQ = 62.0 \mu g/kg)$	$(LOQ = 62.0 \mu g/kg)$	$(LOD = 153.4 \mu g/kg)$	$(LOQ = 92.2 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 8.7 \mu g/kg)$	$(LOD = 11.9 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	$(LOD = 11.1 \mu g/kg)$	$(LOD = 8.5 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 463.5 \mu g/kg)$	$(LOD = 1303.4 \mu g/kg)$	$(LOD = 567.9 \mu g/kg)$	$(LOD = 2158.8 \mu g/kg)$	$(LOD = 713.9 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 642.8 \mu g/kg)$	$(LOD = 1113.2 \mu g/kg)$	$(LOD = 486.3 \mu g/kg)$	kg) (LOD = 0.8 μg/kg)	$(LOD = 2776.4 \mu g/kg)$
DDP	< LOD	< LOD	< LOQ	< LOD	< LOD
טטר	$(LOD = 51.4 \mu g/kg)$	$(LOD = 23.3 \mu g/kg)$	$(LOQ = 22.7 \mu g/kg)$	$(LOD = 42.5 \mu g/kg)$	(LOD = 57.6 μg/kg)

Table 44 continued. Retail food sample results

	S09-017349	S09-017350	S09-017351	S09-017352	S09-017353
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIE	$(LOD = 0.7 \mu g/kg)$	$(LOD = 1.1 \mu g/kg)$	$(LOD = 2.7 \mu g/kg)$	$(LOD = 11.1 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$
DEP	< LOD	< LOQ	< LOD	8.3 µg/kg	< LOQ
DEP	$(LOD = 1.4 \mu g/kg)$	$(LOQ = 4.5 \mu g/kg)$	$(LOD = 1.9 \mu g/kg)$	(not confirmed)	$(LOQ = 23.1 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 0.8 \mu g/kg)$	$(LOD = 0.9 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 16.8 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	27.8 μg/kg	< LOD
DAF	$(LOD = 4.1 \mu g/kg)$	$(LOD = 4.8 \mu g/kg)$	$(LOD = 7.7 \mu g/kg)$	(not confirmed)	$(LOD = 23.0 \mu g/kg)$
DiBP	< LOD	< LOD	< LOD	24.2 μg/kg	92 6 ug/kg
DIDE	$(LOD = 4.3 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$	(not confirmed)	82.6 μg/kg
DBP	< LOD	< LOD	< LOD	22 0 ug/kg	24.4 µg/kg
DDF	$(LOD = 7.6 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$	33.0 μg/kg	(not confirmed)
DPP	< LOD	No data	No data	No data	< LOD
DFF	$(LOD = 0.9 \mu g/kg)$	เพีย นิสเส	No data	No data	$(LOD = 15.6 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHF	$(LOD = 1.5 \mu g/kg)$	$(LOD = 3.1 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 83.0 \mu g/kg)$	$(LOD = 10.6 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOQ
DDF	$(LOD = 4.8 \mu g/kg)$	$(LOD = 8.0 \mu g/kg)$	$(LOD = 3.9 \mu g/kg)$	$(LOD = 21.1 \mu g/kg)$	$(LOQ = 52.1 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
ВСПР	$(LOD = 3.4 \mu g/kg)$	$(LOD = 6.9 \mu g/kg)$	$(LOD = 6.9 \mu g/kg)$	$(LOD = 18.8 \mu g/kg)$	$(LOD = 15.7 \mu g/kg)$
DEHP	< LOD	< LOQ	< LOD	< LOQ	229.2 μα/κα
DEFIF	$(LOD = 27.7 \mu g/kg)$	$(LOQ = 92.2 \mu g/kg)$	$(LOD = 27.7 \mu g/kg)$	$(LOQ = 75.5 \mu g/kg)$	228.2 μg/kg
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 3.4 \mu g/kg)$	$(LOD = 9.6 \mu g/kg)$	$(LOD = 8.9 \mu g/kg)$	$(LOD = 60.6 \mu g/kg)$	$(LOD = 28.1 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	596.7 μg/kg	< LOQ
DINE	$(LOD = 121.4 \mu g/kg)$	$(LOD = 201.4 \mu g/kg)$	$(LOD = 490.3 \mu g/kg)$	(not confirmed)	$(LOQ = 1609.3 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
חוטר	$(LOD = 105.2 \mu g/kg)$	$(LOD = 764.3 \mu g/kg)$	$(LOD = 336.6 \mu g/kg)$	(LOD = 11.1 μg/kg) 8.3 μg/kg (not confirmed) < LOD (LOD = 16.8 μg/kg) 27.8 μg/kg (not confirmed) 24.2 μg/kg (not confirmed) 33.0 μg/kg No data < LOD (LOD = 83.0 μg/kg) < LOD (LOD = 21.1 μg/kg) < LOD (LOD = 18.8 μg/kg) < LOQ (LOQ = 75.5 μg/kg) < LOD (LOD = 60.6 μg/kg) 596.7 μg/kg (not confirmed)	(LOD = 763.6 μg/kg)
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 6.8 \mu g/kg)$	$(LOD = 57.1 \mu g/kg)$	$(LOD = 25.4 \mu g/kg)$	$(LOD = 112.9 \mu g/kg)$	$(LOD = 26.3 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017354	S09-017355	S09-017356	S09-017357	S09-017358
DMP	< LOD				
DIVIP	$(LOD = 13.0 \mu g/kg)$	$(LOD = 1.1 \mu g/kg)$	$(LOD = 6.2 \mu g/kg)$	$(LOD = 14.8 \mu g/kg)$	$(LOD = 7.4 \mu g/kg)$
DEP		< LOD	< LOD	< LOD	< LOD
DEP	340.3 µg/kg	$(LOD = 2.1 \mu g/kg)$	$(LOD = 6.9 \mu g/kg)$	$(LOD = 12.5 \mu g/kg)$	$(LOD = 7.3 \mu g/kg)$
DiPP	< LOD				
DIPP	$(LOD = 4.7 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 4.5 \mu g/kg)$	$(LOD = 9.3 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$
DAP	< LOD				
DAP	$(LOD = 25.1 \mu g/kg)$	$(LOD = 7.8 \mu g/kg)$	(LOD = 18.9 µg/kg)	$(LOD = 31.6 \mu g/kg)$	$(LOD = 20.6 \mu g/kg)$
D:DD	< LOQ	< LOD	< LOD	< LOD	< LOD
DiBP	$(LOQ = 14.3 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$	$(LOD = 4.4 \mu g/kg)$	$(LOD = 11.0 \mu g/kg)$	$(LOD = 4.8 \mu g/kg)$
DBP	< LOQ	< LOD	< LOD	< LOD	< LOD
DBP	$(LOQ = 25.4 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 10.0 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$
DPP	< LOD				
DPP	$(LOD = 69.1 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$	(LOD =16.9 µg/kg)	$(LOD = 19.2 \mu g/kg)$	$(LOD = 3.9 \mu g/kg)$
DHP	< LOD				
DHP	$(LOD = 20.3 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 43.5 \mu g/kg)$	$(LOD = 95.3 \mu g/kg)$	$(LOD = 32.7 \mu g/kg)$
BBP	< LOD				
DDF	$(LOD = 25.9 \mu g/kg)$	$(LOD = 6.2 \mu g/kg)$	$(LOD = 22.3 \mu g/kg)$	$(LOD = 25.8 \mu g/kg)$	$(LOD = 16.6 \mu g/kg)$
DCHP	< LOD				
DCHP	$(LOD = 53.8 \mu g/kg)$	$(LOD = 7.2 \mu g/kg)$	$(LOD = 14.5 \mu g/kg)$	$(LOD = 33.3 \mu g/kg)$	$(LOD = 5.3 \mu g/kg)$
DEHP	271.0 μα/κα	< LOQ	< LOQ	< LOQ	< LOQ
DEFIE	271.0 μg/kg	$(LOQ = 92.2 \mu g/kg)$	$(LOQ = 72.1 \mu g/kg)$	$(LOQ = 75.5 \mu g/kg)$	$(LOQ = 75.5 \mu g/kg)$
DOP	< LOD				
DOP	$(LOD = 136.9 \mu g/kg)$	$(LOD = 18.6 \mu g/kg)$	$(LOD = 30.1 \mu g/kg)$	$(LOD = 156.7 \mu g/kg)$	$(LOD = 6.8 \mu g/kg)$
DiNP	11576.0 μg/kg	< LOD	< LOD	< LOD	< LOD
DINE	(same profile)	(LOD = 1788.0 μg/kg)	$(LOD = 850.9 \mu g/kg)$	$(LOD = 3822.2 \mu g/kg)$	(LOD = 919.9 µg/kg)
DiDP	2164.9 µg/kg	< LOD	< LOD	< LOD	< LOD
אטוט	(not confirmed)	$(LOD = 1407.9 \mu g/kg)$	$(LOD = 684.1 \mu g/kg)$	(LOD = 14.8 μg/kg)	$(LOD = 443.3 \mu g/kg)$
DDP	< LOD				
טטר	$(LOD = 48.4 \mu g/kg)$	(LOD = 112.1 μg/kg)	$(LOD = 20.9 \mu g/kg)$	$(LOD = 88.0 \mu g/kg)$	$(LOD = 57.7 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017359	S09-017360	S09-017361	S09-017362	S09-017363
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 0.7 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$	$(LOD = 3.7 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 7.4 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 1.2 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$	$(LOD = 3.9 \mu g/kg)$	(LOD = 15.5 μg/kg)
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIPP	$(LOD = 0.8 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	$(LOD = 2.6 \mu g/kg)$	$(LOD = 9.5 \mu g/kg)$
DAP	< LOD	< LOD	72.9 µg/kg	< LOD	< LOD
DAP	$(LOD = 4.6 \mu g/kg)$	(LOD = 19.6 µg/kg)	(not confirmed)	$(LOD = 11.1 \mu g/kg)$	$(LOD = 40.2 \mu g/kg)$
DiBP	< LOD	< LOD	< LOD	< LOD	40.0 μg/kg
DIDP	$(LOD = 4.3 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$	$(LOD = 7.2 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$	(not confirmed)
DBP	< LOD	< LOD	< LOD	< LOD	15.3 µg/kg
DDP	$(LOD = 7.6 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$	$(LOD = 6.2 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	(not confirmed)
DPP	No data	No data	< LOD	< LOD	< LOD
DPP	No data	No data	$(LOD = 12.0 \mu g/kg)$	$(LOD = 3.2 \mu g/kg)$	$(LOD = 4.5 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHF	$(LOD = 6.4 \mu g/kg)$	(LOD = 16.8 μg/kg)	$(LOD = 68.2 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$	$(LOD = 10.5 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
BBF	$(LOD = 17.5 \mu g/kg)$	$(LOD = 26.3 \mu g/kg)$	$(LOD = 25.9 \mu g/kg)$	$(LOD = 4.4 \mu g/kg)$	$(LOD = 8.2 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 9.5 \mu g/kg)$	(LOD = 17.8 μg/kg)	$(LOD = 44.4 \mu g/kg)$	$(LOD = 2.5 \mu g/kg)$	$(LOD = 9.4 \mu g/kg)$
DEHP	< LOQ	314.3 µg/kg	140.9 μg/kg	< LOQ	< LOQ
DETTE	$(LOQ = 92.2 \mu g/kg)$	314.3 μg/kg	(not confirmed)	$(LOQ = 72.1 \mu g/kg)$	(LOQ = 75.5 μg/kg)
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 8.6 \mu g/kg)$	(LOD = 19.8 μg/kg)	$(LOD = 103.6 \mu g/kg)$	$(LOD = 2.4 \mu\text{g/kg})$	$(LOD = 17.7 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DIME	$(LOD = 525.8 \mu g/kg)$	(LOD = 1596.5 µg/kg)	$(LOD = 690.9 \mu g/kg)$	$(LOD = 190.5 \mu g/kg)$	$(LOD = 345.7 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
טוטר	$(LOD = 722.0 \mu g/kg)$	(LOD = 331.6 μg/kg)	(LOD = 569.6 µg/kg)	$(LOD = 86.1 \mu g/kg)$	$(LOD = 140.8 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 24.1 \mu g/kg)$	$(LOD = 17.3 \mu g/kg)$	$(LOD = 32.4 \mu g/kg)$	(LOD = 10.8 µg/kg)	$(LOD = 3.5 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017364	S09-017365	S09-017366	S09-017367	S09-017368
DMD	< LOD	< LOD	< LOD	< LOD	< LOD
DMP	$(LOD = 3.6 \mu g/kg)$	$(LOD = 37.8 \mu g/kg)$	$(LOD = 3.7 \mu g/kg)$	$(LOD = 12.6 \mu g/kg)$	$(LOD = 15.2 \mu g/kg)$
DED	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 6.8 \mu g/kg)$	$(LOD = 33.3 \mu g/kg)$	$(LOD = 11.7 \mu g/kg)$	$(LOD = 9.6 \mu g/kg)$	$(LOD = 15.8 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 5.0 \mu g/kg)$	$(LOD = 18.1 \mu g/kg)$	$(LOD = 8.4 \mu g/kg)$	$(LOD = 9.8 \mu\text{g/kg})$	$(LOD = 10.5 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 17.9 \mu g/kg)$	$(LOD = 73.2 \mu g/kg)$	(LOD = 26.8 µg/kg)	$(LOD = 40.2 \mu g/kg)$	$(LOD = 53.7 \mu g/kg)$
DiBP	11.1 μg/kg	< LOQ	< LOQ	18.2 μg/kg	< LOD
DIDP	(not confirmed)	$(LOQ = 52.3 \mu g/kg)$	$(LOQ = 21.7 \mu g/kg)$	(not confirmed)	$(LOD = 12.1 \mu g/kg)$
DBP	< LOD	53.3 μg/kg	< LOD	< LOQ	< LOD
DDP	$(LOD = 4.3 \mu g/kg)$	(not confirmed)	$(LOD = 5.7 \mu g/kg)$	$(LOQ = 17.8 \mu g/kg)$	$(LOD = 11.3 \mu g/kg)$
DPP	< LOD	< LOD	No data	< LOD	< LOD
DPP	$(LOD = 3.6 \mu g/kg)$	$(LOD = 14.3 \mu g/kg)$	เพื่อ นิสเส	Code	$(LOD = 8.5 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DUL	$(LOD = 7.0 \mu g/kg)$	$(LOD = 20.1 \mu g/kg)$	$(LOD = 25.0 \mu g/kg)$	$(LOD = 8.3 \mu g/kg)$	$(LOD = 55.0 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 4.1 \mu g/kg)$	$(LOD = 42.7 \mu g/kg)$	$(LOD = 8.3 \mu g/kg)$	$(LOD = 16.0 \mu g/kg)$	$(LOD = 25.3 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
ВСПР	$(LOD = 6.6 \mu g/kg)$	$(LOD = 26.4 \mu g/kg)$	$(LOD = 15.7 \mu g/kg)$	$(LOD = 21.1 \mu g/kg)$	$(LOD = 7.9 \mu g/kg)$
DEHP	< LOQ	155.2 μg/kg	92.4 μα/κα	59 6 ug/kg	< LOD
DETTE	$(LOQ = 75.5 \mu g/kg)$	(not confirmed)	83.4 µg/kg	36.6 μg/kg	$(LOD = 29.8 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 38.9 \mu g/kg)$	$(LOD = 25.1 \mu g/kg)$	$(LOD = 60.6 \mu g/kg)$	$(LOD = 14.6 \mu g/kg)$	$(LOD = 22.6 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 568.8 \mu g/kg)$	$(LOD = 1307.9 \mu g/kg)$	$(LOD = 733.8 \mu g/kg)$	$(LOD = 1159.3 \mu g/kg)$	(LOD = 1536.8 μg/kg)
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 409.8 \mu g/kg)$	$(LOD = 1492.4 \mu g/kg)$	$(LOD = 725.7 \mu g/kg)$	$(LOD = 877.5 \mu g/kg)$	$(LOD = 645.9 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 47.5 \mu g/kg)$	$(LOD = 33.9 \mu g/kg)$	$(LOD = 50.4 \mu g/kg)$	$(LOD = 37.6 \mu g/kg)$	$(LOD = 54.4 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017369	S09-017370	S09-017371	S09-017372	S09-017373
DMP	< LOD	< LOD	< LOD	< LOD	48.7 µg/kg
DIVIP	$(LOD = 18.4 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 7.3 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	(not confirmed)
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 25.9 \mu g/kg)$	$(LOD = 1.6 \mu g/kg)$	$(LOD = 5.7 \mu g/kg)$	$(LOD = 7.9 \mu g/kg)$	$(LOD = 26.0 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIPP	$(LOD = 15.7 \mu g/kg)$	$(LOD = 1.2 \mu g/kg)$	$(LOD = 4.0 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	$(LOD = 20.4 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 63.1 \mu g/kg)$	$(LOD = 4.1 \mu g/kg)$	$(LOD = 16.4 \mu g/kg)$	(LOD = 21.8 µg/kg)	$(LOD = 67.1 \mu g/kg)$
DiBP	< LOD	< LOD	19.3 μg/kg	< LOD	< LOD
DIDP	$(LOD = 13.6 \mu g/kg)$	$(LOD = 5.7 \mu g/kg)$	(not confirmed)	$(LOD = 5.0 \mu g/kg)$	$(LOD = 24.0 \mu g/kg)$
DBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDP	$(LOD = 19.3 \mu g/kg)$	$(LOD = 6.2 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$	$(LOD = 4.1 \mu g/kg)$	$(LOD = 16.3 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DFF	$(LOD = 21.7 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 4.8 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 16.0 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHF	$(LOD = 3.8 \mu g/kg)$	$(LOD = 5.8 \mu g/kg)$	$(LOD = 75.5 \mu g/kg)$	$(LOD = 21.4 \mu g/kg)$	$(LOD = 115.9 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 11.3 \mu g/kg)$	$(LOD = 18.2 \mu g/kg)$	(LOD = 29.8 μg/kg)	$(LOD = 21.7 \mu g/kg)$	$(LOD = 56.7 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
рспе	$(LOD = 4.3 \mu g/kg)$	$(LOD = 7.9 \mu g/kg)$	$(LOD = 24.5 \mu g/kg)$	(LOD = 10.6 µg/kg)	$(LOD = 73.7 \mu g/kg)$
DEHP	< LOQ	< LOQ	< LOQ	< LOD	402.9 μg/kg
DETTE	$(LOQ = 67.4 \mu g/kg)$	$(LOQ = 99.8 \mu g/kg)$	(LOQ = 99.4 µg/kg)	(LOD = 29.8 µg/kg)	(not confirmed)
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 82.9 \mu g/kg)$	$(LOD = 7.9 \mu g/kg)$	$(LOD = 46.3 \mu g/kg)$	$(LOD = 14.1 \mu g/kg)$	$(LOD = 103.6 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOQ
DIME	$(LOD = 579.8 \mu g/kg)$	$(LOD = 263.5 \mu g/kg)$	$(LOD = 2232.5 \mu g/kg)$	$(LOD = 490.7 \mu g/kg)$	$(LOQ = 9489.5 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
טוטר	$(LOD = 300.0 \mu g/kg)$	$(LOD = 200.9 \mu g/kg)$	(LOD = 1932.8 μg/kg)	(LOD = 210.3 μg/kg)	$(LOD = 1924.9 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
סטר	$(LOD = 8.0 \mu g/kg)$	$(LOD = 12.3 \mu g/kg)$	(LOD = 168.0 μg/kg)	(LOD = 23.6 μg/kg)	(LOD = 160.0 μg/kg)

Table 44 continued. Retail food sample results

	S09-017374	S09-017375	S09-017376	S09-017377	S09-017378
DMP	< LOD	< LOD	22.0 μg/kg	< LOD	8.2 μg/kg
DIVIP	$(LOD = 3.7 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	(not confirmed)	$(LOD = 0.7 \mu g/kg)$	(not confirmed)
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 11.0 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	$(LOD = 12.2 \mu g/kg)$	$(LOD = 1.8 \mu g/kg)$	$(LOD = 7.7 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 7.5 \mu g/kg)$	$(LOD = 3.4 \mu g/kg)$	$(LOD = 7.8 \mu g/kg)$	$(LOD = 1.4 \mu g/kg)$	$(LOD = 5.9 \mu\text{g/kg})$
D 4 D	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 35.0 \mu g/kg)$	$(LOD = 11.5 \mu g/kg)$	$(LOD = 32.2 \mu g/kg)$	$(LOD = 4.5 \mu g/kg)$	$(LOD = 20.6 \mu g/kg)$
D:DD	< LOD	< LOD	< LOD	< LOD	< LOD
DiBP	$(LOD = 8.1 \mu g/kg)$	$(LOD = 3.5 \mu g/kg)$	$(LOD = 6.5 \mu g/kg)$	$(LOD = 5.7 \mu g/kg)$	$(LOD = 6.1 \mu g/kg)$
DBP	< LOD	< LOD	18.2 μg/kg	< LOD	35.7 µg/kg
DBP	$(LOD = 6.1 \mu g/kg)$	$(LOD = 3.4 \mu g/kg)$	(not confirmed)	$(LOD = 6.2 \mu g/kg)$	(not confirmed)
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DPP	$(LOD = 21.7 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	$(LOD = 3.9 \mu g/kg)$	$(LOD = 0.8 \mu g/kg)$	$(LOD = 17.5 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DITE	$(LOD = 32.7 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$	$(LOD = 10.7 \mu g/kg)$	$(LOD = 5.6 \mu g/kg)$	$(LOD = 22.4 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 17.5 \mu g/kg)$	$(LOD = 9.0 \mu g/kg)$	$(LOD = 9.6 \mu g/kg)$	$(LOD = 16.5 \mu g/kg)$	$(LOD = 12.1 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DOIT	$(LOD = 19.7 \mu g/kg)$	$(LOD = 6.3 \mu g/kg)$	(LOD = 10.0 μg/kg)	$(LOD = 7.7 \mu g/kg)$	$(LOD = 27.5 \mu g/kg)$
DEHP	< LOQ	< LOD	< LOD	< LOD	2176.2 μg/kg
DEIII	$(LOQ = 99.4 \mu g/kg)$	(LOD = 29.9 μg/kg)	(LOD = 29.8 μg/kg)	$(LOD = 29.9 \mu g/kg)$	
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOI	$(LOD = 24.3 \mu g/kg)$	$(LOD = 6.1 \mu g/kg)$	(LOD = 11.6 μg/kg)	$(LOD = 8.9 \mu g/kg)$	$(LOD = 64.8 \mu g/kg)$
DiNP	< LOD	< LOQ	< LOD	< LOD	< LOD
Birti	$(LOD = 812.9 \mu g/kg)$	(LOQ = 796.1 μg/kg)	(LOD = 352.2 μg/kg)	(LOD = 226.4 µg/kg)	$(LOD = 1250.2 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
5.5.	$(LOD = 582.5 \mu g/kg)$	(LOD = 221.7 μg/kg)	(LOD = 138.9 µg/kg)	(LOD = 178.2 μg/kg)	$(LOD = 1182.1 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
55.	$(LOD = 69.1 \mu g/kg)$	$(LOD = 8.4 \mu g/kg)$	$(LOD = 14.4 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$	$(LOD = 141.1 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017379	S09-017380	S09-017381	S09-017382	S09-017383
DMD	< LOD	< LOD	< LOD	< LOD	< LOD
DMP	$(LOD = 7.4 \mu g/kg)$	$(LOD = 12.9 \mu g/kg)$	$(LOD = 7.4 \mu g/kg)$	$(LOD = 4.5 \mu g/kg)$	$(LOD = 8.4 \mu g/kg)$
DED	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 7.1 \mu g/kg)$	$(LOD = 8.7 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$	$(LOD = 3.7 \mu g/kg)$	$(LOD = 6.9 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 5.1 \mu g/kg)$	$(LOD = 4.7 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	$(LOD = 3.9 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 19.2 \mu g/kg)$	$(LOD = 21.9 \mu g/kg)$	(LOD = 21.8 µg/kg)	$(LOD = 16.7 \mu g/kg)$	$(LOD = 16.9 \mu g/kg)$
DiBP	< LOD	< LOD	< LOQ	< LOQ	< LOD
DIDP	$(LOD = 5.5 \mu g/kg)$	$(LOD = 4.4 \mu g/kg)$	$(LOQ = 16.0 \mu g/kg)$	$(LOQ = 12.7 \mu g/kg)$	$(LOD = 3.7 \mu g/kg)$
DBP	< LOQ	< LOQ	< LOQ	< LOD	< LOD
DBP	$(LOQ = 15.8 \mu g/kg)$	$(LOQ = 14.0 \mu g/kg)$	(LOQ = 13.9 µg/kg)	$(LOD = 5.3 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DPP	$(LOD = 21.0 \mu g/kg)$	$(LOD = 8.7 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 7.5 \mu g/kg)$	$(LOD = 4.0 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	(LOD = 36.8 μg/kg)	$(LOD = 9.0 \mu g/kg)$	(LOD = 21.4 µg/kg)	$(LOD = 8.0 \mu g/kg)$	$(LOD = 4.4 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 12.4 \mu g/kg)$	$(LOD = 17.7 \mu g/kg)$	(LOD = 12.4 µg/kg)	$(LOD = 16.5 \mu g/kg)$	$(LOD = 7.0 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
БСПР	$(LOD = 26.4 \mu g/kg)$	$(LOD = 10.7 \mu g/kg)$	$(LOD = 4.8 \mu g/kg)$	$(LOD = 10.7 \mu g/kg)$	$(LOD = 11.5 \mu g/kg)$
DEHP	221 5 ug/kg	< LOQ	< LOQ	58 0 µg/kg	05.6 µg/kg
DEFIF	221.5 μg/kg	$(LOQ = 51.4 \mu g/kg)$	$(LOQ = 99.4 \mu g/kg)$	56.9 μg/kg	95.6 μg/kg
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 58.4 \mu g/kg)$	$(LOD = 10.1 \mu g/kg)$	(LOD = 13.6 μg/kg)	$(LOD = 8.7 \mu g/kg)$	$(LOD = 11.7 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	(LOD = 1363.8 μg/kg)	$(LOD = 387.2 \mu g/kg)$	$(LOD = 490.7 \mu g/kg)$	$(LOD = 517.3 \mu g/kg)$	$(LOD = 358.3 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOQ	< LOD
אטוט	$(LOD = 1406.1 \mu g/kg)$	$(LOD = 236.8 \mu g/kg)$	$(LOD = 426.5 \mu g/kg)$	(LOD = 4.5 μg/kg)	$(LOD = 263.1 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 27.8 \mu g/kg)$	$(LOD = 27.5 \mu g/kg)$	$(LOD = 25.7 \mu g/kg)$	(LOD = 16.6 μg/kg)	$(LOD = 27.9 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017384	S09-017385	S09-017386	S09-017387	S09-017388
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 3.7 \mu g/kg)$	$(LOD = 71.8 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$
DED	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 13.3 \mu g/kg)$	$(LOD = 53.7 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$	CD	$(LOD = 1.5 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 9.0 \mu g/kg)$	$(LOD = 28.9 \mu g/kg)$	$(LOD = 3.5 \mu g/kg)$	$(LOD = 3.2 \mu g/kg)$	$(LOD = 1.1 \mu g/kg)$
DAP	< LOD	< LOD	< LOD		< LOD
DAI	$(LOD = 33.5 \mu g/kg)$	(LOD = 187.8 μg/kg)	$(LOD = 26.8 \mu g/kg)$	$(LOD = 13.4 \mu g/kg)$	$(LOD = 7.79 \mu g/kg)$
D:DD	< LOD	< LOD	< LOD	< LOD	< LOD
DiBP	$(LOD = 3.3 \mu g/kg)$	$(LOD = 30.0 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	$(LOD = 2.9 \mu g/kg)$	$(LOD = 7.9 \mu g/kg)$
DDD	< LOD	< LOD	< LOD	< LOD	< LOD
DBP	$(LOD = 5.9 \mu g/kg)$	$(LOD = 31.3 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$	$(LOD = 9.0 \mu g/kg)$
DPP	< LOD	< LOD	< LOD		< LOD
DPP	$(LOD = 13.2 \mu g/kg)$	$(LOD = 29.2 \mu g/kg)$	$(LOD = 5.7 \mu g/kg)$	(not confirmed)	$(LOD = 1.8 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DITE	$(LOD = 12.2 \mu g/kg)$	$(LOD = 69.9 \mu g/kg)$	$(LOD = 3.9 \mu\text{g/kg})$	$(LOD = 1.9 \mu\text{g/kg})$	$(LOD = 2.1 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	,	< LOD
DDI	$(LOD = 20.2 \mu g/kg)$	(LOD = 149.0 μg/kg)	(LOD = 9.6 μg/kg)		$(LOD = 3.9 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD		< LOD
DOTT	(LOD = 16.3 μg/kg)	$(LOD = 35.2 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$	$(LOD = 2.5 \mu g/kg)$	$(LOD = 8.4 \mu g/kg)$
DEHP	68.6 μg/kg	< LOQ	55.7 μg/kg	59.5 µg/kg	< LOD
J 2.1	(not confirmed)	$(LOQ = 72.1 \mu g/kg)$, , ,	$(LOD = 31.2 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	. =	< LOD
	$(LOD = 21.1 \mu g/kg)$	$(LOD = 38.3 \mu g/kg)$	$(LOD = 3.9 \mu\text{g/kg})$		(LOD = 11.8 μg/kg)
DiNP	< LOD (1.00 (1.1))	< LOD (1.00)	< LOD (1.0)		< LOD (1.00)
	(LOD = 1400.2 μg/kg)	(LOD = 3111.6 μg/kg)	(LOD = 55.8 μg/kg)		(LOD = 322.0 μg/kg)
DiDP	< LOD (LOD 400.5/l.m)	< LOD 4000 5	< LOD (1.07)	,	< LOD (1.0D 000.7(1.0)
	(LOD = 428.5 μg/kg)	(LOD = 1920.5 μg/kg)	(LOD = 28.2 μg/kg)	,	(LOD = 292.7 μg/kg)
DDP	< LOD (1.00)	< LOD	< LOD (1.00)	_	< LOD (1.00)
	(LOD = 32.6 µg/kg)	(LOD = 69.6 μg/kg)	$(LOD = 21.2 \mu g/kg)$	$(LOD = 16.9 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017389	S09-017390	S09-017391	S09-017392	S09-017393
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 3.8 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 11.0 \mu g/kg)$	$(LOD = 7.2 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 4.2 \mu\text{g/kg})$	$(LOD = 5.1 \mu g/kg)$	$(LOD = 1.3 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 1.3 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAF	$(LOD = 21.2 \mu g/kg)$	$(LOD = 17.5 \mu g/kg)$	$(LOD = 9.5 \mu g/kg)$	$(LOD = 8.5 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$
DiBP	< LOD	< LOD	< LOD	< LOD	< LOD
DIDP	$(LOD = 4.9 \mu g/kg)$	$(LOD = 4.8 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$
DBP	< LOD	< LOD	< LOD	22.4 μα/κα	< LOD
DDF	$(LOD = 6.1 \mu\text{g/kg})$	$(LOD = 4.1 \mu g/kg)$	$(LOD = 6.8 \mu g/kg)$	33.4 μg/kg	$(LOD = 6.8 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DFF	$(LOD = 18.2 \mu g/kg)$	$(LOD = 6.6 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 18.2 \mu g/kg)$	$(LOD = 3.1 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHF	$(LOD = 12.3 \mu g/kg)$	$(LOD = 9.3 \mu g/kg)$	$(LOD = 2.0 \mu g/kg)$	$(LOD = 3.8 \mu\text{g/kg})$	$(LOD = 2.6 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOQ	< LOD
DDF	$(LOD = 34.4 \mu g/kg)$	$(LOD = 20.2 \mu g/kg)$	$(LOD = 4.4 \mu g/kg)$	$(LOQ = 24.5 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHF	$(LOD = 18.1 \mu g/kg)$	$(LOD = 17.0 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$	$(LOD = 3.8 \mu\text{g/kg})$	$(LOD = 2.7 \mu g/kg)$
DEHP	115.0 µg/kg	< LOD	48.5 µg/kg	< LOD (LOD = 0.7 μg/kg) < LOD (LOD = 3.3 μg/kg) < LOD (LOD = 2.2 μg/kg) < LOD (LOD = 8.5 μg/kg) < LOD (LOD = 5.0 μg/kg) 33.4 μg/kg < LOD (LOD = 18.2 μg/kg) < LOD (LOD = 3.8 μg/kg) < LOD (LOD = 3.8 μg/kg) < LOQ (LOD = 24.5 μg/kg) < LOD	< LOD
DETT	115.0 μg/kg	$(LOD = 20.8 \mu g/kg)$	48.3 μg/kg	204.3 μg/kg	$(LOD = 13.9 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	_	< LOD
DOF	$(LOD = 47.3 \mu g/kg)$	$(LOD = 35.7 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$	$(LOD = 12.4 \mu g/kg)$	$(LOD = 5.5 \mu\text{g/kg})$
DiNP	< LOD	< LOD	212.7 μg/kg	677.2 μg/kg	107.4 μg/kg
DINE	$(LOD = 834.9 \mu g/kg)$	$(LOD = 1599.2 \mu g/kg)$	(not confirmed)	(not confirmed)	(not confirmed)
DiDP	< LOD	< LOD	< LOD	< LOQ	< LOQ
טוטר	$(LOD = 1187.4 \mu g/kg)$	$(LOD = 2513.3 \mu g/kg)$	$(LOD = 69.8 \mu g/kg)$	(LOQ = 288.4 μg/kg)	$(LOQ = 238.0 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 9.4 \mu g/kg)$	$(LOD = 58.4 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	$(LOD = 12.0 \mu g/kg)$	$(LOD = 5.8 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017394	S09-017395	S09-017396	S09-017397	S09-017398
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 1.5 \mu g/kg)$	$(LOD = 1.6 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 3.3 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$
DiPP	< LOD	17.0 μg/kg	< LOD	< LOD	< LOQ
DIFF	$(LOD = 1.7 \mu g/kg)$	(not confirmed)	$(LOD = 1.3 \mu g/kg)$	$(LOD = 1.2 \mu g/kg)$	$(LOQ = 6.2 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 6.7 \mu g/kg)$	$(LOD = 14.6 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	(LOD = 17.9 μg/kg)
DiBP	< LOD	< LOQ	< LOD	< LOD	< LOD
DIDP	$(LOD = 5.0 \mu g/kg)$	$(LOQ = 16.6 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$
DBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDP	$(LOD = 6.8 \mu g/kg)$	$(LOD = 6.8 \mu g/kg)$	$(LOD = 6.8 \mu g/kg)$	$(LOD = 6.8 \mu g/kg)$	(LOD = 56.1 μg/kg)
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DFF	$(LOD = 3.1 \mu g/kg)$	$(LOD = 7.2 \mu g/kg)$	$(LOD = 9.5 \mu g/kg)$	$(LOD = 29.7 \mu g/kg)$	$(LOD = 44.0 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	$(LOD = 2.1 \mu g/kg)$	$(LOD = 25.8 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	(LOD = 23.1 μg/kg)
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 5.0 \mu g/kg)$	$(LOD = 48.6 \mu g/kg)$	$(LOD = 6.6 \mu g/kg)$	$(LOD = 7.0 \mu g/kg)$	$(LOD = 43.2 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
рспе	$(LOD = 5.9 \mu g/kg)$	$(LOD = 32.2 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 6.4 \mu g/kg)$	$(LOD = 25.8 \mu g/kg)$
DEHP	< LOQ		< LOQ	< LOQ	< LOD
DETTE	$(LOQ = 46.3 \mu g/kg)$	68.7 μg/kg	$(LOQ = 46.3 \mu g/kg)$	$(LOQ = 46.3 \mu g/kg)$	$(LOD = 52.6 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 4.3 \mu g/kg)$	$(LOD = 49.4 \mu g/kg)$	$(LOD = 2.2 \mu\text{g/kg})$	$(LOD = 12.9 \mu g/kg)$	$(LOD = 68.4 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 73.2 \mu g/kg)$	$(LOD = 455.4 \mu g/kg)$	$(LOD = 98.1 \mu g/kg)$	$(LOD = 163.4 \mu g/kg)$	$(LOD = 416.7 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 45.7 \mu g/kg)$	$(LOD = 240.7 \mu g/kg)$	$(LOD = 142.8 \mu g/kg)$	$(LOD = 102.4 \mu g/kg)$	$(LOD = 408.1 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 2.5 \mu g/kg)$	(LOD = 18.5 μg/kg)	$(LOD = 9.2 \mu g/kg)$	(LOD = 7.8 μg/kg)	$(LOD = 37.6 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017399	S09-017400	S09-017401	S09-017402	S09-017403
DMD	< LOD	3.4 μg/kg	< LOD	< LOD	< LOD
DMP	$(LOD = 11.0 \mu g/kg)$	(not confirmed)	$(LOD = 3.0 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	(LOD = 13.0 μg/kg)
DED	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 16.2 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	$(LOD = 19.3 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	$(LOD = 26.0 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 15.9 \mu g/kg)$	$(LOD = 1.6 \mu g/kg)$	$(LOD = 20.9 \mu g/kg)$	$(LOD = 3.9 \mu g/kg)$	$(LOD = 7.8 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 60.4 \mu g/kg)$	$(LOD = 5.7 \mu g/kg)$	$(LOD = 25.4 \mu g/kg)$	$(LOD = 9.3 \mu g/kg)$	(LOD = 34.8 μg/kg)
DiBP	< LOD	< LOD	< LOD	< LOD	5.3 μg/kg
DIDP	$(LOD = 20.9 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$	$(LOD = 9.7 \mu g/kg)$	$(LOD = 4.9 \mu g/kg)$	(not confirmed)
DBP	< LOD	< LOD	< LOD	< LOD	19.4 μg/kg
DDP	$(LOD = 13.6 \mu g/kg)$	$(LOD = 6.8 \mu g/kg)$	$(LOD = 10.5 \mu g/kg)$	$(LOD = 6.1 \mu g/kg)$	(not confirmed)
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DPP	$(LOD = 12.5 \mu g/kg)$	3.4 μg/kg	$(LOD = 6.8 \mu g/kg)$		
DHP	< LOD	3.4 μg/kg	< LOD	< LOD	< LOD
DUL	$(LOD = 24.5 \mu g/kg)$	(not confirmed)	$(LOD = 32.7 \mu g/kg)$	$(LOD = 9.9 \mu g/kg)$	$(LOD = 14.9 \mu g/kg)$
BBP	< LOD	18.2 μg/kg	< LOD	< LOD	< LOD
DDF	$(LOD = 42.1 \mu g/kg)$	(not confirmed)	$(LOD = 10.9 \mu g/kg)$	$(LOD = 10.3 \mu g/kg)$	$(LOD = 30.7 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	42.7 μg/kg	< LOD
DCHP	$(LOD = 34.9 \mu g/kg)$	$(LOD = 32.8 \mu g/kg)$	$(LOD = 17.6 \mu g/kg)$	(not confirmed)	$(LOD = 19.8 \mu g/kg)$
DEHP	< LOD	940.7 ug/kg	< LOQ	364 0 µg/kg	37.5 µg/kg
DEHP	$(LOD = 30.9 \mu g/kg)$	649.7 μg/kg	(LOQ =64.7 µg/kg)	364.9 µg/kg	(not confirmed)
DOP	< LOD	_	< LOD	< LOD	< LOD
DOF	$(LOD = 43.0 \mu g/kg)$	$(LOD = 29.1 \mu g/kg)$	$(LOD = 39.6 \mu g/kg)$	$(LOD = 31.7 \mu g/kg)$	$(LOD = 23.1 \mu g/kg)$
DiNP	279.5 μg/kg	< LOQ	5302.5 μg/kg	2773.7 μg/kg	< LOD
DINE	(not confirmed)	$(LOQ = 885.5 \mu g/kg)$	(same profile)	,	(LOD = 3750.6 μg/kg)
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
חוטר	$(LOD = 57.1 \mu g/kg)$	$(LOD = 164.2 \mu g/kg)$	$(LOD = 494.5 \mu g/kg)$	< LOD (LOD = 1.5 μg/kg) < LOD (LOD = 5.5 μg/kg) < LOD (LOD = 3.9 μg/kg) < LOD (LOD = 9.3 μg/kg) < LOD (LOD = 4.9 μg/kg) < LOD (LOD = 6.1 μg/kg) < LOD (LOD = 5.8 μg/kg) < LOD (LOD = 5.8 μg/kg) < LOD (LOD = 9.9 μg/kg) < LOD (LOD = 10.3 μg/kg) 42.7 μg/kg (not confirmed) 364.9 μg/kg 2773.7 μg/kg (not confirmed) < LOD (LOD = 1009.9 μg/kg) < LOD (LOD = 1009.9 μg/kg)	$(LOD = 3549.3 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 6.5 \mu g/kg)$	$(LOD = 14.8 \mu g/kg)$	$(LOD = 76.0 \mu g/kg)$	$(LOD = 77.0 \mu g/kg)$	(LOD = 115.2 μg/kg)

Table 44 continued. Retail food sample results

	S09-017404	S09-017405	S09-017406	S09-017407	S09-017408
DMP	< LOQ	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOQ = 16.4 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 12.5 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 12.6 \mu g/kg)$	< LOD	$(LOD = 9.6 \mu g/kg)$		
DiPP	< LOD			< LOD	< LOD
DIPP	$(LOD = 20.0 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$	$(LOD = 1.2 \mu g/kg)$	$(LOD = 11.0 \mu g/kg)$	$(LOD = 6.0 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 35.8 \mu g/kg)$	$(LOD = 15.2 \mu g/kg)$	$(LOD = 7.3 \mu g/kg)$	$(LOD = 63.0 \mu g/kg)$	$(LOD = 16.9 \mu g/kg)$
DiBP	73.5 μg/kg	7.4 µg/kg	< LOQ	58.5 μg/kg	< LOD
DIDP	(not confirmed)	(not confirmed)	$(LOQ = 6.5 \mu g/kg)$	(not confirmed)	$(LOD = 8.8 \mu g/kg)$
DBP	< LOQ	< LOD	< LOQ	< LOQ	< LOD
DDP	$(LOQ = 22.5 \mu g/kg)$	$(LOD = 8.3 \mu g/kg)$	$(LOQ = 5.5 \mu g/kg)$	(LOQ = 53.6 µg/kg)	$(LOD = 4.3 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD (< LOD
DFF	$(LOD = 42.2 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$	$(LOD = 1.6 \mu g/kg)$	LOD = 22.7 μ g/kg)	$(LOD = 11.9 \mu g/kg)$
DHP	< LOD	< LOD		< LOD	< LOD
חחט	$(LOD = 86.8 \mu g/kg)$	$(LOD = 6.8 \mu g/kg)$	$(LOD = 1.9 \mu g/kg)$	$(LOD = 26.3 \mu g/kg)$	$(LOD = 11.0 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 78.5 \mu g/kg)$	$(LOD = 13.0 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$	$(LOD = 63.5 \mu g/kg)$	$(LOD = 23.7 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 105.7 \mu g/kg)$	$(LOD = 16.0 \mu g/kg)$	$(LOD = 2.7 \mu g/kg)$	$(LOD = 38.3 \mu g/kg)$	$(LOD = 21.3 \mu g/kg)$
DEHP	309.6 μg/kg	91 O ug/kg		< LOD	< LOQ
DETT	(not confirmed)	61.0 μg/kg	$(LOQ = 12.1 \mu g/kg)$	$(LOD = 26.3 \mu g/kg)$	$(LOQ = 49.8 \mu g/kg)$
DOP	< LOD		=	_	< LOD
DOP	$(LOD = 123.6 \mu g/kg)$	$(LOD = 19.1 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	$(LOD = 39.7 \mu g/kg)$	$(LOD = 33.5 \mu g/kg)$
DiNP	< LOQ	< LOD	1	< LOD	< LOD
DINE	$(LOQ = 5555.8 \mu g/kg)$	$(LOD = 1691.4 \mu g/kg)$	$(LOD = 382.4 \mu g/kg)$	$(LOD = 3200.5 \mu g/kg)$	$(LOD = 204.9 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
שטוטר	$(LOD = 1755.1 \mu g/kg)$	$(LOD = 1994.9 \mu g/kg)$	$(LOD = 436.8 \mu g/kg)$	$(LOD = 3255.5 \mu g/kg)$	$(LOD = 135.0 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
שטר	$(LOD = 133.7 \mu g/kg)$	(LOD = 136.6 μg/kg)	$(LOD = 4.6 \mu g/kg)$	(LOD = 117.4 μg/kg)	$(LOD = 8.3 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017409	S09-017410	S09-017411	S09-017412	S09-017413
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 0.7 \mu g/kg)$	$(LOD = 73.4 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 4.5 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 3.3 \mu g/kg)$	$(LOD = 18.4 \mu g/kg)$	$(LOD = 6.5 \mu g/kg)$	$(LOD = 5.3 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 1.4 \mu g/kg)$	$(LOD = 7.8 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$	$(LOD = 1.2 \mu g/kg)$	$(LOD = 3.2 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 4.9 \mu g/kg)$	$(LOD = 37.6 \mu g/kg)$	$(LOD = 16.1 \mu g/kg)$	$(LOD = 4.5 \mu g/kg)$	$(LOD = 10.1 \mu g/kg)$
DiBP	< LOD	< LOD	< LOD	< LOD	< LOQ
DIDP	$(LOD = 5.0 \mu g/kg)$	$(LOD = 8.6 \mu g/kg)$	$(LOD = 9.5 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$	$(LOQ = 10.5 \mu g/kg)$
DBP	< LOD	< LOD	< LOD	< LOD	17.0 μg/kg
DDP	$(LOD = 6.8 \mu g/kg)$	$(LOD = 7.4 \mu g/kg)$	$(LOD = 10.1 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$	(not confirmed)
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DFF	$(LOD = 16.9 \mu g/kg)$	$(LOD = 16.1 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 7.4 \mu g/kg)$	$(LOD = 7.1 \mu g/kg)$
DHP	15.8 µg/kg	< LOD	< LOD	< LOD	< LOD
DHP	(not confirmed)	$(LOD = 13.9 \mu g/kg)$	$(LOD = 6.0 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 10.7 \mu g/kg)$
BBP	141.2 μg/kg	< LOD	< LOD	< LOD	< LOD
DDF	(not confirmed)	$(LOD = 30.6 \mu g/kg)$	$(LOD = 15.1 \mu g/kg)$	$(LOD = 4.8 \mu g/kg)$	$(LOD = 10.7 \mu g/kg)$
DCHP	< LOQ	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOQ = 40.6 \mu g/kg)$	$(LOD = 22.3 \mu g/kg)$	$(LOD = 13.1 \mu g/kg)$	$(LOD = 2.9 \mu g/kg)$	(LOD = 21.0 μg/kg)
DEHP	47.4 ug/kg	229 1 119/49	< LOD	< LOQ	240.4 μα/κα
DEFIE	47.4 μg/kg	238.1 μg/kg	$(LOD = 11.8 \mu g/kg)$	$(LOQ = 65.9 \mu g/kg)$	240.4 μg/kg
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 15.4 \mu g/kg)$	$(LOD = 57.1 \mu g/kg)$	$(LOD = 12.9 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 58.5 \mu g/kg)$
DiNP	< LOQ	< LOD	< LOD	< LOD	< LOD
DINE	$(LOQ = 528.9 \mu g/kg)$	$(LOD = 156.4 \mu g/kg)$	$(LOD = 727.4 \mu g/kg)$	$(LOD = 261.8 \mu g/kg)$	$(LOD = 3636.9 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 101.1 \mu g/kg)$	$(LOD = 115.9 \mu g/kg)$	$(LOD = 639.5 \mu g/kg)$	$(LOD = 79.5 \mu g/kg)$	$(LOD = 4042.1 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 8.0 \mu g/kg)$	$(LOD = 7.8 \mu g/kg)$	$(LOD = 24.8 \mu g/kg)$	(LOD = 8.1 μg/kg)	(LOD = 165.7 μg/kg)

Table 44 continued. Retail food sample results

	S09-017414	S09-017415	S09-017416	S09-017417	S09-017418
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 0.7 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 4.5 \mu g/kg)$	$(LOD = 2.9 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$
DEP	< LOD	< LOD	42 F ug/kg	< LOQ	
DEP	$(LOD = 5.3 \mu g/kg)$	$(LOD = 9.4 \mu g/kg)$	$(LOD = 7.5 \mu g/kg)$	43.5 μg/kg	$(LOQ = 19.9 \mu g/kg)$
DiPP	_	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 2.0 \mu g/kg)$	$(LOD = 3.5 \mu g/kg)$	$(LOD = 12.4 \mu g/kg)$	$(LOD = 2.9 \mu g/kg)$	$(LOD = 4.5 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 8.5 \mu g/kg)$	$(LOD = 14.6 \mu g/kg)$	(LOD = 26.8 µg/kg)	$(LOD = 4.4 \mu g/kg)$	$(LOD = 17.9 \mu g/kg)$
DiBP	1 = 0 =	39 O ug/kg	66.0 µg/kg	13.4 μg/kg	< LOQ
DIDP	$(LOD = 7.9 \mu g/kg)$	36.0 μg/kg	(not confirmed)	(not confirmed)	$(LOQ = 18.0 \mu g/kg)$
DBP		< LOQ	35.7 µg/kg	30.3 µg/kg	< LOQ
DDF	$(LOD = 9.0 \mu g/kg)$	$(LOQ = 25.3 \mu g/kg)$	(not confirmed)	(not confirmed)	$(LOQ = 25.3 \mu g/kg)$
DPP	< LOD	=	< LOD	< LOD	< LOD
DFF	$(LOD = 11.4 \mu g/kg)$	$(LOD = 17.9 \mu g/kg)$	(LOD = 28.0 μg/kg)	$(LOD = 5.2 \mu g/kg)$	$(LOD = 11.9 \mu g/kg)$
DHP	< LOQ	< LOD		_	< LOD
DHF	$(LOQ = 15.1 \mu g/kg)$	$(LOD = 9.2 \mu g/kg)$	$(LOD = 11.1 \mu g/kg)$	$(LOD = 5.3 \mu g/kg)$	$(LOD = 10.5 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 10.9 \mu g/kg)$	$(LOD = 22.7 \mu g/kg)$	$(LOD = 20.2 \mu g/kg)$	$(LOD = 8.1 \mu g/kg)$	$(LOD = 20.2 \mu g/kg)$
DCHP		< LOD		< LOD	< LOD
БСПР	$(LOD = 6.6 \mu g/kg)$	$(LOD = 14.2 \mu g/kg)$	$(LOD = 14.2 \mu g/kg)$	$(LOD = 10.5 \mu g/kg)$	$(LOD = 17.3 \mu g/kg)$
DEHP		= -,	108.4 μg/kg	07.9 ug/kg	124.7 μg/kg
DEHI	$(LOQ = 67.4 \mu g/kg)$	$(LOQ = 65.9 \mu g/kg)$	(not confirmed)	97.8 μg/kg	124.7 μg/kg
DOP	< LOD	< LOD		_	< LOD
DOF	(LOD = 24.3 g/kg)	$(LOD = 6.2 \mu g/kg)$	$(LOD = 16.1 \mu g/kg)$	(LOD = 56.6 µg/kg)	$(LOD = 15.7 \mu g/kg)$
DiNP		< LOD	_	3374.7 µg/kg	< LOD
DINE	$(LOD = 742.7 \mu g/kg)$	$(LOD = 315.8 \mu g/kg)$	(LOD = 1769.5 μg/kg)	(not confirmed)	$(LOD = 816.1 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
טוטר	$(LOD = 369.4 \mu g/kg)$	(LOD = 241.9 μg/kg)	(LOD = 815.9 μg/kg)	(LOD = 2.9 μg/kg) 43.5 μg/kg < LOD (LOD = 2.9 μg/kg) < LOD (LOD = 4.4 μg/kg) 13.4 μg/kg (not confirmed) 30.3 μg/kg (not confirmed) < LOD (LOD = 5.2 μg/kg) < LOD (LOD = 5.3 μg/kg) < LOD (LOD = 8.1 μg/kg) < LOD (LOD = 10.5 μg/kg) 97.8 μg/kg (not confirmed)	$(LOD = 755.0 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 16.6 \mu g/kg)$	$(LOD = 9.0 \mu g/kg)$	$(LOD = 33.0 \mu g/kg)$	$(LOD = 20.6 \mu g/kg)$	$(LOD = 38.2 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017419	S09-017420	S09-017421	S09-017422	S09-017423
DMD	< LOD	< LOD	< LOD	< LOD	< LOD
DMP	$(LOD = 1.5 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	$(LOD = 13.0 \mu g/kg)$	$(LOD = 1.6 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 7.0 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$	$(LOD = 8.5 \mu g/kg)$	(LOD = 17.6 µg/kg)	$(LOD = 4.5 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 2.0 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$	$(LOD = 4.0 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAF	$(LOD = 4.1 \mu g/kg)$	$(LOD = 12.4 \mu g/kg)$	$(LOD = 15.7 \mu g/kg)$	(LOD = 13.6 µg/kg)	$(LOD = 9.5 \mu g/kg)$
DiBP	< LOD	< LOQ	< LOD	< LOD	< LOD
DIDE	$(LOD = 4.3 \mu g/kg)$	$(LOQ = 14.3 \mu g/kg)$	$(LOD = 10.0 \mu g/kg)$	$(LOD = 17.2 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$
DBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 5.5 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	$(LOD = 25.4 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DFF	$(LOD = 2.5 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$	$(LOD = 22.5 \mu g/kg)$	(LOD = 10.8 μg/kg)
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DITIE	$(LOD = 0.9 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$	(LOD = 12.6 µg/kg)	$(LOD = 14.3 \mu g/kg)$	$(LOD = 9.8 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 2.1 \mu g/kg)$	$(LOD = 14.3 \mu g/kg)$	(LOD = 15.8 μg/kg)	$(LOD = 26.2 \mu g/kg)$	(LOD = 15.8 μg/kg)
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHF	$(LOD = 10.5 \mu g/kg)$	$(LOD = 9.4 \mu g/kg)$	(LOD = 16.2 μg/kg)	(LOD = 58.4 μg/kg)	$(LOD = 8.1 \mu g/kg)$
DEHP	< LOQ	< LOQ	< LOD	< LOD	< LOQ
DLITE	$(LOQ = 56.9 \mu g/kg)$	$(LOQ = 56.9 \mu g/kg)$	$(LOD = 17.1 \mu g/kg)$	$(LOD = 20.2 \mu g/kg)$	(LOQ = 56.9 µg/kg)
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 3.6 \mu g/kg)$	$(LOD = 7.9 \mu g/kg)$	$(LOD = 23.7 \mu g/kg)$	$(LOD = 26.3 \mu g/kg)$	(LOD = 14.6 μg/kg)
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 368.2 \mu g/kg)$	$(LOD = 543.9 \mu g/kg)$	$(LOD = 1045.3 \mu g/kg)$	(LOD = 222.8 μg/kg)	$(LOD = 775.1 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
חוטר	$(LOD = 260.1 \mu g/kg)$	$(LOD = 475.4 \mu g/kg)$	(LOD = 818.1 μg/kg)	(LOD = 147.0 μg/kg)	(LOD = 566.0 μg/kg)
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
דטט	$(LOD = 8.3 \mu g/kg)$	$(LOD = 14.1 \mu g/kg)$	$(LOD = 43.3 \mu g/kg)$	(LOD = 9.5 µg/kg)	$(LOD = 35.3 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017424	S09-017425	S09-017426	S09-017427	S09-017428
DMP	< LOD	< LOD	0.9 μg/kg	< LOD	< LOD
DIVIP	$(LOD = 5.2 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	(not confirmed)	$(LOD = 1.5 \mu g/kg)$	$(LOD = 6.9 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 3.6 \mu g/kg)$	$(LOD = 3.3 \mu g/kg)$	$(LOD = 6.1 \mu g/kg)$	$(LOD = 2.0 \mu g/kg)$	$(LOD = 19.9 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	46.4 μg/kg
DIFF	$(LOD = 2.6 \mu g/kg)$	$(LOD = 0.9 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	(not confirmed)
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 10.1 \mu g/kg)$	$(LOD = 3.5 \mu g/kg)$	$(LOD = 26.1 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$	(LOD = 19.9 μg/kg)
DiBP	< LOD	< LOD	< LOD	< LOD	< LOD
DIDP	$(LOD = 5.7 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$	(LOD = 25.5 μg/kg)
DBP	< LOD	< LOD	< LOD	< LOQ	< LOD
DBP	$(LOD = 5.5 \mu g/kg)$	$(LOD = 6.8 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$	$(LOQ = 25.3 \mu g/kg)$	$(LOD = 23.0 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DFF	$(LOD = 7.3 \mu g/kg)$	$(LOD = 0.8 \mu g/kg)$	$(LOD = 10.7 \mu g/kg)$	(LOD = 51.9 µg/kg)	$(LOD = 26.2 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	$(LOD = 2.0 \mu g/kg)$	$(LOD = 1.0 \mu g/kg)$	$(LOD = 9.6 \mu g/kg)$	$(LOD = 6.1 \mu g/kg)$	(LOD = 41.2 μg/kg)
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 4.7 \mu g/kg)$	$(LOD = 1.9 \mu g/kg)$	$(LOD = 12.1 \mu g/kg)$	$(LOD = 9.8 \mu g/kg)$	(LOD = 35.6 μg/kg)
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 2.6 \mu g/kg)$	$(LOD = 1.4 \mu g/kg)$	$(LOD = 11.9 \mu g/kg)$	(LOD = 28.2 µg/kg)	$(LOD = 60.5 \mu g/kg)$
DEHP	< LOD	< LOQ	76.1 ug/kg	204.2 μα/κα	46.8 µg/kg
DEFIF	$(LOD = 17.1 \mu g/kg)$	$(LOQ = 46.3 \mu g/kg)$	76.1 μg/kg	204.3 μg/kg	(not confirmed)
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 4.1 \mu g/kg)$	$(LOD = 2.8 \mu g/kg)$	$(LOD = 29.7 \mu g/kg)$	$(LOD = 22.5 \mu g/kg)$	$(LOD = 60.6 \mu g/kg)$
DiNP	< LOQ	< LOD	< LOD	1374.8 μg/kg	< LOD
DINE	$(LOQ = 609.2 \mu g/kg)$	$(LOD = 101.0 \mu g/kg)$	$(LOD = 665.1 \mu g/kg)$	(not confirmed)	(LOD = 3900.6 µg/kg)
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
טוטר	$(LOD = 135.7 \mu g/kg)$	$(LOD = 114.8 \mu g/kg)$	$(LOD = 2373.2 \mu g/kg)$	$(LOD = 323.5 \mu g/kg)$	$(LOD = 3877.2 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 9.2 \mu g/kg)$	$(LOD = 11.7 \mu g/kg)$	(LOD = 99.2 μg/kg)	$(LOD = 45.4 \mu g/kg)$	(LOD = 132.3 μg/kg)

Table 44 continued. Retail food sample results

	S09-017429	S09-017430	S09-017431	S09-017432	S09-017433
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 2.2 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 20.4 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$
DEP	< LOD	< LOD	< LOQ	< LOD	< LOD
DEP	$(LOD = 3.0 \mu g/kg)$	$(LOD = 2.1 \mu g/kg)$	$(LOQ = 14.6 \mu g/kg)$	$(LOD = 16.2 \mu g/kg)$	$(LOD = 2.6 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 2.3 \mu g/kg)$	$(LOD = 1.7 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$	$(LOD = 9.2 \mu g/kg)$	$(LOD = 1.1 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 10.7 \mu g/kg)$	$(LOD = 7.0 \mu g/kg)$	$(LOD = 11.5 \mu g/kg)$	(LOD = 48.8 µg/kg)	$(LOD = 4.6 \mu g/kg)$
DiBP	< LOQ	< LOQ	21.6 µg/kg	< LOD	< LOD
DIDP	$(LOQ = 15.2 \mu g/kg)$	$(LOQ = 15.2 \mu g/kg)$	(not confirmed)	$(LOD = 20.9 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$
DBP	< LOQ	< LOQ	< LOQ	< LOD	< LOD
DDP	$(LOQ = 24.0 \mu g/kg)$	$(LOQ = 24.0 \mu g/kg)$	$(LOQ = 24.0 \mu g/kg)$	$(LOD = 80.3 \mu g/kg)$	$(LOD = 7.2 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	23.4 µg/kg
DFF	$(LOD = 2.8 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	$(LOD = 4.4 \mu g/kg)$	(LOD = 19.0 µg/kg)	(not confirmed)
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	$(LOD = 3.6 \mu g/kg)$	$(LOD = 4.7 \mu g/kg)$	$(LOD = 8.8 \mu g/kg)$	$(LOD = 17.5 \mu g/kg)$	(LOD = 11.1 μg/kg)
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 6.1 \mu g/kg)$	$(LOD = 8.9 \mu g/kg)$	$(LOD = 16.5 \mu g/kg)$	$(LOD = 40.0 \mu g/kg)$	$(LOD = 12.3 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	72.5 μg/kg	< LOD
DCHP	$(LOD = 6.3 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$	$(LOD = 10.5 \mu g/kg)$	(not confirmed)	$(LOD = 13.6 \mu g/kg)$
DEHP	< LOQ	< LOQ	< LOQ	< LOD	101.4 μg/kg
DETTE	$(LOQ = 43.5 \mu g/kg)$	$(LOQ = 43.5 \mu g/kg)$	$(LOQ = 43.5 \mu g/kg)$	(LOD = 18.6 µg/kg)	(not confirmed)
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 7.7 \mu g/kg)$	$(LOD = 8.5 \mu g/kg)$	$(LOD = 11.1 \mu g/kg)$	$(LOD = 9.3 \mu g/kg)$	$(LOD = 21.4 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 283.4 \mu g/kg)$	$(LOD = 645.9 \mu g/kg)$	$(LOD = 877.7 \mu g/kg)$	$(LOD = 290.9 \mu g/kg)$	$(LOD = 760.4 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 366.2 \mu g/kg)$	$(LOD = 656.7 \mu g/kg)$	$(LOD = 831.0 \mu g/kg)$	$(LOD = 215.4 \mu g/kg)$	$(LOD = 944.4 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 16.9 \mu g/kg)$	$(LOD = 47.6 \mu g/kg)$	$(LOD = 32.3 \mu g/kg)$	(LOD = 17.2 μg/kg)	$(LOD = 70.6 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017434	S09-017435	S09-017436	S09-017437	S09-017438
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 2.3 \mu g/kg)$	$(LOD = 7.4 \mu g/kg)$	$(LOD = 5.7 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 14.7 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 3.5 \mu g/kg)$	$(LOD = 36.1 \mu g/kg)$	$(LOD = 27.2 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$	$(LOD = 39.7 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	48.5 μg/kg
DIFF	$(LOD = 2.4 \mu g/kg)$	$(LOD = 51.4 \mu g/kg)$	$(LOD = 24.3 \mu g/kg)$	$(LOD = 0.8 \mu g/kg)$	(not confirmed)
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 23.7 \mu g/kg)$	$(LOD = 94.7 \mu g/kg)$	$(LOD = 53.7 \mu g/kg)$	$(LOD = 10.1 \mu g/kg)$	$(LOD = 165.1 \mu g/kg)$
DiBP	< LOD	< LOD	< LOD	< LOQ	< LOD
DIDP	$(LOD = 4.9 \mu g/kg)$	$(LOD = 45.0 \mu g/kg)$	$(LOD = 24.2 \mu g/kg)$	$(LOQ = 15.2 \mu g/kg)$	$(LOD = 30.6 \mu g/kg)$
DBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDP	$(LOD = 6.1 \mu g/kg)$	(LOD = 51.6 µg/kg)	$(LOD = 37.6 \mu g/kg)$	$(LOD = 7.2 \mu g/kg)$	$(LOD = 27.9 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DPP	$(LOD = 6.9 \mu g/kg)$	(LOD = 29.5 µg/kg)	$(LOD = 15.3 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	$(LOD = 33.9 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DUL	$(LOD = 6.0 \mu g/kg)$	(LOD = 46.8 µg/kg)	$(LOD = 27.2 \mu g/kg)$	$(LOD = 3.5 \mu g/kg)$	$(LOD = 22.8 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 16.1 \mu g/kg)$	$(LOD = 40.5 \mu g/kg)$	$(LOD = 28.4 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$	$(LOD = 32.9 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 8.3 \mu g/kg)$	(LOD = 26.6 µg/kg)	$(LOD = 25.5 \mu g/kg)$	$(LOD = 8.5 \mu g/kg)$	$(LOD = 46.4 \mu g/kg)$
DEHP	< LOQ	< LOD	64.9 µg/kg	< LOQ	< LOD
DETTE	$(LOQ = 39.5 \mu g/kg)$	$(LOD = 94.2 \mu g/kg)$	(not confirmed)	$(LOQ = 43.5 \mu g/kg)$	$(LOD = 84.4 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 10.3 \mu g/kg)$	$(LOD = 86.5 \mu g/kg)$	$(LOD = 52.7 \mu g/kg)$	$(LOD = 8.8 \mu g/kg)$	$(LOD = 30.4 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 518.1 \mu g/kg)$	$(LOD = 3946.7 \mu g/kg)$	(LOD = 2769.6 µg/kg)	$(LOD = 565.3 \mu g/kg)$	$(LOD = 729.8 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 269.6 \mu g/kg)$	$(LOD = 3142.5 \mu g/kg)$	$(LOD = 2152.0 \mu g/kg)$	(LOD = 384.6 μg/kg)	$(LOD = 1046.4 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	(LOD = 13.0 μg/kg)	(LOD = 152.0 μg/kg)	(LOD = 191.2 μg/kg)	$(LOD = 31.4 \mu g/kg)$	$(LOD = 65.1 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017439	S09-017440	S09-017441	S09-017442	S09-017443
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 1.5 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$	$(LOD = 16.4 \mu g/kg)$	(LOD = 11.9 μg/kg)
DEP	< LOD	< LOD	< LOD	< LOQ	16.4 μg/kg
DEF	$(LOD = 5.5 \mu g/kg)$	$(LOD = 10.8 \mu g/kg)$	$(LOD = 10.5 \mu g/kg)$	$(LOQ = 47.5 \mu g/kg)$	(not confirmed)
DiPP	< LOD	< LOD	< LOD	39.4 μg/kg	38.1 µg/kg
DIFF	$(LOD = 3.1 \mu g/kg)$	$(LOD = 12.9 \mu g/kg)$	$(LOD = 6.1 \mu g/kg)$	(not confirmed)	(not confirmed)
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAF	$(LOD = 19.2 \mu g/kg)$	$(LOD = 24.8 \mu g/kg)$	$(LOD = 12.4 \mu g/kg)$	$(LOD = 26.8 4 \mu g/kg)$	$(LOD = 109.7 \mu g/kg)$
DiBP	< LOD	46.1 µg/kg	< LOQ	6.7 μg/kg	< LOD
DIBE	$(LOD = 6.5 \mu g/kg)$	(not confirmed)	$(LOQ = 5.0 \mu g/kg)$	(not confirmed)	$(LOD = 24.7 \mu g/kg)$
DBP	< LOD	< LOD	< LOQ	< LOD	< LOQ
DBF	$(LOD = 6.5 \mu g/kg)$	$(LOD = 106.6 \mu g/kg)$	$(LOQ = 7.3 \mu g/kg)$	$(LOD = 56.7 \mu g/kg)$	$(LOQ = 7.3 \mu g/kg)$
DPP	271.5 μg/kg	< LOD	< LOD	< LOD	< LOD
DFF	(not confirmed)	$(LOD = 88.3 \mu g/kg)$	$(LOD = 5.6 \mu g/kg)$	$(LOD = 20.5 \mu g/kg)$	$(LOD = 31.0 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	509.8 μg/kg	< LOD
Dilir	$(LOD = 11.0 \mu g/kg)$	(LOD = 108.9 μg/kg)	$(LOD = 5.3 \mu g/kg)$	(not confirmed)	$(LOD = 27.5 \mu g/kg)$
BBP	< LOD	No data	< LOD	101.6 μg/kg	< LOD
DDI	$(LOD = 17.0 \mu g/kg)$		$(LOD = 14.0 \mu g/kg)$	(not confirmed)	$(LOD = 69.8 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOQ
DOITI	$(LOD = 13.5 \mu g/kg)$	$(LOD = 53.3 \mu g/kg)$	$(LOD = 13.0 \mu g/kg)$	$(LOD = 53.3 \mu g/kg)$	(LOQ = 128.3 μg/kg)
DEHP	125.0 μg/kg	196.1 μg/kg	94.1 µg/kg	199.5 μg/kg (not	24.7 μg/kg
DEIII	(not confirmed)	(not confirmed)	(not confirmed)	confirmed)	(not confirmed)
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOI	(LOD = 21.8 μg/kg)	(LOD = 85.2 μg/kg)	(LOD = 23.0 μg/kg)	$(LOD = 37.1 \mu g/kg)$	$(LOD = 49.8 \mu g/kg)$
DiNP	919.0 μg/kg	< LOD	< LOD	< LOD	< LOD
DIN	(not confirmed)	$(LOD = 1630.7 \mu g/kg)$	$(LOD = 272.8 \mu g/kg)$	$(LOD = 1636.6 \mu g/kg)$	$(LOD = 975.8 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 383.7 \mu g/kg)$	$(LOD = 1922.9 \mu g/kg)$	$(LOD = 181.8 \mu g/kg)$	$(LOD = 510.6 \mu g/kg)$	$(LOD = 777.7 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
דטטר	$(LOD = 50.8 \mu g/kg)$	(LOD = 100.8 μg/kg)	$(LOD = 22.0 \mu g/kg)$	$(LOD = 43.7 \mu g/kg)$	$(LOD = 37.3 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017444	S09-017445	S09-017446	S09-017447	S09-017448
DMP	< LOD	< LOD	< LOD	No data	< LOD
	$(LOD = 4.1 \mu g/kg)$	$(LOD = 37.8 \mu g/kg)$	$(LOD = 68.4 \mu g/kg)$	140 data	$(LOD = 53.6 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	No data	< LOD
	$(LOD = 9.6 \mu g/kg)$	$(LOD = 43.3 \mu g/kg)$	$(LOD = 78.2 \mu g/kg)$. To data	$(LOD = 59.4 \mu g/kg)$
DiPP	9.4 μg/kg	< LOD	< LOD	No data	< LOD
5	(not confirmed)	$(LOD = 33.7 \mu g/kg)$	$(LOD = 60.0 \mu g/kg)$. To data	$(LOD = 47.5 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	No data	< LOD
<i>D7</i> (i	$(LOD = 13.4 \mu g/kg)$	(LOD = 129.8 μg/kg)	$(LOD = 256.1 \mu g/kg)$	140 data	$(LOD = 119.1 \mu g/kg)$
DiBP	< LOQ	< LOD	< LOQ	No data	< LOD
DIDI	$(LOQ = 5.0 \mu g/kg)$	$(LOD = 27.9 \mu g/kg)$	$(LOQ = 222.7 \mu g/kg)$	140 data	$(LOD = 33.5 \mu g/kg)$
DBP	< LOD	< LOQ	< LOQ	No data	< LOD
БЫ	$(LOD = 4.1 \mu g/kg)$	$(LOQ = 81.3 \mu g/kg)$	$(LOQ = 213.3 \mu g/kg)$	NO data	$(LOD = 38.4 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	No data	No data
Dii	$(LOD = 3.9 \mu g/kg)$	$(LOD = 29.4 \mu g/kg)$	$(LOD = 60.6 \mu g/kg)$	NO data	
DHP	< LOD	< LOQ	< LOD	No data	< LOD
DITE	$(LOD = 10.7 \mu g/kg)$	$(LOQ = 81.1 \mu g/kg)$	$(LOD = 50.1 \mu g/kg)$	NO data	$(LOD = 68.8 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	No data	< LOD
DDF	$(LOD = 15.1 \mu g/kg)$	$(LOD = 72.6 \mu g/kg)$	$(LOD = 121.0 \mu g/kg)$	No data	$(LOD = 132.8 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	No data	< LOD
ВСПР	$(LOD = 41.5 \mu g/kg)$	$(LOD = 25.4 \mu g/kg)$	$(LOD = 62.4 \mu g/kg)$	NO dala	$(LOD = 116.9 \mu g/kg)$
DEHP	104.6 μg/kg	No data	No data	No data	No data
	(not confirmed)				
DOP	< LOD	< LOD (1.00)	< LOD (1.0)	No data	< LOD
	$(LOD = 17.1 \mu g/kg)$	$(LOD = 26.1 \mu g/kg)$	$(LOD = 79.3 \mu g/kg)$. 10 0010	$(LOD = 115.7 \mu g/kg)$
DiNP	< LOD	< LOD	No data	No data	No data
	(LOD = 268.7 μg/kg)	$(LOD = 1527.2 \mu g/kg)$. 10 data	. 10 00.10	
DiDP	< LOD	< LOD	No data	No data	No data
5.5.	(LOD = 120.7 μg/kg)	$(LOD = 1243.8 \mu g/kg)$		110 data	110 data
DDP	< LOD	< LOD	< LOD	No data	No data
551	$(LOD = 7.1 \mu g/kg)$	$(LOD = 39.5 \mu g/kg)$	$(LOD = 150.1 \mu g/kg)$	140 data	140 data

Table 44 continued. Retail food sample results

	S09-017449	S09-017450	S09-017451	S09-017452	S09-017453
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 4.1 \mu g/kg)$	$(LOD = 104.5 \mu g/kg)$	(LOD = 83.8 µg/kg)	$(LOD = 40.5 \mu g/kg)$	(LOD = 14.6 μg/kg)
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 6.9 \mu g/kg)$	$(LOD = 126.5 \mu g/kg)$	$(LOD = 95.2 \mu g/kg)$	$(LOD = 36.3 \mu g/kg)$	$(LOD = 40.6 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	18.9 µg/kg
DIFF	$(LOD = 4.7 \mu g/kg)$	$(LOD = 78.3 \mu g/kg)$	$(LOD = 84.0 \mu g/kg)$	$(LOD = 4.7 \mu\text{g/kg})$	(not confirmed)
DAP	< LOD	No data	< LOD	< LOD	< LOD
DAF	$(LOD = 18.9 \mu g/kg)$	No data	$(LOD = 277.5 \mu g/kg)$	$(LOD = 96.6 \mu g/kg)$	$(LOD = 56.1 \mu g/kg)$
DiBP	< LOD	< LOQ	< LOD	< LOD	9.0 μg/kg
DIDE	$(LOD = 4.2 \mu g/kg)$	$(LOQ = 173.1 \mu g/kg)$	$(LOD = 66.7 \mu g/kg)$	$(LOD = 25.7 \mu g/kg)$	(not confirmed)
DBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDP	$(LOD = 4.1 \mu g/kg)$	$(LOD = 54.7 \mu g/kg)$	$(LOD = 49.2 \mu g/kg)$	$(LOD = 28.8 \mu g/kg)$	$(LOD = 49.1 \mu g/kg)$
DPP	< LOD	No data	< LOD	< LOD	< LOD
DFF	$(LOD = 52.0 \mu g/kg)$	No data	$(LOD = 76.0 \mu g/kg)$	$(LOD = 65.8 \mu g/kg)$	$(LOD = 34.1 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DITIE	$(LOD = 8.1 \mu g/kg)$	$(LOD = 48.7 \mu g/kg)$	$(LOD = 85.9 \mu g/kg)$	$(LOD = 24.1 \mu g/kg)$	$(LOD = 9.9 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	20.0 μg/kg
DDF	$(LOD = 18.6 \mu g/kg)$	$(LOD = 124.8 \mu g/kg)$	$(LOD = 193.6 \mu g/kg)$	$(LOD = 66.4 \mu g/kg)$	(not confirmed)
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHF	$(LOD = 10.5 \mu g/kg)$	$(LOD = 73.2 \mu g/kg)$	$(LOD = 116.0 \mu g/kg)$	$(LOD = 30.9 \mu g/kg)$	$(LOD = 16.0 \mu g/kg)$
DEHP	< LOQ	No data	105.9 μg/kg	< LOQ	50.5 μg/kg
DLITE	$(LOQ = 36.6 \mu g/kg)$	No data	(not confirmed)	$(LOQ = 102.5 \mu g/kg)$	(not confirmed)
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 18.7 \mu g/kg)$	$(LOD = 76.5 \mu g/kg)$	$(LOD = 99.0 \mu g/kg)$	$(LOD = 74.7 \mu g/kg)$	$(LOD = 69.8 \mu g/kg)$
DiNP	< LOD	No data	No data	< LOD	< LOD
DIME	$(LOD = 405.9 \mu g/kg)$	No data	เพื่อ นิสเส	$(LOD = 3065.0 \mu g/kg)$	(LOD = 1084.5 μg/kg)
DiDP	< LOD	No data	No data	< LOD	< LOD
חוטר	$(LOD = 574.0 \mu g/kg)$	INU Uala	เพบ นลเล	$(LOD = 1724.8 \mu g/kg)$	$(LOD = 181.8 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
דטטר	$(LOD = 19.1 \mu g/kg)$	$(LOD = 108.9 \mu g/kg)$	$(LOD = 110.7 \mu g/kg)$	$(LOD = 36.4 \mu g/kg)$	$(LOD = 29.7 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017454	S09-017455	S09-017456	S09-017457	S09-017458
DMD	< LOD	< LOD	< LOD	< LOD	< LOD
DMP	$(LOD = 17.9 \mu g/kg)$	$(LOD = 106.2 \mu g/kg)$	(LOD = 11.5 µg/kg)	$(LOD = 61.1 \mu g/kg)$	$(LOD = 3.8 9 \mu g/kg)$
DED	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 21.9 \mu g/kg)$	$(LOD = 148.9 \mu g/kg)$	$(LOD = 48.1 \mu g/kg)$	$(LOD = 49.1 \mu g/kg)$	$(LOD = 14.8 \mu g/kg)$
DiPP	< LOD	< LOD	68.6 µg/kg	< LOD	< LOD
DIFF	$(LOD = 11.6 \mu g/kg)$	$(LOD = 102.4 \mu g/kg)$	(not confirmed)	$(LOD = 34.8 \mu g/kg)$	$(LOD = 10.9 \mu g/kg)$
DAP	< LOD	No data	< LOD	< LOD	< LOD
DAP	$(LOD = 45.1 \mu g/kg)$	เพีย นิสเส	$(LOD = 119.2 \mu g/kg)$	(LOD = 123.8 μg/kg)	(LOD = 35.8 μg/kg)
DiBP	< LOD	< LOD	< LOD	< LOD	< LOD
DIDE	$(LOD = 11.3 \mu g/kg)$	$(LOD = 143.0 \mu g/kg)$	$(LOD = 27.0 \mu g/kg)$	$(LOD = 27.5 \mu g/kg)$	$(LOD = 11.1 \mu g/kg)$
DBP	< LOD	< LOD	50.9 μg/kg	< LOD	< LOD
DDP	$(LOD = 11.6 \mu g/kg)$	$(LOD = 127.1 \mu g/kg)$	(not confirmed)	$(LOD = 21.8 \mu g/kg)$	$(LOD = 9.1 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DFF	$(LOD = 30.4 \mu g/kg)$	$(LOD = 179.5 \mu g/kg)$	$(LOD = 21.7 \mu g/kg)$	$(LOD = 50.7 \mu g/kg)$	$(LOD = 28.1 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
ОПР	$(LOD = 12.8 \mu g/kg)$	$(LOD = 84.7 \mu g/kg)$	$(LOD = 18.3 \mu g/kg)$	$(LOD = 18.1 \mu g/kg)$	$(LOD = 11.5 \mu g/kg)$
BBP	< LOD	< LOD	35.8 μg/kg	< LOD	< LOD
DDF	$(LOD = 33.0 \mu g/kg)$	$(LOD = 245.3 \mu g/kg)$	(not confirmed)	$(LOD = 50.4 \mu g/kg)$	$(LOD = 16.6 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHF	$(LOD = 23.2 \mu g/kg)$	$(LOD = 168.2 \mu g/kg)$	$(LOD = 49.9 \mu g/kg)$	$(LOD = 36.3 \mu g/kg)$	$(LOD = 15.5 \mu g/kg)$
DEHP	< LOQ	< LOD	97.4 μg/kg	< LOQ	76.9 μg/kg
DLITE	$(LOQ = 44.1 \mu g/kg)$	$(LOD = 182.0 \mu g/kg)$	97.4 μg/kg	$(LOQ = 109.2 \mu g/kg)$	(not confirmed)
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 27.3 \mu g/kg)$	$(LOD = 203.9 \mu g/kg)$	$(LOD = 55.2 \mu g/kg)$	$(LOD = 77.1 \mu g/kg)$	$(LOD = 49.3 \mu g/kg)$
DiNP	< LOD	No data	< LOD	< LOD	< LOD
DIME	$(LOD = 887.2 \mu g/kg)$	เพื่อ นิสเส	(LOD = 1511.0 µg/kg)	(LOD = 1903.8 µg/kg)	$(LOD = 611.6 \mu g/kg)$
DiDP	< LOD	No data	< LOD	< LOD	< LOD
טוטר	$(LOD = 882.3 \mu g/kg)$	เพีย นิสเส	(LOD = 236.8 µg/kg)	$(LOD = 2052.4 \mu g/kg)$	(LOD = 1342.0 μg/kg)
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 33.9 \mu g/kg)$	$(LOD = 238.3 \mu g/kg)$	$(LOD = 22.7 \mu g/kg)$	$(LOD = 41.1 \mu g/kg)$	(LOD = 98.8 μg/kg)

Table 44 continued. Retail food sample results

	S09-017459	S09-017460	S09-017461	S09-017462	S09-017463
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIE	$(LOD = 33.8 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 29.6 \mu g/kg)$	$(LOD = 30.4 \mu g/kg)$	$(LOD = 25.2 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 52.7 \mu g/kg)$	$(LOD = 2.4 \mu g/kg)$	$(LOD = 20.2 \mu g/kg)$	$(LOD = 22.2 \mu g/kg)$	$(LOD = 25.8 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 34.6 \mu g/kg)$	$(LOD = 4.8 \mu g/kg)$	$(LOD = 10.4 \mu g/kg)$	$(LOD = 21.2 \mu g/kg)$	$(LOD = 19.2 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 134.1 \mu g/kg)$	$(LOD = 6.3 \mu g/kg)$	$(LOD = 38.6 \mu g/kg)$	$(LOD = 105.0 \mu g/kg)$	$(LOD = 52.0 \mu g/kg)$
DiBP	< LOD	< LOQ	< LOD	< LOD	< LOD
DIDE	$(LOD = 39.9 \mu g/kg)$	$(LOQ = 9.5 \mu g/kg)$	$(LOD = 18.7 \mu g/kg)$	$(LOD = 45.9 \mu g/kg)$	$(LOD = 19.3 \mu g/kg)$
DBP	< LOD	< LOQ	< LOD	< LOQ	No data
DDF	$(LOD = 39.5 \mu g/kg)$	$(LOQ = 11.6 \mu g/kg)$	$(LOD = 16.3 \mu g/kg)$	$(LOQ = 41.2 3 \mu g/kg)$	NO data
DPP	No data	< LOD	No data	No data	No data
DFF	No data	$(LOD = 4.5 \mu g/kg)$		No data	No data
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHF	$(LOD = 70.6 \mu g/kg)$	$(LOD = 3.9 \mu g/kg)$	$(LOD = 10.7 \mu g/kg)$	$(LOD = 33.9 \mu g/kg)$	$(LOD = 41.4 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 89.0 \mu g/kg)$	$(LOD = 4.8 \mu g/kg)$	$(LOD = 23.5 \mu g/kg)$	$(LOD = 62.6 \mu g/kg)$	$(LOD = 47.9 \mu g/kg)$
DCHP	No data	< LOD	< LOD	No data	< LOD
DCHF	NO data	$(LOD = 4.3 \mu g/kg)$	$(LOD = 14.9 \mu g/kg)$	< LOD (LOD = 30.4 μg/kg) < LOD (LOD = 22.2 μg/kg) < LOD (LOD = 21.2 μg/kg) < LOD (LOD = 105.0 μg/kg) < LOD (LOD = 45.9 μg/kg) < LOQ (LOQ = 41.2 3 μg/kg) No data < LOD (LOD = 33.9 μg/kg) < LOD	$(LOD = 53.3 \mu g/kg)$
DEHP	No data	< LOQ	53.5 μg/kg	No data	< LOQ
DETTE	No data	$(LOQ = 38.5 \mu g/kg)$	(not confirmed)		$(LOQ = 117.9 \mu g/kg)$
DOP	No data	< LOD	< LOD	< LOD	< LOD
DOF	No data	$(LOD = 18.7 \mu g/kg)$	$(LOD = 25.8 \mu g/kg)$	$(LOD = 164.3 \mu g/kg)$	$(LOD = 229.5 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	No data
DIM	(LOD = 3266.6 µg/kg)	$(LOD = 284.7 \mu g/kg)$	$(LOD = 829.5 \mu g/kg)$	$(LOD = 2077.2 \mu g/kg)$	No data
DiDP	< LOD	< LOD	< LOD	_	No data
טוטר	$(LOD = 3437.2 \mu g/kg)$	$(LOD = 213.7 \mu g/kg)$	$(LOD = 564.0 \mu g/kg)$	$(LOD = 1999.8 \mu g/kg)$	NO data
DDP	No data	< LOD	< LOD	No data	No data
DDF	INO data	$(LOD = 35.7 \mu g/kg)$	$(LOD = 38.5 \mu g/kg)$	No data	NO data

Table 44 continued. Retail food sample results

	S09-017464	S09-017465	S09-017466	S09-017467	S09-017468
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 2.6 \mu g/kg)$	$(LOD = 3.2 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	2.7 μg/kg	< LOD
DEP	$(LOD = 4.8 \mu g/kg)$	$(LOD = 5.3 \mu g/kg)$	$(LOD = 2.3 \mu g/kg)$	(not confirmed)	$(LOD = 37.3 \mu g/kg)$
DiPP	< LOD	< LOD	2.6 μg/kg	< LOD	29.3 μg/kg
DIFF	$(LOD = 3.2 \mu g/kg)$	$(LOD = 3.4 \mu g/kg)$	(not confirmed)	$(LOD = 1.5 \mu g/kg)$	(not confirmed)
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 13.7 \mu g/kg)$	$(LOD = 7.3 \mu g/kg)$	$(LOD = 5.9 \mu g/kg)$	$(LOD = 5.6 \mu g/kg)$	$(LOD = 47.1 \mu g/kg)$
DiBP	< LOD	< LOD	17 9 ug/kg	< LOD	< LOD
DIDP	$(LOD = 3.6 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	17.8 μg/kg	$(LOD = 1.8 \mu g/kg)$	(LOD = 13.6 μg/kg)
DBP	< LOQ	< LOD	< LOD	< LOD	< LOD
DDP	$(LOQ = 9.9 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 6.0 \mu g/kg)$	$(LOD = 3.5 \mu g/kg)$	(LOD = 18.0 μg/kg)
DPP	No data	< LOD	< LOD	< LOD	< LOD
DPP	No data	$(LOD = 3.8 \mu g/kg)$	$(LOD = 1.6 \mu g/kg)$	$(LOD = 10.9 \mu g/kg)$	(LOD = 276.8 µg/kg)
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DUL	$(LOD = 3.2 \mu g/kg)$	$(LOD = 3.9 \mu g/kg)$	$(LOD = 1.7 \mu g/kg)$	$(LOD = 29.2 \mu g/kg)$	(LOD = 29.2 μg/kg)
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 7.9 \mu g/kg)$	$(LOD = 10.5 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	(LOD = 25.0 μg/kg)
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 4.8 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 9.1 \mu g/kg)$
DEHP	126 6 43/43	25.8 μg/kg	< LOD	< LOQ	< LOD
DETTP	126.6 µg/kg	(not confirmed)	$(LOD = 39.4 \mu g/kg)$	$(LOQ = 131.3 \mu g/kg)$	$(LOD = 25.4 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOP	$(LOD = 8.7 \mu g/kg)$	$(LOD = 20.4 \mu g/kg)$	$(LOD = 12.0 \mu g/kg)$	$(LOD = 16.8 \mu g/kg)$	$(LOD = 22.8 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	(= 231.9 μg/kg)	$(LOD = 379.4 \mu g/kg)$	$(LOD = 596.5 \mu g/kg)$	$(LOD = 336.9 \mu g/kg)$	(LOD = 1421.3 μg/kg)
DiDP	< LOD	< LOD	< LOD	< LOD	< LOQ
אטוט	$(LOD = 147.2 \mu g/kg)$	$(LOD = 214.3 \mu g/kg)$	$(LOD = 305.1 \mu g/kg)$	$(LOD = 184.2 \mu g/kg)$	$(LOQ = 613.9 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 32.4 \mu g/kg)$	$(LOD = 61.1 \mu g/kg)$	$(LOD = 34.7 \mu g/kg)$	(LOD = 15.6 μg/kg)	(LOD = 82.8 μg/kg)

Table 44 continued. Retail food sample results

	S09-017469	S09-017470	S09-017471	S09-017472	S09-017473
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIE	$(LOD = 3.8 \mu g/kg)$	$(LOD = 6.0 \mu g/kg)$	$(LOD = 12.9 \mu g/kg)$	$(LOD = 16.5 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 86.6 \mu g/kg)$	$(LOD = 2.7 \mu g/kg)$	$(LOD = 12.6 \mu g/kg)$	(LOD = 18.4 µg/kg)	$(LOD = 7.8 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 15.0 \mu g/kg)$	$(LOD = 1.3 \mu g/kg)$	$(LOD = 9.4 \mu g/kg)$	$(LOD = 10.2 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 93.1 \mu g/kg)$	$(LOD = 8.5 \mu g/kg)$	$(LOD = 53.7 \mu g/kg)$	$(LOD = 53.7 \mu g/kg)$	(LOD = 14.0 μg/kg)
DiBP	< LOD	< LOQ	< LOD	< LOD	< LOD
DIDE	$(LOD = 1.8 \mu g/kg)$	$(LOQ = 6.0 \mu g/kg)$	$(LOD = 5.1 \mu g/kg)$	$(LOD = 7.7 \mu g/kg)$	$(LOD = 6.0 \mu g/kg)$
DBP	40.1 μg/kg	< LOD	< LOD	< LOD	< LOD
DDF	(not confirmed)	$(LOD = 3.5 \mu g/kg)$	$(LOD = 11.2 \mu g/kg)$	$(LOD = 6.4 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DFF	$(LOD = 27.5 \mu g/kg)$	$(LOD = 10.9 \mu g/kg)$	$(LOD = 9.4 \mu g/kg)$	$(LOD = 11.3 \mu g/kg)$	$(LOD = 13.8 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHF	$(LOD = 28.4 \mu g/kg)$	$(LOD = 29.2 \mu g/kg)$	$(LOD = 12.0 \mu g/kg)$	$(LOD = 11.5 \mu g/kg)$	$(LOD = 8.0 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 81.3 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$	$(LOD = 60.5 \mu g/kg)$	$(LOD = 53.4 \mu g/kg)$	$(LOD = 19.3 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
БСПР	$(LOD = 45.8 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 13.3 \mu g/kg)$	$(LOD = 15.2 \mu g/kg)$	$(LOD = 20.6 \mu g/kg)$
DEHP	< LOQ	< LOQ	< LOQ	20.0 μg/kg	< LOQ
DEHI	$(LOQ = 131.3 \mu g/kg)$	$(LOQ = 131.3 \mu g/kg)$	$(LOQ = 19.0 \mu g/kg)$	20.0 μg/kg	$(LOQ = 19.0 \mu g/kg)$
DOP	< LOD	< LOQ	< LOD	< LOD	< LOD
DOF	$(LOD = 26.8 \mu g/kg)$	$(LOQ = 56.0 \mu g/kg)$	$(LOD = 110.4 \mu g/kg)$	$(LOD = 70.7 \mu g/kg)$	$(LOD = 24.4 \mu g/kg)$
DiNP	< LOD	< LOD	< LOD	< LOD	< LOD
DINE	$(LOD = 267.1 \mu g/kg)$	$(LOD = 5000.8 \mu g/kg)$	$(LOD = 156.7 \mu g/kg)$	$(LOD = 271.1 \mu g/kg)$	$(LOD = 697.8 \mu g/kg)$
DiDP	< LOQ	< LOD	< LOD	< LOD	< LOD
טוטר	(LOQ = 613.9 µg/kg)	$(LOD = 4999.5 \mu g/kg)$	(LOD = 125.0 μg/kg)	(LOD = 243.2 μg/kg)	$(LOD = 666.6 \mu g/kg)$
DDP	< LOD	< LOQ	< LOD	< LOD	< LOD
דטט	$(LOD = 23.9 \mu g/kg)$	$(LOQ = 10.1 \mu g/kg)$	$(LOD = 16.9 \mu g/kg)$	$(LOD = 6.7 \mu g/kg)$	(LOD = 18.8 μg/kg)

Table 44 continued. Retail food sample results

	S09-017474	S09-017475	S09-017476	S09-017477	S09-017478
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 1.5 \mu g/kg)$	$(LOD = 1.0 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 5.2 \mu g/kg)$
DEP	< LOD	6.0 µg/kg	< LOQ	< LOD	< LOD
DEP	$(LOD = 6.5 \mu g/kg)$	(not confirmed)	$(LOQ = 6.6 \mu g/kg)$	$(LOD = 3.2 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 5.6 \mu g/kg)$	$(LOD = 4.9 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 2.6 \mu g/kg)$	$(LOD = 3.8 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 13.7 \mu g/kg)$	(LOD = 17.9 µg/kg)	$(LOD = 5.6 \mu g/kg)$	$(LOD = 8.5 \mu g/kg)$	$(LOD = 5.4 \mu g/kg)$
DiBP	10.6 μg/kg	< LOQ	< LOQ	11.0 μg/kg	< LOD
DIDP	(not confirmed)	$(LOQ = 6.0 \mu g/kg)$	$(LOQ = 6.0 \mu g/kg)$	(not confirmed)	$(LOD = 1.5 \mu g/kg)$
DBP	12.7 μg/kg	< LOD	< LOQ	22.2 µg/kg	< LOD
DDP	(not confirmed)	$(LOD = 3.5 \mu g/kg)$	$(LOQ = 11.7 \mu g/kg)$	(not confirmed)	$(LOD = 2.2 \mu g/kg)$
DPP	41.2 µg/kg	< LOD	< LOQ	< LOD	< LOD
DPP	(not confirmed)	(LOD = 13.5 µg/kg)	$(LOQ = 36.3 \mu g/kg)$	$(LOD = 10.9 \mu g/kg)$	$(LOD = 3.7 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DUL	$(LOD = 8.5 \mu g/kg)$	$(LOD = 3.9 \mu g/kg)$	$(LOD = 29.2 \mu g/kg)$	$(LOD = 29.2 \mu g/kg)$	$(LOD = 4.4 \mu g/kg)$
BBP	< LOD	< LOD	< LOQ	< LOD	< LOD
DDF	$(LOD = 10.2 \mu g/kg)$	$(LOD = 8.0 \mu g/kg)$	$(LOQ = 9.1 \mu g/kg)$	$(LOD = 9.5 \mu g/kg)$	$(LOD = 9.8 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 20.0 \mu g/kg)$	$(LOD = 9.1 \mu g/kg)$	$(LOD = 6.9 \mu g/kg)$	$(LOD = 12.4 \mu g/kg)$	$(LOD = 8.2 \mu g/kg)$
DEHP	No data	< LOD	< LOQ	< LOD	< LOQ
DETTP	เพีย นิสเส	$(LOD = 39.4 \mu g/kg)$	$(LOQ = 131.3 \mu g/kg)$	$(LOD = 270.0 \mu g/kg)$	$(LOQ = 19.0 \mu g/kg)$
DOP	No data	< LOD	< LOQ	< LOD	< LOD
DOP	เพีย นิสเส	(LOD = 16.8 μg/kg)	$(LOQ = 56.0 \mu g/kg)$	$(LOD = 267.8 \mu g/kg)$	$(LOD = 17.9 \mu g/kg)$
DiNP	No data	< LOD	< LOD	< LOD	< LOD
DINE	No data	$(LOD = 267.1 \mu g/kg)$	(LOD = 5000.8 µg/kg)	$(LOD = 5000.8 \mu g/kg)$	(LOD = 663.8 µg/kg)
DiDP	No data	< LOD	< LOD	< LOD	< LOD
סוטר	INU Uala	$(LOD = 184.2 \mu g/kg)$	$(LOD = 4999.5 \mu g/kg)$	$(LOD = 4999.5 \mu g/kg)$	$(LOD = 617.6 \mu g/kg)$
DDP	No data	< LOD	< LOD	< LOD	< LOD
טטר	INU Uala	$(LOD = 10.1 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	(LOD = 282.3 μg/kg)	$(LOD = 9.2 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017479	S09-017480	S09-017481	S09-017482	S09-017483
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 2.2 \mu g/kg)$	$(LOD = 19.7 \mu g/kg)$	$(LOD = 44.8 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$
DEP	< LOD	< LOD	< LOD	< LOD	< LOD
DEP	$(LOD = 7.7 \mu g/kg)$	$(LOD = 31.5 \mu g/kg)$	$(LOD = 61.0 \mu g/kg)$	(LOD = 18.8 μg/kg)	$(LOD = 16.8 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	23.3 µg/kg
DIFF	$(LOD = 4.0 \mu g/kg)$	$(LOD = 16.7 \mu g/kg)$	$(LOD = 43.3 \mu g/kg)$	$(LOD = 12.5 \mu g/kg)$	(not confirmed)
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAF	$(LOD = 11.5 \mu g/kg)$	$(LOD = 32.2 \mu g/kg)$	$(LOD = 73.2 \mu g/kg)$	$(LOD = 67.1 \mu g/kg)$	$(LOD = 23.0 \mu g/kg)$
DiBP	< LOD	< LOD	22.9 μg/kg	< LOD	< LOD
DIDE	$(LOD = 3.7 \mu g/kg)$	$(LOD = 4.1 \mu g/kg)$	(not confirmed)	$(LOD = 9.2 \mu g/kg)$	$(LOD = 6.1 \mu g/kg)$
DBP	< LOD	< LOD	31.0 μg/kg	< LOD	< LOD
DDF	$(LOD = 2.8 \mu g/kg)$	$(LOD = 6.2 \mu g/kg)$	(not confirmed)	$(LOD = 7.9 \mu g/kg)$	(LOD = 14.8 μg/kg)
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DFF	$(LOD = 4.2 \mu g/kg)$	$(LOD = 11.8 \mu g/kg)$	$(LOD = 46.4 \mu g/kg)$	$(LOD = 4.9 \mu g/kg)$	$(LOD = 13.8 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHF	$(LOD = 4.8 \mu g/kg)$	$(LOD = 17.2 \mu g/kg)$	$(LOD = 73.7 \mu g/kg)$	$(LOD = 4.2 \mu\text{g/kg})$	$(LOD = 29.2 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 13.4 \mu g/kg)$	$(LOD = 66.0 \mu g/kg)$	$(LOD = 191.1 \mu g/kg)$	(LOD = 16.5 µg/kg)	(LOD = 18.8 μg/kg)
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHF	$(LOD = 15.4 \mu g/kg)$	$(LOD = 20.0 \mu g/kg)$	$(LOD = 155.9 \mu g/kg)$	(LOD = 18.4 μg/kg)	$(LOD = 25.9 \mu g/kg)$
DEHP	141.8 μg/kg	< LOQ	315.8 μg/kg	< LOQ	< LOQ
DLITE	141.8 μg/kg	$(LOQ = 19.0 \mu\text{g/kg})$	(not confirmed)	(LOQ = 19.0 μg/kg)	$(LOQ = 131.3 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 23.4 \mu g/kg)$	$(LOD = 14.0 \mu g/kg)$	$(LOD = 119.4 \mu g/kg)$	$(LOD = 49.4 \mu g/kg)$	$(LOD = 18.2 \mu g/kg)$
DiNP	< LOD	< LOD	No data	< LOD	< LOD
DIME	$(LOD = 257.2 \mu g/kg)$	$(LOD = 229.2 \mu g/kg)$	No data	$(LOD = 266.3 \mu g/kg)$	$(LOD = 673.6 \mu g/kg)$
DiDP	< LOD	< LOD	No data	< LOD	< LOD
טוטר	$(LOD = 257.1 \mu g/kg)$	$(LOD = 98.4 \mu g/kg)$	างบ นลเล	$(LOD = 255.7 \mu g/kg)$	$(LOD = 423.0 \mu g/kg)$
DDP	< LOD	< LOD	No data	< LOD	< LOD
טטר	$(LOD = 9.0 \mu g/kg)$	$(LOD = 46.2 \mu g/kg)$	INU Uala	$(LOD = 82.3 \mu g/kg)$	$(LOD = 43.5 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017484	S09-017485	S09-017486	S09-017487	S09-017488
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 0.7 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 6.9 \mu g/kg)$	$(LOD = 15.1 \mu g/kg)$	$(LOD = 13.7 \mu g/kg)$
DEP	1.2 μg/kg	1.5 μg/kg	< LOD	6.7 µg/kg	88.6 µg/kg
DEF	(not confirmed)	(not confirmed)	$(LOD = 40.1 \mu g/kg)$	(not confirmed)	(not confirmed)
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 2.0 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 30.7 \mu g/kg)$	$(LOD = 9.9 \mu g/kg)$	$(LOD = 17.7 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 3.2 \mu g/kg)$	$(LOD = 7.9 \mu g/kg)$	$(LOD = 112.9 \mu g/kg)$	(LOD = 16.8 µg/kg)	$(LOD = 51.9 \mu g/kg)$
DiBP	< LOQ	< LOD	< LOD	38.9 µg/kg	< LOD
DIDE	$(LOQ = 16.7 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$	$(LOD = 40.5 \mu g/kg)$	(not confirmed)	$(LOD = 52.6 \mu g/kg)$
DBP	< LOQ	< LOD	< LOD	< LOD	< LOD
DDF	$(LOQ = 21.2 \mu g/kg)$	$(LOD = 6.4 \mu g/kg)$	$(LOD = 6.4 \mu g/kg)$	$(LOD = 57.7 \mu g/kg)$	$(LOD = 132.5 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	268.3 μg/kg	< LOD
DFF	$(LOD = 93.5 \mu g/kg)$	$(LOD = 2.7 \mu g/kg)$	$(LOD = 23.5 \mu g/kg)$	(not confirmed)	$(LOD = 48.3 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHF	$(LOD = 16.7 \mu g/kg)$	$(LOD = 3.2 \mu g/kg)$	$(LOD = 32.7 \mu g/kg)$	$(LOD = 24.8 \mu g/kg)$	$(LOD = 39.3 \mu g/kg)$
BBP	79.8 μg/kg	< LOD	< LOD	< LOD	< LOD
DDF	(not confirmed)	$(LOD = 5.4 \mu g/kg)$	$(LOD = 38.3 \mu g/kg)$	$(LOD = 28.1 \mu g/kg)$	$(LOD = 40.2 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHF	$(LOD = 76.8 \mu g/kg)$	$(LOD = 4.6 \mu g/kg)$	$(LOD = 41.7 \mu g/kg)$	$(LOD = 39.3 \mu g/kg)$	$(LOD = 31.4 \mu g/kg)$
DEHP	963.2 μg/kg	< LOD	< LOQ	< LOQ	< LOD
DELLE	(not confirmed)	$(LOD = 20.2 \mu g/kg)$	$(LOQ = 67.5 \mu g/kg)$	$(LOQ = 67.5 \mu g/kg)$	(LOD = 59.6 μg/kg)
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 44.6 \mu g/kg)$	$(LOD = 3.6 \mu g/kg)$	$(LOD = 57.4 \mu g/kg)$	$(LOD = 55.6 \mu g/kg)$	$(LOD = 44.6 \mu g/kg)$
DiNP	2837.7 μg/kg	< LOD	< LOD	< LOD	< LOD
DINE	(not confirmed)	$(LOD = 401.2 \mu g/kg)$	$(LOD = 1034.6 \mu g/kg)$	$(LOD = 2727.7 \mu g/kg)$	$(LOD = 1944.7 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 739.4 \mu g/kg)$	$(LOD = 196.7 \mu g/kg)$	$(LOD = 1097.5 \mu g/kg)$	(LOD = 1371.8 μg/kg)	$(LOD = 2249.8 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	(LOD = 102.2 5 μg/kg)	$(LOD = 14.3 \mu g/kg)$	$(LOD = 72.6 \mu g/kg)$	(LOD = 66.4 μg/kg)	$(LOD = 105.8 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017489	S09-017490	S09-017491	S09-017492	S09-017493
DMP	< LOD	< LOD	< LOD	< LOD	< LOD
DIVIP	$(LOD = 1.5 \mu g/kg)$	$(LOD = 3.7 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 7.2 \mu g/kg)$
DEP	< LOD	4.4 μg/kg	0.7 μg/kg	< LOD	< LOQ
DEP	$(LOD = 1.4 \mu g/kg)$	(not confirmed)	(not confirmed)	$(LOD = 1.5 \mu g/kg)$	$(LOQ = 4.9 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	< LOD	< LOD
DIFF	$(LOD = 2.1 \mu g/kg)$	$(LOD = 2.4 \mu g/kg)$	$(LOD = 1.3 \mu g/kg)$	$(LOD = 2.7 \mu g/kg)$	$(LOD = 6.1 \mu g/kg)$
DAP	< LOD	< LOD	0.9 μg/kg	< LOD	< LOD
DAP	$(LOD = 3.2 \mu g/kg)$	$(LOD = 9.2 \mu g/kg)$	(not confirmed)	$(LOD = 3.3 \mu g/kg)$	$(LOD = 11.1 \mu g/kg)$
DiBP	< LOQ	< LOD	< LOD	< LOD	< LOD
DIDP	$(LOQ = 16.7 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$	$(LOD = 5.0 \mu g/kg)$	$(LOD = 2.9 \mu g/kg)$	$(LOQ = 9.5 \mu g/kg)$
DBP	< LOQ	< LOQ	< LOD	< LOD	< LOD
DBP	$(LOQ = 21.2 \mu g/kg)$	$(LOQ = 21.2 \mu g/kg)$	$(LOD = 6.4 \mu g/kg)$	$(LOD = 3.5 \mu g/kg)$	$(LOD = 9.0 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DPP	$(LOD = 9.8 \mu g/kg)$	$(LOD = 2.6 \mu g/kg)$	$(LOD = 0.9 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 8.7 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	$(LOD = 9.2 \mu g/kg)$	$(LOD = 4.1 \mu g/kg)$	$(LOD = 1.0 \mu g/kg)$	$(LOD = 2.2 \mu g/kg)$	$(LOD = 13.5 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 9.3 \mu g/kg)$	$(LOD = 7.2 \mu g/kg)$	$(LOD = 2.6 \mu g/kg)$	$(LOD = 3.2 \mu g/kg)$	$(LOD = 15.4 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
DCHP	$(LOD = 13.5 \mu g/kg)$	$(LOD = 5.9 \mu g/kg)$	$(LOD = 1.4 \mu g/kg)$	$(LOD = 3.1 \mu g/kg)$	$(LOD = 16.0 \mu g/kg)$
DEHP	442.0 μg/kg	< LOD	< LOQ	44.6 ug/kg	< LOQ
DEHP	(not confirmed)	$(LOD = 20.2 \mu g/kg)$	$(LOQ = 67.5 \mu g/kg)$	44.6 µg/kg	$(LOQ = 38.5 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 22.2 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$	$(LOD = 4.0 \mu g/kg)$	$(LOD = 7.1 \mu g/kg)$	$(LOD = 21.3 \mu g/kg)$
DiNP	2071.3 μg/kg	< LOD	299.1 μg/kg	< LOD	< LOQ
DINE	(not confirmed)	$(LOD = 303.4 \mu g/kg)$	(not confirmed)	$(LOD = 344.3 \mu g/kg)$	(LOQ = 1706.8 μg/kg)
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטף	$(LOD = 1478.7 \mu g/kg)$	$(LOD = 185.4 \mu g/kg)$	$(LOD = 48.1 \mu g/kg)$	$(LOD = 375.0 \mu g/kg)$	$(LOD = 1173.1 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	(LOD = 228.0 μg/kg)	$(LOD = 11.8 \mu g/kg)$	$(LOD = 4.8 \mu g/kg)$	$(LOD = 14.1 \mu g/kg)$	(LOD = 69.8 μg/kg)

Table 44 continued. Retail food sample results

	S09-017494	S09-017495	S09-017496	S09-017497	S09-017498
DMP	< LOD	< LOD	< LOD	0.9 μg/kg	< LOD
DIVIE	$(LOD = 0.7 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	$(LOD = 0.7 \mu g/kg)$	(not confirmed)	$(LOD = 0.7 \mu g/kg)$
DEP	< LOD	< LOQ	< LOD	< LOD	< LOD
DEP	$(LOD = 1.5 \mu g/kg)$	$(LOQ = 4.9 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$
DiPP	< LOD	< LOD	< LOD	2.0 μg/kg	< LOD
DIFF	$(LOD = 1.2 \mu g/kg)$	$(LOD = 2.0 \mu g/kg)$	$(LOD = 1.1 \mu g/kg)$	(not confirmed)	$(LOD = 2.0 \mu g/kg)$
DAP	< LOD	< LOD	< LOD	< LOD	< LOD
DAP	$(LOD = 8.5 \mu g/kg)$	$(LOD = 7.7 \mu g/kg)$	$(LOD = 4.1 \mu g/kg)$	$(LOD = 3.0 \mu g/kg)$	$(LOD = 6.6 \mu g/kg)$
DiBP	< LOD	< LOD	< LOD	13.3 μg/kg	< LOD
DIDP	$(LOD = 2.9 \mu g/kg)$	$(LOD = 2.9 \mu g/kg)$	$(LOD = 2.9 \mu g/kg)$	(not confirmed)	$(LOD = 2.9 \mu g/kg)$
DBP	< LOD	< LOD	< LOD	15.3 μg/kg	< LOD
DDP	$(LOD = 3.6 \mu g/kg)$	$(LOD = 3.5 \mu g/kg)$	$(LOD = 5.5 \mu g/kg)$	(not confirmed)	$(LOD = 3.5 \mu g/kg)$
DPP	< LOD	< LOD	< LOD	< LOD	< LOD
DFF	$(LOD = 9.2 \mu g/kg)$	$(LOD = 3.1 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$	$(LOD = 3.2 \mu g/kg)$	$(LOD = 4.9 \mu g/kg)$
DHP	< LOD	< LOD	< LOD	< LOD	< LOD
DHP	$(LOD = 4.3 \mu g/kg)$	$(LOD = 3.9 \mu g/kg)$	$(LOD = 1.5 \mu g/kg)$	(LOD = 12.6 µg/kg)	$(LOD = 5.4 \mu g/kg)$
BBP	< LOD	< LOD	< LOD	< LOD	< LOD
DDF	$(LOD = 8.9 \mu g/kg)$	$(LOD = 6.2 \mu g/kg)$	$(LOD = 2.6 \mu g/kg)$	$(LOD = 10.1 \mu g/kg)$	$(LOD = 7.6 \mu g/kg)$
DCHP	< LOD	< LOD	< LOD	< LOD	< LOD
рспе	$(LOD = 2.5 \mu g/kg)$	$(LOD = 4.2 \mu g/kg)$	$(LOD = 2.1 \mu g/kg)$	$(LOD = 19.5 \mu g/kg)$	$(LOD = 8.5 \mu g/kg)$
DEHP	72 6 ug/kg	51 F ug/kg	74.4 ug/kg	060.2 μα/κα	< LOQ
DETTE	73.6 μg/kg	51.5 μg/kg	74.4 μg/kg	960.3 μg/kg	$(LOQ = 38.5 \mu g/kg)$
DOP	< LOD	< LOD	< LOD	< LOD	< LOD
DOF	$(LOD = 13.8 \mu g/kg)$	$(LOD = 12.1 \mu g/kg)$	$(LOD = 11.6 \mu g/kg)$	$(LOD = 56.0 \mu g/kg)$	$(LOD = 9.0 \mu g/kg)$
DiNP	< LOD	1999.0 µg/kg	< LOD	< LOD	< LOD
DINE	$(LOD = 157.6 \mu g/kg)$	(same profile)	$(LOD = 157.6 \mu g/kg)$	$(LOD = 843.9 \mu g/kg)$	$(LOD = 1307.9 \mu g/kg)$
DiDP	< LOD	< LOD	< LOD	< LOD	< LOD
סוטר	$(LOD = 105.5 \mu g/kg)$	$(LOD = 237.3 \mu g/kg)$	$(LOD = 75.0 \mu g/kg)$	$(LOD = 999.9 \mu g/kg)$	$(LOD = 416.6 \mu g/kg)$
DDP	< LOD	< LOD	< LOD	< LOD	< LOD
טטר	$(LOD = 9.3 \mu g/kg)$	$(LOD = 11.0 \mu g/kg)$	$(LOD = 4.3 \mu g/kg)$	(LOD = 72.8 μg/kg)	$(LOD = 27.9 \mu g/kg)$

Table 44 continued. Retail food sample results

	S09-017499
DMD	< LOD
DMP	$(LOD = 1.5 \mu g/kg)$
DEP	< LOD
DL1	(LOD = 1.5 μg/kg)
DiPP	< LOD (1.00)
	$(LOD = 2.3 \mu\text{g/kg})$
DAP	< LOD (1.00)
	$(LOD = 4.4 \mu\text{g/kg})$
DiBP	< LOD = 2 0 µg/kg)
	(LOD = 2.9 μg/kg) < LOD
DBP	$(LOD = 4.0 \mu\text{g/kg})$
	(LOD = 4.0 μg/kg) < LOD
DPP	$(LOD = 3.7 \mu g/kg)$
DUD	< LOD
DHP	$(LOD = 3.7 \mu g/kg)$
BBP	< LOD
DDF	$(LOD = 6.9 \mu g/kg)$
DCHP	< LOD
DOITI	$(LOD = 5.7 \mu g/kg)$
DEHP	< LOQ
	(LOQ = 38.5 µg/kg)
DOP	< LOD (1.00)
	(LOD = 6.9 μg/kg)
DiNP	< LOD (LOD = 724.2 µg/kg)
	(LOD = 724.2 μg/kg) < LOD
DiDP	(LOD = 220.6 μg/kg)
	< LOD = 220.0 μg/kg/ < LOD
DDP	$(LOD = 11.4 \mu g/kg)$
	1 3 3 3 1

ANNEX 1.

The Food and Environment Research Agency Sand Hutton, York YO41 1LZ

Standard operating procedure for determination of seventeen phthalate diesters in foodstuffs

0. INTRODUCTION

Phthalates are a group of compounds produced in large volumes that are widely used as additives in plastics and consumer products. Some phthalates have been reported to be endocrine disruptors. They can migrate into foods from food packaging but have also been proposed to be present in food due to general contamination of the environment and food chain. The analytical method described allows the determination of 17 phthalate diesters in foodstuffs.

1. SCOPE

This document describes a method for the determination of 17 phthalate diesters in a range of foodstuffs. The concentration range for which the method is suitable is analyte specific. For dimethyl phthalate, diethyl phthalate, diisopropyl phthalate, diallyl phthalate, diisobutyl phthalate, di-n-butyl phthalate, di-n-pentyl phthalate, di-n-hexyl phthalate, benzyl butyl phthalate, dicyclohexyl phthalate, di-(2-ethylhexyl) phthalate, di-n-heptyl phthalate, di-n-octyl phthalate, n-octyl-n-decyl phthalate and di-n-decyl phthalate the method is appropriate for the quantitative determination of the analytes in the concentration range $0.05-0.5\,\mathrm{mg/kg}$ foodstuff. For diisononyl phthalate and diisodecyl phthalate the method is appropriate for the quantitative determination of the analytes in the concentration range $0.5-10\,\mathrm{mg/kg}$.

2. REAGENTS

- 2.1 Analytes
- 2.1.1 Dimethyl phthalate
- 2.1.2 Diethyl phthalate
- 2.1.3 Diisopropyl phthalate
- 2.1.4 Diallyl phthalate
- 2.1.5 Diisobutyl phthalate
- 2.1.6 Di-n-butyl phthalate

- 2.1.7 Di-n-pentyl phthalate
- 2.1.8 Di-n-hexyl phthalate
- 2.1.9 Benzyl butyl phthalate
- 2.1.10 Dicyclohexyl phthalate
- 2.1.11 Di-(2-ethylhexyl) phthalate
- 2.1.12 Di-n-heptyl phthalate
- 2.1.13 Di-n-octyl phthalate
- 2.1.14 n-Octyl-n-decyl phthalate
- 2.1.15 Diisononyl phthalate
- 2.1.16 Diisodecyl phthalate
- 2.1.17 Di-n-decyl phthalate

2.2 Internal standards

- 2.2.1 d₄-Dimethyl phthalate
- 2.2.2 d₄-Diethyl phthalate
- 2.2.3 d₄-Di-n-propyl phthalate
- 2.2.4 d₄-Diisobutyl phthalate
- 2.2.5 d₄-Di-n-butyl phthalate
- 2.2.6 d₄-Di-n-pentyl phthalate
- 2.2.7 d₄-Di-n-hexyl phthalate
- 2.2.8 d₄-Benzyl butyl phthalate
- 2.2.9 d₄-Dicyclohexyl phthalate
- 2.2.10 d₄-Di-(2-ethylhexyl) phthalate
- 2.2.11 d₄-Di-n-heptyl phthalate
- 2.2.12 d₄-Di-n-octyl phthalate
- 2.2.13 d₄-Di-n-nonyl phthalate

2.3 Chemicals

- 2.3.1 Acetonitrile, HPLC fluorescence grade
- 2.3.2 Dichloromethane, HPLC grade
- 2.3.3 Aluminium oxide

Heat the aluminium oxide in a muffle furnace for a minimum of 4 hours at 500°C.

Add the muffled aluminium oxide to the solvent bottles (2.3.1 and 2.3.2) for at least 24 hours prior to use (0.5g per litre).

2.4 Solutions

2.4.1 Mixed phthalates stock solution

Weigh to the nearest 0.1 mg approximately 10 mg of dimethyl phthalate, diethyl phthalate, diisopropyl phthalate, diallyl phthalate, diisobutyl phthalate, di-n-butyl phthalate, di-n-pentyl phthalate, di-n-hexyl phthalate, benzyl butyl phthalate, dicyclohexyl phthalate, di-(2-ethylhexyl) phthalate, di-n-heptyl phthalate, di-n-octyl phthalate, n-octyl-n-decyl phthalate and di-n-decyl phthalate and 200 mg of diisononyl phthalate and diisodecyl phthalate in a 10 ml volumetric flask and make up to the mark with acetonitrile (2.3.1).

Calculate the actual concentration in milligrams of each phthalate per millilitre of solution. Store the solution at a temperature below 5° C.

2.4.2 Mixed phthalates intermediate solution

Using a glass graduated pipette measure 1.5 ml of mixed phthalate stock solution (2.4.1) in a 10 ml volumetric flask and make up to the mark with acetonitrile (2.3.1).

Calculate the actual concentration in milligrams of each phthalate per millilitre of solution. Store the solution at a temperature below 5℃.

2.4.3 Mixed phthalates working solution

Using a glass syringe add 150 μ l of the mixed phthalate stock solution (2.4.1) to a 10 ml volumetric flask and make up to the mark with acetonitrile (2.3.1).

Calculate the actual concentration in milligrams of each phthalate per millilitre of solution. Store the solution at a temperature below 5℃.

2.4.4 Internal standards stock solution

Weigh 10 mg of each d_4 -labelled phthalate into a 10 ml volumetric flask. Make up to the mark with acetonitrile (2.3.1). Cap and mix thoroughly. Store the solution at a temperature below 5°C.

2.4.5 Internal standards working solution

Using a glass graduated pipette measure 1 ml of internal standards stock solution (2.4.4) in a 10 ml volumetric flask and make up to the mark with acetonitrile (2.3.1). Cap and mix thoroughly. Store the solution at a temperature below 5° C.

2.4.6 Extraction solution, acetonitrile: dichloromethane, 1:1 (v:v)

Using a measuring cylinder add acetonitrile (500 ml, 2.3.1) and dichloromethane (500 ml, 2.3.2) to a 1 L Duran bottle. Cap and mix thoroughly.

3. APPARATUS

NOTE: An instrument or item of apparatus is listed only where it is special or

made to a particular specification, the usual laboratory glassware and equipment being assumed to be available.

All glassware should be muffled and/or solvent rinsed and overwrapped in aluminium foil prior to use.

3.1 Gas chromatograph, equipped with an automatic sampler and a mass spectrometric detector.

Appropriate operating conditions have to be established for the specific equipment used for the determination.

3.1.1 Gas chromatographic parameters

NOTE: The following column and parameters have been found to be suitable:

Column: Zebron ZB-5ms (5% phenyl 95% dimethylpolysiloxane)

30 m x 0.25 mm id x 0.25 μ m film thickness

GC parameters:

Column oven isothermal 3 minutes at 80°C, then at 10°C/minute to

320℃ and held for 5 minutes

Split mode splitless Inlet temperature 280°C

Injection volume 1.0 µl (Merlin Micro syringe)

Carrier gas helium

Flow rate 1.0 ml/minute

Transfer line temp. 280°C

MS detection:

Mode Selected ion monitoring (SIM) El mode

SIM ions recorded

Phthalate diester	lons monitored
Dimethyl phthalate	77,163, 194
Diethyl phthalate	149, 177, 222
Diisopropyl phthalate	149, 192, 209
Diallyl phthalate	104, 149, 189
Diisobutyl phthalate	149, 205, 223
Di-n-butyl phthalate	149, 205, 223
Di-n-pentyl phthalate	149, 219, 237
Di-n-hexyl phthalate	149, 233, 251
Benzyl butyl phthalate	149, 206

Phthalate diester	lons monitored
Dicyclohexyl phthalate	149, 167, 249
Di-(2-ethylhexyl) phthalate	149, 167, 279
Di-n-heptyl phthalate	149, 167, 265
Di-n-octyl phthalate	149, 167, 279
n-Octyl-n-decyl phthalate	149, 279, 307
Diisononyl phthalate	149, 167, 293
Diisodecyl phthalate	149, 167, 307
Di-n-decyl phthalate	149, 167, 307

Internal standard	lons monitored
d ₄ -Dimethyl phthalate	167, 194
d ₄ -Diethyl phthalate	153, 181
d ₄ -Di-n-propyl phthalate	153, 213
d ₄ -Diisobutyl phthalate	153, 227
d ₄ -Di-n-butyl phthalate	153, 227
d ₄ -Di-n-pentyl phthalate	153, 241
d ₄ -Di-n-hexyl phthalate	153, 255
d ₄ -Benzyl butyl phthalate	153, 210
d ₄ -Dicyclohexyl phthalate	153, 253
d ₄ -Di-(2-ethylhexyl) phthalate	153, 283
d ₄ -Di-n-heptyl phthalate	153, 269
d ₄ -Di-n-octyl phthalate	153, 283
d₄-Di-n-nonyl phthalate	153, 297

GC apparatus should be optimised according to manufacturer's instruction.

NOTE: All glassware used in this method must be muffled in an oven at $500 ^{\circ} \text{C}$ for a minimum of 4 hours prior to use.

NOTE: PTFE septa must be used in all cases to minimise phthalate contamination.

4. PROCEDURE

4.1 Sample preparation

4.1.1 Sample logging

Assign each sample a unique number using the Fera LIMS system.

All samples should be homogenised prior to analysis.

4.1.2 Test sample preparation

Weigh to the nearest 0.01 g approximately 15 g of homogenised foodstuff into a 40 ml glass vial. Record the accurate mass of the samples. Using a glass pipette add internal standard working solution (30 μ l of a 100 μ g/ml solution, 2.4.5). Stand the sample at room temperature for 15 minutes to allow the internal standards to infuse into the sample. Add extraction solution, acetonitrile: dichloromethane, 1:1 (15 ml, 2.4.6), cap and shake using an orbital shaker for 4 hours.

Centrifuge at 2000 rpm for 5 minutes and transfer the solvent layer to a clean 40 ml glass vial. Transfer the vials containing the solvent extracts to a freezer and store for 24 hours at -20°C.

Decant the organic solvent (not the fat) into a clean 40 ml glass vial and evaporate to dryness on a heating block at 60° C (no nitrogen).

NOTE: Evaporate just to dryness, do not leave the samples on the heating block as the more volatile phthalate diesters will be lost.

Reconstitute the dry residue in acetonitrile (1 ml, 2.2.1), cap and vortex mix for 30 seconds. Transfer the solution to a vial suitable for analysis by GC-MS.

Samples should be prepared in duplicate.

4.1.3 Spiked samples

Two spiking levels have been selected to allow analytical recovery to be determined irrespective of the concentration detected in the foodstuff.

Low spike - weigh to the nearest 0.01 g approximately 15 g of homogenised foodstuff into a 40 ml glass vial. Record the accurate mass of the sample. Using a glass syringe add the mixed phthalates working solution (50 μ l of 2.4.3) and internal standard working solution (30 μ l of 2.4.5). Stand the sample at room temperature for 15 minutes to allow the standard to infuse into the sample. Proceed with the extraction as described in clause 4.1.2.

High spike - weigh to the nearest 0.01 g approximately 15 g of homogenised foodstuff into a 40 ml glass vial. Record the accurate mass of the sample. Using a glass syringe add the mixed phthalates working solution (250 μ l of 2.4.3) and internal standard working solution (30 μ l of 2.4.5). Stand the sample at room temperature for 15 minutes to allow the standards to infuse into the sample. Proceed with the extraction as described in clause 4.1.2.

4.1.4 Blank food samples

For blank food samples weigh to the nearest 0.01 g approximately 15 g of homogenised foodstuff into a 40 ml glass vial. Record the accurate mass of the sample. Do not add internal standard. Proceed with the extraction as described in clause 4.1.2.

4.1.5 Procedural blank samples

Prepare duplicate samples as described in clause 4.1.1 but in the absence of the foodstuff.

NOTE: It is essential that these procedural blank samples are prepared to check for phthalate contamination occurring as a consequence of the extraction and analysis.

4.2 Calibration standards

Prepare calibration standards adding the volumes of the mixed phthalates intermediate solution (2.4.2) and the internal standards working solution (2.4.5) and acetonitrile (2.3.1) described in the table below to a series of eight 10 ml volumetric flasks.

Standard	Volume (µI) of the mixed phthalates intermediate solution (2.4.2)	Volume (µI) of the internal standards working solution (2.4.5)
А	0	300
В	20	300
С	50	300
D	100	300
Е	200	300
F	300	300
G	400	300
Н	500	300

Make up to the mark with acetonitrile (2.3.1). Transfer a portion of each solution to a vial suitable for analysis by GC-MS.

Calculate the accurate concentration of each analyte in each of the calibration standard solutions.

5. PROCEDURE

5.1 GC-MS analysis

When starting measurements baseline stability and response linearity of the detector should be examined. The same operating conditions for the GC-MS system should be maintained throughout the analysis of all samples, spiked samples, blank samples and calibration standards set out in clause 4.

5.1.1 Sample treatment and execution of the determination

Place the vials with the samples prepared in 4.1.2 to 4.1.5 in the autosampler and analyse using the conditions given in clause 3.1.1.

Identify the analyte and internal standard peaks on the basis of their retention time and measure the respective peak areas of each analyte and internal standard peak area to obtain the peak area ratios.

The peak areas to be used for quantification are:

Dimethyl phthalate (m/z 163) versus d₄-dimethyl phthalate (m/z 167)

Diethyl phthalate (m/z 149) versus d₄-diethyl phthalate (m/z 153)

Diisopropyl phthalate (m/z 149) versus d₄-di-n-propyl phthalate (m/z 153)

Diallyl phthalate (m/z 149) versus d₄-di-n-propyl phthalate (m/z 153)

Diisobutyl phthalate (m/z 149) versus d₄-diisobutyl phthalate (m/z 153)

Di-n-butyl phthalate (m/z 149) versus d₄-di-n-butyl phthalate (m/z 153)

Di-n-pentyl phthalate (m/z 149) versus d₄-di-n-pentyl phthalate (m/z 153)

Di-n-hexyl phthalate (m/z 149) versus d₄-di-n-hexyl phthalate (m/z 153)

Benzyl butyl phthalate (m/z 206) versus d₄-benzyl butyl phthalate (m/z 210)

Dicyclohexyl phthalate (m/z 149) versus d₄-dicyclohexyl phthalate (m/z 153)

Di-(2-ethylhexyl) phthalate (m/z 279) versus d_4 -di-(2-ethylhexyl) phthalate (m/z 283)

Di-n-heptyl phthalate (m/z 265) versus d₄-di-n-heptyl phthalate (m/z 269)

Di-n-octyl phthalate (m/z 149) versus d₄-di-n-octyl phthalate (m/z 153)

n-Octyl-n-decyl phthalate (m/z 149) versus d₄-di-n-nonyl phthalate (m/z 153)

Diisononyl phthalate (m/z 293) versus d₄-di-n-nonyl phthalate (m/z 153)

Diisodecyl phthalate (m/z 307) versus d₄-di-n-nonyl phthalate (m/z 153)

Di-n-decyl phthalate (m/z 149) versus d₄-di-n-nonyl phthalate (m/z 153)

5.1.2 Calibration

Inject each of the calibration standards as prepared in clause 4.2, onto the GC column.

Plot the peak area ratio values derived in 5.1.1 against the concentration of the analyte (in units of $\mu g/ml$) in the calibration standards (4.2). Do this for each analyte.

The calibration curves shall be rectilinear and the correlation coefficient shall be 0.99 or better.

5.2 Evaluation of data

5.2.1 Calculation of analyte levels in the foodstuff

Calculate the average of the peak area ratio values obtained from the test samples (5.1.1) and read the analyte concentrations in the extract from the calibration graphs produced in 5.1.2.

If the regression line equation is

$$v = a * x + b$$

 $C_{extract} = (y-b)/a$

Where:

 C_{extract} is the concentration of the analyte in the extract.

The concentration in the foodstuff is then calculated as:

 $C_{food} = (C_{extract} \times V)/M$

Where:

 C_{extract} is the concentration of the analyte in the extract.

V is total final volume of the extract.

M is the mass of the foodstuff extracted.

 C_{food} is the concentration of the analyte in the foodstuff.

NOTE: Following this SOP the total volume of the extract is 1 ml.

5.2.2 Calculation of analyte levels in the spiked foods

Calculate the average of the peak area ratio values obtained from the spiked samples (5.1.1) and read the analyte concentrations from the calibration graphs produced in 5.1.2. Calculate the analyte concentrations in the spiked food as described in clause 5.2.1.

5.2.3 Correction for recovery

The average concentration of each analyte determined in the food (5.2.1) is subtracted from the concentration in the spiked sample (5.2.2) and the recovery is calculated relative to the known concentration spiked. The concentration in the food (5.2.1) is then corrected for recovery.

5.3 Confirmation

The phthalate diesters are confirmed by applying the obligatory criteria:

(i) Calculate the ion ratios for the analytes using the following ions:

Phthalate diester	Ratios
Dimethyl phthalate	163/77 and 163/194
Diethyl phthalate	149/177 and 149/222
Diisopropyl phthalate	149/192 and 149/209
Diallyl phthalate	149/104 and 149/189
Diisobutyl phthalate	149/205 and 149/223
Di-n-butyl phthalate	149/205 and 149/223
Di-n-pentyl phthalate	149/219 and 149/237
Di-n-hexyl phthalate	149/233 and 149/251
Benzyl butyl phthalate	149/206

Dicyclohexyl phthalate	149/167 and 149/249
Di-(2-ethylhexyl) phthalate	279/167 and 279/149
Di-n-heptyl phthalate	265/167 and 265/149
Di-n-octyl phthalate	149/167 and 149/279
n-Octyl-n-decyl phthalate	149/279 and 149/307
Diisononyl phthalate	149/167 and 149/293
Diisodecyl phthalate	149/167 and 149/307
Di-n-decyl phthalate	149/167 and 149/307

The criteria is that the ratios obtained for the samples should agree to \pm 20% of that obtained from the calibration standards analysed at the same time.

(ii) Calculate the analyte retention times relative to the appropriate internal standard (RRT). The criteria is that the RRT of the samples should agree to \pm 2% of that obtained from the calibration analysed at the same time.

The Food and Environment Research Agency Sand Hutton, York YO41 1LZ

Standard operating procedure for determination of phthalate monoesters in foodstuffs

0. INTRODUCTION

Phthalates (diesters) are a group of toxic compounds produced in large volumes that are widely used as additives in plastics and consumer products. Some phthalates have been reported to be endocrine disruptors. They can migrate into foods from food packaging but have also been proposed to be present in food due to general contamination of the environment and food chain. In previous studies differences were observed in the total phthalate concentration (calculated by converting all phthalates to dimethyl phthalate) and the sum of the individual phthalate diesters measured in foods. It was proposed that the difference in these two values could be due to the presence of phthalic acid and phthalate monoesters in the food samples tested as these substances would also be converted to dimethyl phthalate and therefore included in the total phthalate measurement. To ascertain whether or not this proposal is correct a method of analysis has been developed for the commercially available phthalate monoesters. The analytical method described allows the determination of nine phthalate monoesters.

1. SCOPE

This document describes a method for the determination of nine phthalate monoesters in a range of foodstuffs. The method is appropriate for the quantitative determination in approximate analyte concentration range of $0.005 - 0.1 \, \text{mg/kg}$.

2. REAGENTS

2.1 Analytes

- 2.1.1 Monoisopropyl phthalate (100 µg/mL)
- 2.1.1 Monoisobutyl phthalate (100 µg/mL)
- 2.1.2 Mono-n-butyl phthalate (100 µg/mL)
- 2.1.3 Monobenzyl phthalate (100 µg/mL)
- 2.1.4 Monocyclohexyl phthalate (100 µg/mL)

- 2.1.5 Mono-n-pentyl phthalate (100 µg/mL)
- 2.1.6 Mono-2-ethylhexyl phthalate (100 µg/mL)
- 2.1.7 Mono-n-octyl phthalate (100 µg/mL)
- 2.1.9 Monoisononyl phthalate (100 µg/mL)

2.2 Internal standards

- 2.2.1 (ring- 1,2-13C2, dicarboxyl- 13C2) Mono-2-ethylhexyl phthalate (100 µg/mL)
- 2.2.2 (ring- 1,2-13C2, dicarboxyl- 13C2) Mono-n-octyl phthalate (100 µg/mL)
- 2.2.3 (ring-1,2-13C2, dicarboxyl-13C2) Monoisononyl phthalate (100 µg/mL)
- 2.2.4 (ring- 1,2-13C2, dicarboxyl- 13C2) Monobenzyl phthalate (100 µg/mL)
- 2.2.5 (ring- 1,2-13C2, dicarboxyl- 13C2) Monocyclohexyl phthalate (100 µg/mL)

2.3 Chemicals

- 2.3.1 Acetonitrile, HPLC fluorescence grade
- 2.3.2 Dichloromethane, HPLC grade
- 2.3.3 Glacial acetic acid, 99-100%, Technical grade

2.4 Solutions

2.4.1 Mixed phthalate monoesters working solution, 7.5 μg/mL

Using a glass syringe transfer 750 μL of each of the unlabelled phthalate monoesters (2.1.1 to 2.1.9) into a 10 mL volumetric flask and make up to the mark with acetonitrile (2.3.1).

Store the solution at a temperature below 5° C.

2.4.2 Internal standards working solution, 7.5 µg/mL

Using a glass syringe transfer 750 μ L of each of the labelled phthalate monoesters (2.2.1 to 2.2.5) into a 10 mL volumetric flask and make up to the mark with acetonitrile (2.3.1).

Store the solution at a temperature below 5° C.

2.4.3 Extraction solution, acetonitrile: dichloromethane, 1:1 (v:v)

Using a measuring cylinder add acetonitrile (500 mL, 2.3.1) and dichloromethane (500 mL, 2.3.2) to a 1 L Duran bottle. Cap and mix thoroughly.

3. APPARATUS

NOTE: An instrument or item of apparatus is listed only where it is special or made to a particular specification, the usual laboratory glassware and equipment being assumed to be available.

3.1 Liquid chromatograph, equipped with an automatic sampler and a mass spectrometric detector

Appropriate operating conditions have to be established for the specific equipment used for the determination.

3.1.1 Liquid chromatographic parameters

NOTE: The following column and parameters have been found to be suitable:

Column: SunFire™ C18 150 x 2.1 mm x 3.5 µm (Waters)

Liquid chromatograph: Waters Alliance 2695 system

Mobile phase A: Water + 0.1% acetic acid (v/v)

Mobile phase B: Acetonitrile + 0.1% acetic acid (v/v)

Run time: 20 minutes

Column temperature: 35℃

Flow rate: 0.3 mL/min

Injection volume 10 µL

Gradient:

Time (minutes)	% A	% B
0	55	45
2	55	45
9.5	0	100
12	0	100
13	55	45
20	55	45

Mass Spectrometer: Micromass Quattro Ultima Mass Spectrometer

Ionisation: Negative electrospray

Dwell time: 0.1 sec
Cone voltage: 35 V
Capillary: 2.8 kV

Multiple reaction monitoring (MRM)

Analyte	Transitions	Collision energy (eV)
Monoisopropyl phthalate	206.8 → 120.8	17
	206.8 → 134.9	10
Total mono-n-butyl phthalate and	220.9 → 133.9	13
monoisobutyl phthalate	220.9 → 177.0	10
Mono-n-butyl-phthalate ONLY	220.9 → 69.0	10

Monobenzyl phthalate	255.0 → 106.9	15
	255.0 → 182.8	12
Monocyclohexyl phthalate	246.9 → 97.0	15
	246.9 → 146.9	15
Mono-n-pentyl phthalate	234.9 → 191.1	10
	234.9 → 85.0	15
Mono-2-ethylhexyl phthalate	277.1 → 133.9	15
	277.1 → 127.0	15
Mono-n-octyl phthalate	277.1 → 127.0	18
	277.1 → 233.0	15
Monoisononyl phthalate	291.0 → 140.9	18
	291.0 → 247.0	15

Internal standard	Transitions	Collision energy (eV)
Labelled mono-n-butyl phthalate	225.0 → 179.8	10
Labelled monobenzyl phthalate	259.0 → 107.0	12
Labelled monocyclohexyl phthalate	250.9 → 97.1	20
Labelled mono-2-ethylhexyl phthalate	281.0 → 137.0	15
Labelled mono-n-octyl phthalate	281.1 → 127.0	17
Labelled monoisononyl phthalate	295.0 → 250.1	25

4. PROCEDURE

4.1 Sample preparation

4.1.1 Sample logging

Assign each sample a unique number using the Fera LIMS system.

All samples should be homogenised prior to analysis.

4.1.2 Test sample preparation

Weigh to the nearest 0.01 g approximately 15 g of homogenised foodstuff into a 40 mL glass vial. Record the accurate mass of the samples. Using a glass syringe add internal standard working solution (100 μ L of a 7.5 μ g/mL solution, 2.4.2). Stand the sample at room temperature for 15 minutes to allow the internal standards to infuse into the sample. Add extraction solution, acetonitrile: dichloromethane, 1:1 (15 mL, 2.4.3) and glacial acetic acid (1 mL, 2.3.3), cap and shake using an orbital shaker for 4 hours.

Filter the samples through Whatman N 113V 185 mm filter paper. Collect the filtrate in a clean 40 mL glass vial and store overnight at −20℃.

Centrifuge at 2000 rpm for 3 minutes and decant the organic solvent (not the fat) into a 40 mL glass vial and evaporate to dryness on a heating block at 75℃.

Reconstitute the dry residue in acetonitrile (1.5 mL, 2.3.1), cap and sonicate for 1 minute. Filter the sample through a 0.2 μ m PTFE syring filter into a glass vial for analysis by LC-MS/MS.

Samples should be prepared in duplicate.

4.1.3 Spiked sample

Weigh to the nearest 0.01 g approximately 15 g of homogenised foodstuff into a 40 mL glass vial. Record the accurate mass of the sample. Using a glass syringe add the mixed phthalate monoesters working solution (100 μ L of a 7.5 μ g/mL solution, 2.4.1), and internal standard working solution (100 μ L of a 7.5 μ g/mL solution, 2.4.2). Stand the sample at room temperature for 15 minutes to allow the standard to infuse into the sample. Proceed with the extraction as described in clause 4.1.2.

4.1.4 Blank sample

For blank samples weigh to the nearest 0.01 g approximately 15 g of homogenised foodstuff into a 40 mL glass vial. Record the accurate mass of the sample. Do not add the internal standards. Proceed with the extraction as described in clause 4.1.2.

4.1.5 Procedural blank samples

Prepare duplicate samples as described in clause 4.1.1 but in the absence of the foodstuff.

4.2 Calibration standards

Prepare calibration standards adding the volumes of the mixed phthalate monoesters working solution (2.4.1) and the internal standards working solution (2.4.2) and acetonitrile (2.3.1) described in the table below to a series of seven glass vials suitable for LC-MS/MS analysis.

Concentration (µg/mL)	Volume (µL) of the mixed phthalate monoesters working solution (2.4.1)	Volume (µL) of the internal standards working solution (2.4.2)	Volume (µL) of acetonitrile
0	0	100	1400
0.05	10	100	1390
0.1	20	100	1380
0.2	40	100	1360
0.5	100	100	1300
0.75	150	100	1250
1.0	200	100	1200

5. PROCEDURE

5.1 LC-MS/MS analysis

When starting measurements baseline stability and response linearity of the detector should be examined. The same operating conditions for the LC-MS/MS system should be maintained throughout the analysis of all samples, spiked samples, blank samples and calibration standards set out in clause 4.

5.1.1 Sample treatment and execution of the determination

Place the vials with the samples prepared in 4.1.2 to 4.1.5 in the autosampler and analyse using the conditions given in clause 3.1.1.

Identify the analyte and internal standard peaks on the basis of their retention time and measure the respective peak areas of each analyte and internal standard peak area to obtain the peak area ratios.

The peak areas to be used for quantification are:

Monoisopropyl phthalate (206.8 \rightarrow 120.8) versus labelled monobenzyl phthalate (259.0 \rightarrow 107.0)

Total monoisobutyl phthalate and mono-n-butyl phthalate (206.8 \rightarrow 120.8) versus labelled monobenzyl phthalate (259.0 \rightarrow 107.0)

Mono-n-butyl phthalate only (206.8 \rightarrow 69.0) versus labelled monobenzyl phthalate (259.0 \rightarrow 107.0)

Monobenzyl phthalate (220.9 \rightarrow 133.9) versus labelled monobenzyl phthalate (259.0 \rightarrow 107.0)

Monocyclohexyl phthalate (246.9 \rightarrow 97.0) versus labelled monocyclohexyl phthalate (250.9 \rightarrow 97.1)

Mono-n-pentyl phthalate (234.9 \rightarrow 191.1) versus labelled mono-2-ethylhexyl phthalate (281.0 \rightarrow 137.0)

Mono-2-ethylhexyl phthalate (277.1 \rightarrow 133.9) versus labelled mono-2-ethylhexyl phthalate (281.0 \rightarrow 137.0)

Mono-n-octyl phthalate (277.1 \rightarrow 127.0) versus labelled mono-n-octyl phthalate (281.1 \rightarrow 127.0)

Monoisononyl phthalate (291.0 \rightarrow 140.9) versus labelled monoisononyl phthalate (295.0 \rightarrow 250.1)

5.1.2 Calibration

Inject each of the calibration standards as prepared in clause 4.2, onto the LC column.

Plot the peak area ratio values derived in 5.1.1 against the concentration of analyte in solution. Do this for each analyte.

The calibration curves shall be rectilinear and the correlation coefficient shall be 0.99 or better.

5.2 Evaluation of data

5.2.1 Calculation of analyte levels in the foodstuff

Calculate the average of the peak area ratio values obtained from the test samples (5.1.1) and read the analyte concentrations from the calibration graphs produced in 5.1.2.

If the regression line equation is:

$$y = a * x + b \tag{1}$$

$$C = (y-b)/a \tag{2}$$

Where:

C is the concentration of the analyte in solution.

The concentration in the foodstuff is then calculated as:

$$C_{food} = (C * 1.5)/M$$

Where:

C is the concentration of the analyte in solution.

M is the mass of food extracted

C_{food} is the concentration of the analyte in the foodstuff.

5.2.2 Calculation of analyte levels in the spiked foods

Calculate the average of the peak area ratio values obtained from the spiked samples (5.1.1) and read the analyte concentrations from the calibration graphs produced in 5.1.2. Calculate the analyte concentrations in the spiked food as described in clause 5.2.1.

5.2.3 Correction for recovery

The average concentration of each analyte determined in the food (5.2.1) is subtracted from the concentration in the spiked sample (5.2.2) and the recovery is calculated relative to the known concentration spiked. The concentration in the food (5.2.1) is then corrected for recovery.

5.2.4 Monoisobutyl phthalate and mono-n-butyl phthalate quantification

For the monoisobutyl phthalate and mono-n-butyl phthalate carry out the quantification as described in sections 5.2.1 to 5.2.3 for the total monoisobutyl phthalate and mono-n-butyl phthalate channel (206.8 \rightarrow 120.8) and for the mono-n-butyl phthalate channel (206.8 \rightarrow 69.0). To calculate the amount of monoisobutyl phthalate subtract the amount of mono-n-butyl phthalate from the total of monoisobutyl phthalate and mono-n-butyl phthalate.

5.3 Confirmation

The phthalate monoesters are confirmed by applying the obligatory criteria:

- (i) Calculate the relative retention times (RRT) af the analytes to the internal standards. The criteria is that the RRT of the samples should agree to \pm 2% of that obtained from the calibration standards analysed at the same time.
- (ii) Calculate the ratio of the peak area of the quantification channel to the peak area of the confirmation channel were calculated using the transitions:

Analyte	Quantification transition	Confirmation transition	
Monoisopropyl phthalate	206.8 → 120.8	206.8 → 134.9	
Monoisobutyl phthalate	220.9 → 133.9	220.9 → 177.0	
Mono-n-butyl phthalate	220.9 → 69.0	None	
Monobenzyl phthalate	255.0 → 106.9	255.0 → 182.8	
Monocyclohexyl phthalate	246.9 → 97.0	246.9 → 146.9	
Mono-n-pentyl phthalate	234.9 → 191.1	234.9 → 85.0	
Mono-2-ethylhexyl phthalate	277.1 → 133.9	277.1 → 127.0	
Mono-n-octyl phthalate	277.1 → 127.0	277.1 → 233.0	
Monoisononyl phthalate	291.0 → 140.9	291.0 → 247.0	

The criteria is that the ratios obtained for the samples should agree to \pm 25% of that obtained from the calibration standards.

The Food and Environment Research Agency Sand Hutton, York YO41 1LZ

Standard operating procedure for determination of phthalic acid in foodstuffs

0. INTRODUCTION

Phthalates (diesters) are a group of toxic compounds produced in large volumes that are widely used as additives in plastics and consumer products. Some phthalates have been reported to be endocrine disruptors. They can migrate into foods from food packaging but have also been proposed to be present in food due to general contamination of the environment and food chain. In previous studies differences were observed in the total phthalate concentration (calculated by converting all phthalates to dimethyl phthalate) and the sum of the individual phthalate diesters measured in foods. It was proposed that the difference in these two values could be due to the presence of phthalic acid and phthalate monoesters in the food samples tested as these substances would also be converted to dimethyl phthalate and therefore included in the total phthalate measurement. To ascertain whether or not this proposal is correct a method of analysis has been developed for phthalic acid. This report describes the performance characteristics of this analytical method.

1. SCOPE

This document describes a method for the determination of phthalic acid in a range of foodstuffs. The method is appropriate for quantitative determination in approximate analyte concentration range of 0.005 - 0.1 mg/kg.

2. REAGENTS

2.1 Analyte

2.1.1 Phthalic acid

2.2 Internal standard

2.2.1 Phthalic acid-ring-d₄

2.3 Chemicals

- 2.3.1 Acetonitrile, HPLC fluorescence grade
- 2.3.2 Dichloromethane, HPLC grade
- 2.3.3 Glacial acetic acid, 99-100%, Technical grade

2.4 Solutions

2.4.1 Phthalic acid stock solution (1 mg/mL)

Weigh to the nearest 0.1 mg approximately 10 mg of phthalic acid (2.1.1) in a 10 ml volumetric flask and make up to the mark with acetonitrile (2.3.1).

Calculate the actual concentration in milligrams of phthalic acid per millilitre of solution.

Store the solution at a temperature below 5° C.

2.4.2 Phthalic acid working solution (7.5 μg/mL)

Using a glass syringe transfer 75 μ L of the unlabeled phthalic acid solution (2.4.1) into a 10 mL volumetric flask and make up to the mark with acetonitrile (2.3.1).

Calculate the actual concentration in milligrams of phthalic acid per millilitre of solution.

Store the solution at a temperature below 5° C.

2.4.3 Internal standard stock solution (1 mg/mL)

Weigh to the nearest 0.1 mg approximately 10 mg of labelled phthalic acid (2.2.1) in a 10 ml volumetric flask and make up to the mark with acetonitrile (2.3.1).

Store the solution at a temperature below 5°C.

2.4.4 Internal standard working solution (7.5 µg/mL)

Using a glass syringe transfer 75 μ L of the labeled phthalic acid stock solution (2.4.3) into a 10 mL volumetric flask and make up to the mark with acetonitrile (2.3.1).

Store the solution at a temperature below 5° C.

2.4.5 Extraction solution, acetonitrile: dichloromethane, 1:1 (v:v)

Using a measuring cylinder add acetonitrile (500 mL, 2.3.1) and dichloromethane (500 mL, 2.3.2) to a 1 L Duran bottle. Cap and mix thoroughly.

3. APPARATUS

NOTE: An instrument or item of apparatus is listed only where it is special or made to a particular specification, the usual laboratory glassware and

equipment being assumed to be available.

3.1 Liquid chromatograph, equipped with an automatic sampler and a mass spectrometric detector

Appropriate operating conditions have to be established for the specific equipment used for the determination.

3.1.1 Liquid chromatographic parameters

NOTE: The following column and parameters have been found to be suitable:

Liquid chromatography-mass spectrometry (LC-MS/MS)

Column: SeQuant ZIC®-HILIC (100 x 2.1 mm, 3.5 µm)

Liquid chromatograph: Waters Alliance 2695 system

Mobile phase A: 10 mM ammonium acetate at pH 6

Mobile phase B: Acetonitrile

Mobile phase composition: Isocratic, 5% A, 95% B

Run time: 10 minutes

Column temperature: 35℃

Flow rate: 0.2 mL/min

Injection volume 5 µL

Mass Spectrometer: Micromass Quattro Ultima Mass Spectrometer

Ionisation: Negative electrospray

Dwell time: 0.1 sec
Cone voltage: 35 V
Capillary: 3.0 kV

Multiple reaction monitoring (MRM)

Analyte	Transitions	Collision energy (eV)
Phthalic acid (quantification)	164.75 → 120.81	10
Phthalic acid (confirmation)	164.75 → 76.95	15
d ₄ -Phthalic acid (Internal standard)	169.28 → 124.81	15

4. PROCEDURE

4.1 Sample preparation

4.1.1 Sample logging

Assign each sample a unique number using the Fera LIMS system.

All samples should be homogenised prior to analysis.

4.1.2 Test sample preparation

Weigh to the nearest 0.01 g approximately 15 g of homogenised foodstuff into a 40 mL glass vial. Record the accurate mass of the samples. Using a glass syringe add internal standard working solution (100 μ L of a 7.5 μ g/mL solution, 2.4.4). Stand the sample at room temperature for 15 minutes to allow the internal standard to infuse into the sample. Add extraction solution, acetonitrile: dichloromethane, 1:1 (15 mL, 2.4.5) and glacial acetic acid (1 mL, 2.3.3), cap and shake using an orbital shaker for 4 hours.

Filter the samples through Whatman N 113V 185 mm filter paper. Collect the filtrate in a clean 40 mL glass vial and store overnight at -20°C.

Centrifuge at 2000 rpm for 3 minutes and decant the organic solvent (not the fat) into a 40 mL glass vial and evaporate to dryness on a heating block at 75℃.

Reconstitute the dry residue in acetonitrile (1.5 mL, 2.3.1), cap and sonicate for 1 minute. Filter the sample through a 0.2 μ m PTFE syring filter into a glass vial for analysis by LC-MS/MS.

Samples should be prepared in duplicate.

4.1.3 Spiked sample

Weigh to the nearest 0.01 g approximately 15 g of homogenised foodstuff into a 40 mL glass vial. Record the accurate mass of the sample. Using a glass syringe add the phthalic acid working solution, 100 μ L of a 7.5 μ g/mL solution (2.4.2), and internal standard working solution, 100 μ L of a 7.5 μ g/mL solution (2.4.4). Stand the sample at room temperature for 15 minutes to allow the standard and internal standard to infuse into the sample. Proceed with the extraction as described in clause 4.1.2.

4.1.4 Blank food sample

For the blank food sample weigh to the nearest 0.01 g approximately 15 g of homogenised foodstuff into a 40 mL glass vial. Record the accurate mass of the sample. Do not add internal standard. Proceed with the extraction as described in clause 4.1.2.

4.1.5 Procedural blank samples

Prepare duplicate samples as described in clause 4.1.1 but in the absence of the foodstuff.

4.2 Calibration standards

Prepare calibration standards adding the volumes of the phthalic acid working solution (2.4.2) and the internal standard working solution (2.4.4) and acetonitrile (2.3.1) described in the table below to a series of seven glass vials suitable for LC-MS/MS analysis.

Concentration (µg/mL)	Volume (µL) of the phthalic acid working solution (2.4.2)	Volume (µL) of the internal standard working solution (2.4.4)	Volume (µL) of acetonitrile
0	0	100	1400
0.05	10	100	1390
0.1	20	100	1380
0.2	40	100	1360
0.5	100	100	1300
0.75	150	100	1250
1.0	200	100	1200

5. PROCEDURE

5.1 LC-MS/MS analysis

When starting measurements baseline stability and response linearity of the detector should be examined. The same operating conditions for the LC-MS/MS system should be maintained throughout the analysis of all samples, spiked samples, blank samples and calibration standards set out in section 4.

5.1.1 Sample treatment and execution of the determination

Place the vials with the samples prepared in 4.1.2 to 4.1.5 in the autosampler and analyse using the conditions given in clause 3.1.1.

Identify the analyte and internal standard peaks on the basis of their retention time and measure the respective peak areas to obtain the peak area ratios.

The peak areas to be used for quantification are:

Phthalic acid (164.75 \rightarrow 120.81) versus labelled phthalic acid (169.28 \rightarrow 124.81)

5.1.2 Calibration

Inject each of the calibration standards as prepared in clause 4.2, onto the LC column.

Plot the peak area ratio values derived in 5.1.1 against the concentration of the analyte in solution.

The calibration curves shall be rectilinear and the correlation coefficient shall be 0.99 or better.

5.2 Evaluation of data

5.2.1 Calculation of analyte levels in the foodstuff

Calculate the average of the peak area ratio values obtained from the test samples (5.1.1) and read the analyte concentrations from the calibration graphs produced in 5.1.2.

If the regression line equation is:

$$y = a * x + b \tag{1}$$

$$C = (y-b)/a \tag{2}$$

Where:

C is the concentration of the analyte in solution.

The concentration in the foodstuff is then calculated as:

$$C_{food} = (C * 1.5)/M$$

Where:

C is the concentration of the analyte in solution.

M is the mass of food extracted

 C_{food} is the concentration of the analyte in the foodstuff.

5.2.2 Calculation of the phthalic acid concentration in the spiked foods

Calculate the average of the peak area ratio values obtained from the spiked samples (5.1.1) and read the analyte concentrations from the calibration graphs produced in 5.1.2. Calculate the analyte concentrations in the spiked food as described in clause 5.2.1.

5.2.3 Correction for recovery

The average concentration of phthalic acid determined in the food (5.2.1) is subtracted from the concentration in the spiked sample (5.2.2) and the recovery is calculated relative to the known concentration spiked. The concentration in the food (5.2.1) is then corrected for recovery.

5.3 Confirmation

The phthalic acid is confirmed by applying the obligatory criteria:

- (i) Calculate the phthalic acid retention time relative to the labelled internal standard (RRT). The criteria is that the RRT of the samples should agree to \pm 2% of that obtained from the calibration analysed at the same time.
- (ii) Calculate the ratio of the peak area of the quantification channel to the peak area of the confirmation channel using the transitions:

Analyte	Quantification channel	Confirmation channel
Phthalic acid	164.75 → 120.81	169.28 → 124.81

The criteria is that the ratios obtained for the samples should agree to \pm 25% of that obtained from the calibration standards analysed at the same time.

The Food and Environment Research Agency Sand Hutton, York YO41 1LZ

Standard operating procedure for determination of total phthalates in foodstuffs

0. INTRODUCTION

Phthalates (diesters) are a group of toxic compounds produced in large volumes that are widely used as additives in plastics and consumer products. Some phthalates have been reported to be endocrine disruptors. They can migrate into foods from food packaging but have also been proposed to be present in food due to general contamination of the environment and food chain. In previous studies differences were observed in the total phthalate concentration (calculated by converting all phthalates to dimethyl phthalate) and the sum of the individual phthalate diesters measured in foods. It was proposed that the difference in these two values could be due to the presence of phthalic acid and phthalate monoesters in the food samples tested as these substances would also be converted to dimethyl phthalate and therefore included in the total phthalate measurement as well as the presence of any phthalate diesters that were not included in the analysis. The analytical method described allows the determination of the total phthalate molecules present i.e. diesters, monoesters and phthalic acid. These are extracted from the foodstuff, hydrolysed and methylated to form dimethyl phthalate prior to measurement by GC-MS.

1. SCOPE

This document describes a method for the determination of total phthalates in a range of foodstuffs. The method is appropriate for the quantitative determination in approximate analyte concentration range of $100 - 1000 \,\mu\text{g/kg}$.

2. REAGENTS

2.1 Analytes

- 2.1.1 Dimethyl phthalate, 99%
- 2.1.2 Diethyl phthalate, 99%
- 2.1.3 Diisobutyl phthalate, 99%
- 2.1.4 Di-n-decyl phthalate, 99%

2.2 Internal standard

2.2.1 d₄-Dimethyl phthalate, 99%

2.3 Chemicals

- 2.3.1 Acetonitrile, HPLC fluorescence grade
- 2.3.2 Dichloromethane, HPLC grade
- 2.3.3 Glacial acetic acid, 99-100%, Technical grade
- 2.3.4 Potassium hydroxide, Analytical reagent grade
- 2.3.5 Methanol, HPLC fluorescence grade
- 2.3.6 Calcium acetate monohydrate, ACS reagent grade, >99%
- 2.3.7 Water, HPLC fluorescence grade
- 2.3.8 Boron trifluoride methanol solution, 14%
- 2.3.9 Hexane, HPLC fluorescence grade

2.4 Solutions

2.4.1 Dimethyl phthalate stock solution, 1 mg/mL

Weigh to the nearest 0.1 mg approximately 10 mg of dimethyl phthalate (2.1.1) into a 10 mL volumetric flask and make up to the mark with acetonitrile (2.3.1).

Calculate the actual concentration in milligrams of dimethyl phthalate per millilitre of solution. Store the solution at a temperature below 5° C.

2.4.2 Dimethyl phthalate working solution, 100 µg/mL

Using a glass syringe transfer 1 mL of dimethyl phthalate stock solution (1 mg/mL, 2.4.1) into a 10 mL volumetric flask and make up to the mark with acetonitrile (2.3.1).

Calculate the actual concentration in milligrams of dimethyl phthalate per millilitre of solution. Store the solution at a temperature below 5° C.

2.4.3 d₄-Dimethyl phthalate stock solution, 1 mg/mL

Weigh to the nearest 0.1 mg approximately 10 mg of the d_4 -dimethyl phthalate (2.2.1) into a 10 mL volumetric flask and make up to the mark with acetonitrile (2.3.1).

Calculate the actual concentration in milligrams of d_4 -dimethyl phthalate per millilitre of solution. Store the solution at a temperature below 5° C.

2.4.4 d₄-Dimethyl phthalate working solution, 100 μg/mL

Using a glass syringe transfer 1 mL of d_4 -dimethyl phthalate stock solution (1 mg/mL, 2.4.3) into a 10 mL volumetric flask and make up to the mark with acetonitrile (2.3.1).

Calculate the actual concentration in milligrams of dimethyl phthalate per millilitre of solution. Store the solution at a temperature below 5° C.

2.4.5 Diethyl phthalate stock solution, 1 mg/mL

Weigh to the nearest 0.1 mg approximately 10 mg of diethyl phthalate (2.1.2) into a 10 mL volumetric flask and make up to the mark with acetonitrile (2.3.1).

Calculate the actual concentration in milligrams of diethyl phthalate per millilitre of solution. Store the solution at a temperature below 5° C.

2.4.6 Diisobutyl phthalate stock solution, 1 mg/mL

Weigh to the nearest 0.1 mg approximately 10 mg of diisobutyl phthalate (2.1.3) into a 10 mL volumetric flask and make up to the mark with acetonitrile (2.3.1).

Calculate the actual concentration in milligrams of diisobutyl phthalate per millilitre of solution. Store the solution at a temperature below 5℃.

2.4.7 Di-n-decyl phthalate stock solution, 1 mg/mL

Weigh to the nearest 0.1 mg approximately 10 mg of di-n-decyl phthalate (2.1.4) into a 10 mL volumetric flask and make up to the mark with acetonitrile (2.3.1).

Calculate the actual concentration in milligrams of di-n-decyl phthalate per millilitre of solution. Store the solution at a temperature below 5° C.

2.4.8 Diethyl phthalate, diisobutyl phthalate and di-n-decyl phthalate spiking solution, 100 μg/mL

Using a glass syringe transfer 1 mL of diethyl phthalate stock solution (1 mg/mL, 2.4.5), 1 mL of diisobutyl phthalate stock solution (1 mg/mL, 2.4.6) and 1 mL of di-n-decyl phthalate stock solution (1 mg/mL, 2.4.7) into a 10 mL volumetric flask and make up to the mark with acetonitrile (2.3.1).

Store the solution at a temperature below 5° C.

2.4.9 Extraction solution, acetonitrile:dichloromethane, 1:1 (v:v)

Using a measuring cylinder add acetonitrile (500 mL, 2.3.1) and dichloromethane (500 mL, 2.3.2) to a 1 L Duran bottle. Cap and mix thoroughly.

2.4.10 Methanolic potassium hydroxide solution, 1 M

Weigh to the nearest 0.1 g approximately 56.1 g of potassium hydroxide (2.3.4) into a 500 mL beaker, add approximately 400 mL of methanol (2.3.5) and dissolve by shaking. Once dissolved transfer to a 1 L volumetric flask, make up to the mark with methanol (2.3.5) and shake well.

2.4.11 Methanolic potassium hydroxide solution, 0.1 M

Using a measuring cylinder transfer 100 mL of 1 M methanolic potassium hydroxide solution (2.4.10) to a 1 L volumetric flask. Make up to the mark with methanol (2.3.5) and shake well.

2.4.12 Calcium acetate solution, 5%

Weigh to the nearest 0.1 g approximately 50 g of calcium acetate monohydrate (2.3.6) into a 1 L volumetric flask, add approximately 500 mL of water (2.3.7) and dissolve by shaking. Make up to the mark with water (2.3.7) and shake well.

3. APPARATUS

NOTE: An instrument or item of apparatus is listed only where it is special or made to a particular specification, the usual laboratory glassware and equipment being assumed to be available.

3.1 Gas chromatograph, equipped with an automatic sampler and a mass spectrometric detector

Appropriate operating conditions have to be established for the specific equipment used for the determination.

3.1.1 Gas chromatographic parameters

GC apparatus should be optimised according to manufacturer's instruction.

NOTE: The following column and parameters have been found to be suitable:

Column: Zebron ZB-5ms (5% phenyl 95% dimethylpolysiloxane)

30 m x 0.25 mm id x 0.25 μ m film thickness

Column oven Isothermal 3 minutes at 80°C, then at 10°C/minute to

320℃ and held for 5 minutes

Split mode Splitless Inlet temperature 280°C

Injection volume 1.0 µL (Merlin Micro Seal and Syringe)

Carrier gas Helium

Flow rate 1.0 mL/minute

Transfer line temp. 280°C

MS detection mode Selected ion monitoring (SIM) EI mode

SIM ions recorded Dimethyl phthalate: 77, 163, 194

d₄-Dimethyl phthalate: 167, 198

4. PROCEDURE

NOTE: All glassware used in this method must be muffled in an oven at 500℃ for a minimum of 4 hours prior to use.

NOTE: PTFE septa must be used in all cases to minimise phthalate contamination.

4.1 Sample preparation

4.1.1 Sample logging

Assign each sample a unique number using the Fera LIMS system. All samples should be homogenised prior to analysis.

4.1.2 Test sample preparation

Weigh to the nearest 0.01 g approximately 15 g of homogenised foodstuff into a 40 mL glass vial. Record the accurate mass of the samples. Using a glass syringe add internal standard working solution (60 μ L of a 100 μ g/mL solution, 2.4.4). Stand the sample at room temperature for 15 minutes to allow the internal standard to infuse into the sample. Add extraction solution, acetonitrile: dichloromethane, 1:1 (15 mL, 2.4.9) and glacial acetic acid (1 mL, 2.3.3), cap and shake using an orbital shaker for 4 hours.

Decant the liquid into a clean 40 mL glass vial and store overnight at −20℃.

Centrifuge at 2000 rpm for 3 minutes and decant the organic solvent (not the fat) into a 40 mL glass vial and evaporate to dryness on a heating block at 45° C (no nitrogen).

NOTE: Evaporate just to dryness at a temperature not greater than 45°C and do not leave the samples on the heating block over night, as the more volatile phthalates will be lost.

Reconstitute the dry residue in methanolic potassium hydroxide solution (0.1 M, 4 mL, 2.4.11), cap and vortex mix for 1 minute. Measure the pH using universal pH paper. If the pH is less than 10 add methanolic potassium hydroxide solution (1 M, 1 mL increments, 2.4.10) until the pH reaches 10. Cap and vortex mix for 1 minute. Place in an oven at 90°C for 1 hour. Remove the vials, allow them to cool to ambient temperature and add boron trifluoride methanol solution (2 mL, 2.3.8). Cap, vortex mix for 1 minute and place in an oven at 90°C for 1 hour.

Remove the vials, allow them to cool to ambient temperature and add aqueous calcium acetate solution (5%, 10 mL, 2.4.12). Cap and vortex mix for 30 seconds. Add hexane (4 mL, 2.3.9), cap, vortex mix for 30 seconds, centrifuge at 2000 rpm for 3 minutes and transfer the top hexane layer to a clean 12 mL glass vial. Add acetonitrile (1 mL, 2.3.1), cap, vortex mix for 30 seconds and transfer the bottom acetonitrile layer to a glass vial suitable for GC-MS analysis.

Samples should be prepared in duplicate.

4.1.3 Spiked sample

Weigh to the nearest 0.01 g approximately 15 g of homogenised foodstuff into a 40 mL glass vial. Record the accurate mass of the sample. Using a glass syringe add diethyl phthalate, diisobutyl phthalate and di-n-decyl phthalate mixed spiking solution (30 μ L of a 100 μ g/mL mixed solution, 2.4.8), and internal standard working solution (60 μ L of a 100 μ g/mL solution, 2.4.4). Stand the sample at room temperature for 15 minutes to allow the standard to infuse into the sample. Proceed with the extraction as described in clause 4.1.2.

4.1.4 Blank sample

For blank samples weigh to the nearest 0.01 g approximately 15 g of homogenised foodstuff into a 40 mL glass vial. Record the accurate mass of the sample. Do not add the internal standard. Proceed with the extraction as described in clause 4.1.2.

4.1.5 Procedural blank samples

Prepare duplicate samples as described in clause 4.1.1 but in the absence of the foodstuff.

NOTE: It is essential that these procedural blank samples are prepared to check for phthalate contamination occurring as a consequence of the extraction and analysis.

4.2 Calibration standards

Prepare calibration standards adding the volumes of the dimethyl phthalate working solution (2.4.2), internal standard working solution (2.4.4) and acetonitrile (2.3.1) described in the table below to a series of glass vials suitable for GC-MS analysis.

Concen -tration (µg/mL)	Equivalent concentration in the food (µg/kg)	Volume (µL) of the dimethyl phthalate working solution (2.4.2)	Volume (µL) of the d ₄ -dimethyl phthalate working solution (2.4.4)	Volume (µL) of acetonitrile (2.3.1)
0	0	0	60	940
1.5	100	15	60	925
3.0	200	30	60	910
6.0	400	60	60	880
9.0	600	90	60	850
12	800	120	60	820
15	1000	150	60	790

5. PROCEDURE

5.1 GC-MS analysis

When starting measurements baseline stability and response linearity of the detector should be examined. The same operating conditions for the GC-MS system should be maintained throughout the analysis of all samples, spiked samples, blank samples and calibration standards set out in clause 4.

5.1.1 Sample treatment and execution of the determination

Place the vials with the samples prepared in 4.1.2 to 4.1.5 in the autosampler and analyse using the conditions given in clause 3.1.1.

Identify the analyte and internal standard peaks on the basis of their retention time and measure the respective peak areas of the analyte and internal standard peak area to obtain the peak area ratios.

The peak areas to be used for quantification are m/z 163 (dimethyl phthalate) versus m/z 167 (d_4 -dimethyl phthalate).

5.1.2 Calibration

Inject each of the calibration standards as prepared in clause 4.2, onto the GC column.

Plot the peak area ratio values derived in 5.1.1 against the concentration of the analyte (in units of $\mu g/kg$) in the calibration standards (4.2).

The calibration curves shall be rectilinear and the correlation coefficient shall be 0.99 or better.

5.2 Evaluation of data

5.2.1 Calculation of analyte levels in the foodstuff

Calculate the average of the peak area ratio values obtained from the test samples (5.1.1) and read the analyte concentrations in the extract from the calibration graphs produced in 5.1.2.

If the regression line equation is

$$y = a * x + b \tag{1}$$

$$x = (y-b)/a \tag{2}$$

Where:

x is the concentration of the analyte in the extract,

a is the gradient of the calibration graph,

b is the y-intercept of the calibration graph

y is the peak area ratio.

5.2.2 Calculation of analyte levels in the spiked foods

Calculate the average of the peak area ratio values obtained from the spiked samples (5.1.1) and read the analyte concentrations from the calibration graphs produced in 5.1.2. Calculate the analyte concentrations in the spiked food as described in clause 5.2.1.

5.2.3 Correction for recovery

The average concentration of each analyte determined in the food (5.2.1) is subtracted from the concentration in the spiked sample (5.2.2) and the recovery is calculated relative to the known concentration spiked. The concentration of diethyl phthalate, diisobutyl phthalate and di-n-decyl phthalate should be converted into the theoretical concentration of dimethyl phthalate formed assuming complete hydrolysis. The concentration in the food (5.2.1) is then corrected for recovery.

5.3 Confirmation

The dimethyl phthalate is confirmed by applying the obligatory criteria:

- (ii) Calculate the ion ratios for dimethyl phthalate using the 163/77 and 163/194 ions. The criteria is that the ratios obtained for the samples should agree to \pm 20% of that obtained from the calibration standards analysed at the same time.
- (ii) Calculate the relative retention time (RTT) as the analyte retention times divided by the internal standard retention time. The criteria is that the RRT of the samples should agree to \pm 2% of those obtained from the calibration analysed at the same time.