Skip to main content
English Cymraeg
The Future of Animal Feed

The Future of Animal Feed: References

All references for the Future of Animal Feed report.

Makkar, H. P. S. (2018). Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal, 12(8), 1744-1754. https://doi.org/10.1017/S175173111700324X  

Gurgel, A. C., Reilly, J., & Blanc, E. (2021). Challenges in simulating economic effects of climate change on global agricultural markets. Climatic Change, 166(3), 1-21. https://doi.org/10.1007/s10584-021-03119-8

Food and Agriculture Organization (FAO). (2019). Global Food Outlook November 2019 / FAO forecast. Available at: http://www.fao.org/news/story/en/item/1247138/icode/. Accessed on 15 December 2021. 

Food and Agriculture Organization (FAO). (2018). World Livestock: Transforming the livestock sector through the Sustainable Development Goals. Rome. 222 pp. https://doi.org/10.4060/ca1201en   

Food and Agriculture Organization (FAO). (2017). Animal Production and Health Division and the Livestock Environmental Assessment and Performance Partnership (LEAP). Available at: http://www.fao.org/partnerships/leap/en/. Accessed on 15 December 2021

Semper-Pascual, A., Decarre, J., Baumann, M., Busso, J. M., Camino, M., Gómez-Valencia, B., & Kuemmerle, T. (2019). Biodiversity loss in deforestation frontiers: linking occupancy modelling and physiological stress indicators to understand local extinctions. Biological Conservation, 236, 281-288. https://doi.org/10.1016/j.biocon.2019.05.050 

Adam, M. G., Tran, P. T., Bolan, N., & Balasubramanian, R. (2021). Biomass burning-derived airborne particulate matter in Southeast Asia: A critical review. Journal of Hazardous Materials, 407, 124760. https://doi.org/10.1016/j.jhazmat.2020.124760
 
Andretta, I., Hickmann, F. M., Remus, A., Franceschi, C. H., Mariani, A. B., Orso, C., Kipper, M., Létourneau-Montminy, M. P., & Pomar, C. (2021). Environmental Impacts of Pig and Poultry Production: Insights From a Systematic Review. Frontiers in Veterinary Science, 1232. https://doi.org/10.3389/fvets.2021.750733  

van Huis, A., & Oonincx, D. G. (2017). The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development, 37(5), 1-14. https://doi.org/10.1007/s13593-017-0452-8  

van Hal, O., Weijenberg, A. A. A., De Boer, I. J. M., & Van Zanten, H. H. E. (2019). Accounting for feed-food competition in environmental impact assessment: Towards a resource efficient food-system. Journal of Cleaner Production, 240, 118241. https://doi.org/10.1016/j.jclepro.2019.118241
 
Te Pas, M. F., Veldkamp, T., de Haas, Y., Bannink, A., & Ellen, E. D. (2021). Adaptation of livestock to new diets using feed components without competition with human edible protein sources—a review of the possibilities and recommendations. Animals, 11(8), 2293. https://doi.org/10.3390/ani11082293  

Muscat, A., de Olde, E. M., de Boer, I. J., & Ripoll-Bosch, R. (2020). The battle for biomass: A systematic review of food-feed-fuel competition. Global Food Security, 25, 100330. https://doi.org/10.1016/j.gfs.2019.100330 

Watson, C. A., Reckling, M., Preissel, S., Bachinger, J., Bergkvist, G., Kuhlman, T., Lindström, K., Nemecek, T., Topp, C. F. E., Vanhatalo, A., Zander, P., Murphy-Bokern, D., & Stoddard, F. L. (2017). Grain legume production and use in European agricultural systems. Advances in Agronomy, 144, 235-303. https://doi.org/10.1016/bs.agron.2017.03.003 

Sherasia, P. L., Garg, M. R., & Bhanderi, B. M. (2018). Pulses and their by-products as animal feed. United Nations. Rome. 222 pp. ISBN: 978-92-5-109915-5  

Sońta, M., Rekiel, A., & Batorska, M. (2019). Use of duckweed (Lemna L.) in sustainable livestock production and aquaculture–a review. Annals of Animal Science, 19(2), 257-271. https://doi.org/10.2478/aoas-2018-0048 

Costa, M., Cardoso, C., Afonso, C., Bandarra, N. M., & Prates, J. A. (2021). Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: a systematic review. Journal of Animal Physiology and Animal Nutrition, 105(6), 1075-1102. https://doi.org/10.1111/jpn.13509 

Duarte, C. M., Bruhn, A., & Krause-Jensen, D. (2021). A seaweed aquaculture imperative to meet global sustainability targets. Nature Sustainability, 1-9. https://doi.org/10.1038/s41893-021-00773-9  

Bartelme, R. P., Oyserman, B. O., Blom, J. E., Sepulveda-Villet, O. J., & Newton, R. J. (2018). Stripping away the soil: plant growth promoting microbiology opportunities in aquaponics. Frontiers in Microbiology, 9, 8. https://doi.org/10.3389/fmicb.2018.00008 

van Eenennaam, A. L., & Young, A. E. (2014). Prevalence and impacts of genetically engineered feedstuffs on livestock populations. Journal of Animal Science, 92(10), 4255-4278. https://doi.org/10.2527/jas.2014-8124  

Flachowsky, G., Chesson, A., & Aulrich, K. (2005). Animal nutrition with feeds from genetically modified plants. Archives of Animal Nutrition, 59(1), 1-40. https://doi.org/10.1080/17450390512331342368  

Eriksson, M., Ghosh, R., Hansson, E., Basnet, S., & Lagerkvist, C. J. (2018). Environmental consequences of introducing genetically modified soy feed in Sweden. Journal of Cleaner Production, 176, 46-53. https://doi.org/10.1016/j.jclepro.2017.12.113 

Gocht, A., Consmüller, N., Thom, F., & Grethe, H. (2021). Economic and environmental consequences of the ECJ genome editing judgment in agriculture. Agronomy, 11(6), 1212. https://doi.org/10.3390/agronomy11061212 

Jones, S. W., Karpol, A., Friedman, S., Maru, B. T., & Tracy, B. P. (2020). Recent advances in single cell protein use as a feed ingredient in aquaculture. Current Opinion in Biotechnology, 61, 189-197. https://doi.org/10.1016/j.copbio.2019.12.026 

Tropea, A., Ferracane, A., Albergamo, A., Potortì, A. G., Lo Turco, V., & Di Bella, G. (2022). Single cell protein production through multi food-waste substrate fermentation. Fermentation, 8(3), 91. https://doi.org/10.3390/fermentation8030091  

Puyol, D., Batstone, D. J., Hülsen, T., Astals, S., Peces, M., & Krömer, J. O. (2017). Resource recovery from wastewater by biological technologies: opportunities, challenges, and prospects. Frontiers in Microbiology, 7, 2106. https://doi.org/10.3389/fmicb.2016.02106  

Ritala, A., Häkkinen, S. T., Toivari, M., & Wiebe, M. G. (2017). Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Frontiers in Microbiology, 8, 2009. https://doi.org/10.3389/fmicb.2017.02009 

Nyyssölä, A., Suhonen, A., Ritala, A., & Oksman-Caldentey, K. M. (2022). The role of single cell protein in cellular agriculture. Current Opinion in Biotechnology, 75, 102686. https://doi.org/10.1016/j.copbio.2022.102686 

Stephens, N., & Ellis, M. (2020). Cellular agriculture in the UK: a review. Wellcome Open Research, 5. https://doi.org/10.12688/wellcomeopenres.15685.2   

Mattick, C. S. (2018). Cellular agriculture: the coming revolution in food production. Bulletin of the Atomic Scientists, 74(1), 32-35. https://doi.org/10.1080/00963402.2017.1413059 

Hardy, R. W., Patro, B., Pujol‐Baxley, C., Marx, C. J., & Feinberg, L. (2018). Partial replacement of soybean meal with Methylobacterium extorquens single‐cell protein in feeds for rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture Research, 49(6), 2218-2224. https://doi.org/10.1111/are.13678 

Glencross, B. D., Huyben, D., & Schrama, J. W. (2020). The application of single-cell ingredients in aquaculture feeds—a review. Fishes, 5(3), 22. https://doi.org/10.3390/fishes5030022  

Pignolet, O., Jubeau, S., Vaca-Garcia, C., & Michaud, P. (2013). Highly valuable microalgae: biochemical and topological aspects. Journal of Industrial Microbiology and Biotechnology, 40(8), 781-796. https://doi.org/10.1007/s10295-013-1281-7 

Helliwell, R., & Burton, R. J. (2021). The promised land? Exploring the future visions and narrative silences of cellular agriculture in news and industry media. Journal of Rural Studies, 84, 180-191. https://doi.org/10.1016/j.jrurstud.2021.04.002 

Bapat, S., Koranne, V., Shakelly, N., Huang, A., Sealy, M., Sutherland, J. W., Rajurkar, K. P., & Malshe, A. P. (2021). Cellular agriculture: An outlook on smart and resilient food agriculture manufacturing. ASTM Smart and Sustainable Manufacturing Systems. https://doi.org/10.1520/SSMS20210020 

Eibl, R., Senn, Y., Gubser, G., Jossen, V., van den Bos, C., & Eibl, D. (2021). Cellular agriculture: Opportunities and challenges. Annual Review of Food Science and Technology, 12, 51-73. https://doi.org/10.1146/annurev-food-063020-123940 

Odegard, I., & Sinke, P. (2021). LCA of cultivated meat. Future projections for different scenarios. CE Delft, February, 22-55. Available at https://cedelft.eu/publications/tea-of-cultivated-meat/ 

Saavoss, M. (2019). How might cellular agriculture impact the livestock, dairy, and poultry industries?. Choices, 34(1), 1-6. https://www.jstor.org/stable/26758666  

Gasteratos, K. (2019). 90 Reasons to consider cellular agriculture. Available at https://dash.harvard.edu/handle/1/38573490   

Behm, K., Nappa, M., Aro, N., Welman, A., Ledgard, S., Suomalainen, M., & Hill, J. (2022). Comparison of carbon footprint and water scarcity footprint of milk protein produced by cellular agriculture and the dairy industry. The International Journal of Life Cycle Assessment, 27, 1017-1034. https://doi.org/10.1007/s11367-022-02087-0    

Moritz, J., Tuomisto, H. L., & Ryynänen, T. (2022). The transformative innovation potential of cellular agriculture: Political and policy stakeholders’ perceptions of cultured meat in Germany. Journal of Rural Studies, 89, 54-65. https://doi.org/10.1016/j.jrurstud.2021.11.018 

Teng, T. S., Chin, Y. L., Chai, K. F., & Chen, W. N. (2021). Fermentation for future food systems: Precision fermentation can complement the scope and applications of traditional fermentation. EMBO reports, 22(5), e52680. https://doi.org/10.15252/embr.202152680 

Mainardes, G. A., & DeVries, T. J. (2016). Effect of social feeding environment on the feeding behaviour of dairy cows and their willingness to consume a novel feed. Applied Animal Behaviour Science, 185, 23-29. https://doi.org/10.1016/j.applanim.2016.10.002   

Kuhad, R. C., Singh, A., Tripathi, K. K., Saxena, R. K., & Eriksson, K. E. L. (1997). Microorganisms as an alternative source of protein. Nutrition reviews, 55(3), 65-75. https://doi.org/10.1111/j.1753-4887.1997.tb01599.x 

Williams, R. A. (2021). Opportunities and challenges for the introduction of new food proteins. Annual Review of Food Science and Technology, 12, 75-91. https://doi.org/10.1146/annurev-food-061220-012838 

Zollman Thomas, O., & Bryant, C. (2021). Don't Have a Cow, Man: Consumer Acceptance of Animal-Free Dairy Products in Five Countries. Frontiers in Sustainable Food Systems, 223. https://doi.org/10.3389/fsufs.2021.678491 

Tavill, G. (2020). Industry challenges and approaches to food waste. Physiology & behavior, 223, 112993. https://doi.org/10.1016/j.physbeh.2020.112993       

Dou, Z., Toth, J. D., & Westendorf, M. L. (2018). Food waste for livestock feeding: Feasibility, safety, and sustainability implications. Global food security, 17, 154-161. https://doi.org/10.1016/j.gfs.2017.12.003  

Luciano, A., Tretola, M., Ottoboni, M., Baldi, A., Cattaneo, D., & Pinotti, L. (2020). Potentials and challenges of former food products (food leftover) as alternative feed ingredients. Animals, 10(1), 125. https://doi.org/10.3390/ani10010125 

Pinotti, L., Luciano, A., Ottoboni, M., Manoni, M., Ferrari, L., Marchis, D., & Tretola, M. (2021). Recycling food leftovers in feed as opportunity to increase the sustainability of livestock production. Journal of Cleaner Production, 294, 126290. https://doi.org/10.1016/j.jclepro.2021.126290 

Rajeh, C., Saoud, I. P., Kharroubi, S., Naalbandian, S., & Abiad, M. G. (2021). Food loss and food waste recovery as animal feed: a systematic review. Journal of Material Cycles and Waste Management, 23, 1–17. https://doi.org/10.1007/s10163-020-01102-6 

European Commission. (2015a). Closing the Loop-An EU Action Plan for the Circular Economy. Brussels: European Commission. Available at https://www.eea.europa.eu/policy-documents/com-2015-0614-final 

Popescu, M. F. (2019). Is Circular Economy Going to Reduce Waste and Create Jobs in the European Union?. Economic and Social Development: Book of Proceedings, 398-406.

Jagtap, S., Garcia-Garcia, G., Duong, L., Swainson, M., & Martindale, W. (2021). Codesign of food system and circular economy approaches for the development of livestock feeds from insect larvae. Foods, 10(8), 1701. https://doi.org/10.3390/foods10081701 

Zhu, Q., Jia, R., & Lin, X. (2019). Building sustainable circular agriculture in China: economic viability and entrepreneurship. Management Decision, 57(4), 1108-1122. https://doi.org/10.1108/MD-06-2018-0639      

Salami, S. A., Luciano, G., O'Grady, M. N., Biondi, L., Newbold, C. J., Kerry, J. P., & Priolo, A. (2019). Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Animal Feed Science and Technology, 251, 37-55. https://doi.org/10.1016/j.anifeedsci.2019.02.006 

Li, Y., Zhang, G. N., Xu, H. J., Zhou, S., Dou, X. J., Lin, C., Xing-Yi, Z., Hong-Bo, Z., & Zhang, Y. G. (2019). Effects of replacing alfalfa hay with Moringa oleifera leaves and peduncles on intake, digestibility, and rumen fermentation in dairy cows. Livestock Science, 220, 211-216. https://doi.org/10.1016/j.livsci.2019.01.005 

WRAP. (2016). Using surplus food in animal feed. Available at: https://wrap.org.uk/resources/tool/using-surplus-food-animal-feed. Accessed on 1 March 2022.  

Tallentire, C. W., Mackenzie, S. G., & Kyriazakis, I. (2018). Can novel ingredients replace soybeans and reduce the environmental burdens of European livestock systems in the future?. Journal of Cleaner Production, 187, 338-347. https://doi.org/10.1016/j.jclepro.2018.03.212 

de Souza, N. R. D., Junqueira, T. L., & Cavalett, O. (2021). Opportunities and challenges for bioenergy-livestock integrated systems in
Brazil. Industrial Crops and Products, 173, 114091. https://doi.org/10.1016/j.indcrop.2021.114091 

Stadtlander, T., Förster, S., Rosskothen, D., & Leiber, F. (2019). Slurry-grown duckweed (Spirodela polyrhiza) as a means to recycle nitrogen into feed for rainbow trout fry. Journal of Cleaner Production, 228, 86-93. https://doi.org/10.1016/j.jclepro.2019.04.196  

Sońta, M., Łozicki, A., Szymańska, M., Sosulski, T., Szara, E., Wąs, A., van Pruissen, G. W. P., & Cornelissen, R. L. (2020). Duckweed from a Biorefinery System: Nutrient Recovery Efficiency and Forage Value. Energies, 13(20), 5261. https://doi.org/10.3390/en13205261 

Lasekan, A., Bakar, F. A., & Hashim, D. (2013). Potential of chicken by-products as sources of useful biological resources. Waste Management, 33(3), 552-565. https://doi.org/10.1016/j.wasman.2012.08.001  

DiGiacomo, K., & Leury, B. J. (2019). Insect meal: a future source of protein feed for pigs?. Animal, 13(12), 3022-3030. https://doi.org/10.1017/S1751731119001873   

Woodgate, S. L., & Wilkinson, R. G. (2021). The role of rendering in relation to the bovine spongiform encephalopathy epidemic, the development of EU animal by‐product legislation and the reintroduction of rendered products into animal feeds. Annals of Applied Biology, 178(3), 430-441.  https://doi.org/10.1111/aab.12676 

EFSA Panel on Biological Hazards (BIOHAZ). (2011). Scientific Opinion on the revision of the quantitative risk assessment (QRA) of the BSE risk posed by processed animal proteins (PAPs). EFSA Journal, 9(1), 1947. Available at https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2011.1947  

Lecrenier, M. C., Veys, P., Fumière, O., Berben, G., Saegerman, C., & Baeten, V. (2020). Official feed control linked to the detection of animal byproducts: Past, present, and future. Journal of Agricultural and Food Chemistry, 68(31), 8093-8103. https://doi.org/10.1021/acs.jafc.0c02718

van der Fels‐Klerx, H. J., Camenzuli, L., Belluco, S., Meijer, N., & Ricci, A. (2018). Food safety issues related to uses of insects for feeds and foods. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1172-1183. https://doi.org/10.1111/1541-4337.12385 

Ribeiro, J. C., Sousa-Pinto, B., Fonseca, J., Fonseca, S. C., & Cunha, L. M. (2021). Edible insects and food safety: allergy. Journal of Insects as Food and Feed, 7(5), 833-847. https://doi.org/10.3920/JIFF2020.0065   

Meyer, A. M., Meijer, N., Hoek-Van den Hil, E. F., & Van der Fels-Klerx, H. J. (2021). Chemical food safety hazards of insects reared for food and feed. Journal of Insects as Food and Feed, 7(5), 823-831. https://doi.org/10.3920/JIFF2020.0085  

German Federal Institute for Risk Assessment (BfR), National Reference Laboratory for Animal protein in Feed, NRL‐AP, Garino, C., Zagon, J., & Braeuning, A. (2019). Insects in food and feed–allergenicity risk assessment and analytical detection. EFSA Journal, 17, e170907. https://doi.org/10.2903/j.efsa.2019.e170907  

‘Commission Regulation (EU) 2021/1372. (17 August 2021). Amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as regards the prohibition to feed non-ruminant farmed animals, other than fur animals, with protein derived from animal.’ Official Journal L295(64). Available at: https://eur-lex.europa.eu/oj/direct-access.html. Accessed on 15 December 2021

Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., Escámez, P. S. F., Gironés, R., Herman, L., Koutsoumanis, K., Lindqvist, R., Nørrung, B., Robertson, L., Ru, G., Sanaa, M., Skandamis, P., Snary, E., Speybroeck, N., Ter Kuile, B., Threlfall, J., Wahlström, H., Adkin, A., Greiner, M., Marchis, D., Prado, M., Da Silva Felicio, T., Ortiz-Pelaez, A., & Simmons, M. (2018). Updated quantitative risk assessment (QRA) of the BSE risk posed by processed animal protein (PAP). EFSA Journal, 16(7), e05314. https://doi.org/10.2903/j.efsa.2018.5314 

Madau, F. A., Arru, B., Furesi, R., & Pulina, P. (2020). Insect farming for feed and food production from a circular business model perspective. Sustainability, 12(13), 5418. https://doi.org/10.3390/su12135418   

Manceron, S., Ben Ari, T., & Dumas, P. (2014). Feeding proteins to livestock: Global land use and food vs. feed competition. Oilseeds and fats, Crops and Lipids, 21(4), D408. https://doi.org/10.1051/ocl/2014020 

Kim, S. W., Less, J. F., Wang, L., Yan, T., Kiron, V., Kaushik, S. J., & Lei, X. G. (2019). Meeting global feed protein demand: challenge, opportunity, and strategy. Annual Review of Animal Biosciences, 7, 221-243. https://doi.org/10.1146/annurev-animal-030117-014838 

van Huis, A., Rumpold, B. A., Van der Fels-Klerx, H. J., & Tomberlin, J. K. (2021). Advancing edible insects as food and feed in a circular economy. Journal of Insects as Food and Feed, 7(5), 935-948. https://doi.org/10.3920/JIFF2021.x005  

Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than previously estimated. Nature Communications, 12(1), 1-10. https://doi.org/10.1038/s41467-021-22702-2 

Song, X. P., Hansen, M. C., Potapov, P., Adusei, B., Pickering, J., Adami, M., Lima, A., Zalles, V., Stehman, S. V., Di Bella, C. M., Conde, M. C., Copati, E. J., Fernandes, L. B., Hernandez-Serna, A., Jantz, S. M., Pickens, A. H., Turubanova, S., & Tyukavina, A. (2021). Massive soybean expansion in South America since 2000 and implications for conservation. Nature Sustainability, 4(9), 784-792. https://doi.org/10.1038/s41893-021-00729-z  

Kastens, J. H., Brown, J. C., Coutinho, A. C., Bishop, C. R., & Esquerdo, J. C. D. (2017). Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PloS one, 12(4), e0176168. https://doi.org/10.1371/journal.pone.0176168 

Lathuilliere, M. J., Miranda, E. J., Bulle, C., Couto, E. G., & Johnson, M. S. (2017). Land occupation and transformation impacts of soybean production in Southern Amazonia, Brazil. Journal of Cleaner Production, 149, 680-689. https://doi.org/10.1016/j.jclepro.2017.02.120 

Paiva, P. F. P. R., de Lourdes Pinheiro Ruivo, M., da Silva Júnior, O. M., de Nazaré Martins Maciel, M., Braga, T. G. M., de Andrade, M. M. N., dos Santos Junior, P. C., da Rocha, E. S., de Freitas, T. P. M., da Silva Leite, T. V., Gama, L. H. O. M., de Sousa Santos, L., da Silva, M. G., Silva, E. R. R., & Ferreira, B. M. (2020). Deforestation in protect areas in the Amazon: a threat to biodiversity. Biodiversity and Conservation, 29(1), 19-38. https://doi.org/10.1007/s10531-019-01867-9 

Cordeiro, M. R., Rotz, A., Kroebel, R., Beauchemin, K. A., Hunt, D., Bittman, S., Koenig, K. M., & McKenzie, D. B. (2019). Prospects of forage production in northern regions under climate and land-use changes: a case-study of a dairy farm in Newfoundland, Canada. Agronomy, 9(1), 31. https://doi.org/10.3390/agronomy9010031  

Alig, R. J., & Ahearn, M. C. (2017). Effects of policy and technological change on land use. In Economics of Rural Land-use Change (pp. 43-56). Routledge. eBook ISBN: 9781315257020

Øverland, M., Mydland, L. T., & Skrede, A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture, 99(1), 13-24. https://doi.org/10.1002/jsfa.9143 

Koesling, M., Kvadsheim, N. P., Halfdanarson, J., Emblemsvåg, J., & Rebours, C. (2021). Environmental impacts of protein-production from farmed seaweed: comparison of possible scenarios in Norway. Journal of Cleaner Production, 307, 127301. https://doi.org/10.1016/j.jclepro.2021.127301 

Food and Agriculture Organization of the United Nations. (2013). Food wastage footprint: Impacts on natural resources: Summary report. FAO. Available at https://www.fao.org/3/i3347e/i3347e.pdf  

Tonini, D., Albizzati, P. F., & Astrup, T. F. (2018). Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Management, 76, 744-766. https://doi.org/10.1016/j.wasman.2018.03.032  

Schader, C., Muller, A., Scialabba, N. E. H., Hecht, J., Isensee, A., Erb, K. H., Smith, P., Makkar, H. P. S., Klocke, P., Leiber, F., Schwegler, P., Stolze, M., & Niggli, U. (2015). Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. Journal of the Royal Society Interface, 12(113), 20150891. https://doi.org/10.1098/rsif.2015.0891 

Doi, H., & Mulia, R. N. (2021). Future Land Use for Insect Meat Production Among Countries: A Global Classification. Frontiers in Nutrition, 8, 661056. https://doi.org/10.3389/fnut.2021.661056 

Shah, F., & Wu, W. (2019). Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability, 11(5), 1485. https://doi.org/10.3390/su11051485  

Johnson, M. G. (2018). The role of soil management in sequestering soil carbon. In Soil Management and Greenhouse Effect (pp. 351-364). CRC Press.

Olsson, L., Barbosa, H., Bhadwal, S., Cowie, A., Delusca, K., Flores-Renteria, D., Hermans, K., Jobbagy, E., Kurz, W., Li, D., Sonwa, D. J., Stringer, L. (2019). Land Degradation. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [Shukla, P. R.,  Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H. O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., & Malley, J. (eds.)]

Castanheira, É. G., & Freire, F. (2013). Greenhouse gas assessment of soybean production: implications of land use change and different cultivation systems. Journal of Cleaner Production, 54, 49-60. https://doi.org/10.1016/j.jclepro.2013.05.026      

Hoang, N. T., & Kanemoto, K. (2021). Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nature Ecology & Evolution, 5(6), 845-853. https://doi.org/10.1038/s41559-021-01417-z 

Tang, K. H. D., & Yap, P. S. (2020). A Systematic Review of Slash-and-Burn Agriculture as an Obstacle to Future-Proofing Climate Change. In Proceedings of The International Conference on Climate Change (Vol. 4, No. 1). https://doi.org/10.17501/2513258X.2020.4101 

Hoffman, E., Cavigelli, M. A., Camargo, G., Ryan, M., Ackroyd, V. J., Richard, T. L., & Mirsky, S. (2018). Energy use and greenhouse gas emissions in organic and conventional grain crop production: accounting for nutrient inflows. Agricultural Systems, 162, 89-96. https://doi.org/10.1016/j.agsy.2018.01.021 

Brookes, G., & Barfoot, P. (2020). GM crops: global socio-economic and environmental impacts 1996–2018. Available at: https://www.pgeconomics.co.uk/pdf/globalimpactfinalreportJuly2020.pdf. Accessed on 15 December 2021 

Chen, P., Zhu, G., Kim, H. J., Brown, P. B., & Huang, J. Y. (2020). Comparative life cycle assessment of aquaponics and hydroponics in the Midwestern United States. Journal of Cleaner Production, 275, 122888. https://doi.org/10.1016/j.jclepro.2020.122888 

Taelman, S. E., De Meester, S., Van Dijk, W., Da Silva, V., & Dewulf, J. (2015). Environmental sustainability analysis of a protein-rich livestock feed ingredient in The Netherlands: Microalgae production versus soybean import. Resources, Conservation and Recycling, 101, 61-72. https://doi.org/10.1016/j.resconrec.2015.05.013 

Vandermeersch, T., Alvarenga, R. A. F., Ragaert, P., & Dewulf, J. (2014). Environmental sustainability assessment of food waste valorization options. Resources, Conservation and Recycling, 87, 57-64. https://doi.org/10.1016/j.resconrec.2014.03.008

van Zanten, H. H., Mollenhorst, H., Oonincx, D. G., Bikker, P., Meerburg, B. G., & de Boer, I. J. (2015). From environmental nuisance to environmental opportunity: housefly larvae convert waste to livestock feed. Journal of Cleaner Production, 102, 362-369. https://doi.org/10.1016/j.jclepro.2015.04.106 

Wang, Y. S., & Shelomi, M. (2017). Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods, 6(10), 91. https://doi.org/10.3390/foods6100091  

Bosch, G., Van Zanten, H. H. E., Zamprogna, A., Veenenbos, M., Meijer, N. P., Van der Fels-Klerx, H. J., & Van Loon, J. J. A. (2019). Conversion of organic resources by black soldier fly larvae: legislation, efficiency and environmental impact. Journal of Cleaner Production, 222, 355-363. https://doi.org/10.1016/j.jclepro.2019.02.270 

Jansson, A., & Berggren, Å. (2015). Insects as food-something for the future? A report from Future Agriculture. Uppsala, Swedish University of Agricultural Sciences (SLU) Available at https://pub.epsilon.slu.se/12935/7/jansson_a_berggren_a_151230.pdf  

Lima, M., da Silva Junior, C. A., Rausch, L., Gibbs, H. K., & Johann, J. A. (2019). Demystifying sustainable soy in Brazil. Land Use Policy, 82, 349-352. https://doi.org/10.1016/j.landusepol.2018.12.016 

Pacheco, F. A. L., Fernandes, L. F. S., Junior, R. F. V., Valera, C. A., & Pissarra, T. C. T. (2018). Land degradation: Multiple environmental consequences and routes to neutrality. Current Opinion in Environmental Science & Health, 5, 79-86. https://doi.org/10.1016/j.coesh.2018.07.002 

Andow, D. A. (2003). UK farm-scale evaluations of transgenic herbicide-tolerant crops. Nature Biotechnology, 21(12), 1453-1454.
Tsatsakis, A. M., Nawaz, M. A., Kouretas, D., Balias, G., Savolainen, K., Tutelyan, V. A., Golokhvast, K. S., Lee, J. D., Yang, S. H., & Chung, G. (2017). Environmental impacts of genetically modified plants: a review. Environmental Research, 156, 818-833. http://dx.doi.org/10.1016/j.envres.2017.03.011 

Schütte, G., Eckerstorfer, M., Rastelli, V., Reichenbecher, W., Restrepo-Vassalli, S., Ruohonen-Lehto, M., Wuest Saucy, A. G., & Mertens, M. (2017). Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environmental Sciences Europe, 29(1), 1-12. https://doi.org/10.1186/s12302-016-0100-y 

Relyea, R. A. (2005). The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecological applications, 15(2), 618-627. https://doi.org/10.1890/03-5342  

Food and Agriculture Organization (FAO). (2016a). Environmental performance of animal feeds supply chains: Guidelines for assessment. Livestock Environmental Assessment and Performance Partnership. FAO, Rome, Italy        

Zortea, R. B., Maciel, V. G., & Passuello, A. (2018). Sustainability assessment of soybean production in Southern Brazil: A life cycle approach. Sustainable Production and Consumption, 13, 102-112. https://doi.org/10.1016/j.spc.2017.11.002 

Paul, M. J., Nuccio, M. L., & Basu, S. S. (2018). Are GM crops for yield and resilience possible?. Trends in Plant Science, 23(1), 10-16.  https://doi.org/10.1016/j.tplants.2017.09.007 

Zheng, Y., Jin, R., Zhang, X., Wang, Q., & Wu, J. (2019). The considerable environmental benefits of seaweed aquaculture in China. Stochastic Environmental Research and Risk Assessment, 33(4), 1203-1221. https://doi.org/10.1007/s00477-019-01685-z  

Gao, G., Gao, L., Jiang, M., Jian, A., & He, L. (2021). The potential of seaweed cultivation to achieve carbon neutrality and mitigate deoxygenation and eutrophication. Environmental Research Letters, 17(1), 014018. https://doi.org/10.1088/1748-9326/ac3fd9 

Salemdeeb, R., Zu Ermgassen, E. K., Kim, M. H., Balmford, A., & Al-Tabbaa, A. (2017). Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. Journal of Cleaner Production, 140, 871-880. https://doi.org/10.1016/j.jclepro.2016.05.049 

Trabue, S. L., Kerr, B. J., Scoggin, K. D., Andersen, D., & Van Weelden, M. (2021). Swine diets impact manure characteristics and gas emissions: Part II protein source. Science of The Total Environment, 763, 144207.

Elahi, U., Xu, C., Wang, J., Lin, J., Wu, S., Zhang, H., & Qi, G. (2022). Insect meal as a feed ingredient for poultry. Animal Bioscience, 35(2), 332-346. https://doi.org/10.5713/ab.21.0435 

Huygens, D., Orveillon, G., Lugato, E., Tavazzi, S., Comero, S., Jones, A., Gawlik, B., & Saveyn, H. (2020). Technical proposals for the safe use of processed manure above the threshold established for Nitrate Vulnerable Zones by the Nitrates Directive (91/676/EEC). Publications Office of the European Union, Luxembourg. 

Mekonnen, M. M., & Hoekstra, A. Y. (2020). Sustainability of the blue water footprint of crops. Advances in Water Resources, 143, 103679. https://doi.org/10.1016/j.advwatres.2020.103679

Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577-1600. https://doi.org/10.5194/hess-15-1577-2011

Dinar, A., Tieu, A., & Huynh, H. (2019). Water scarcity impacts on global food production. Global Food Security, 23, 212-226. https://doi.org/10.1016/j.gfs.2019.07.007

Kumar, K., Gambhir, G., Dass, A., Tripathi, A. K., Singh, A., Jha, A. K., Yadava, P., Choudhary, M., & Rakshit, S. (2020). Genetically modified crops: current status and future prospects. Planta, 251(91). https://doi.org/10.1007/s00425-020-03372-8

Atzori, G., Nissim, W. G., Caparrotta, S., Santantoni, F., & Masi, E. (2019). Seawater and water footprint in different cropping systems: a chicory (Cichorium intybus L.) case study. Agricultural Water Management, 211, 172-177. https://doi.org/10.1016/j.agwat.2018.09.040

Cifuentes‐Torres, L., Mendoza‐Espinosa, L. G., Correa‐Reyes, G., & Daesslé, L. W. (2021). Hydroponics with wastewater: a review of trends and opportunities. Water and Environment Journal, 35(1), 166-180. https://doi.org/10.1111/wej.12617

Campbell, I., Macleod, A., Sahlmann, C., Neves, L., Funderud, J., Øverland, M., Hughes, A. D., & Stanley, M. (2019). The environmental risks associated with the development of seaweed farming in Europe-prioritizing key knowledge gaps. Frontiers in Marine Science, 6, 107. https://doi.org/10.3389/fmars.2019.00107

Santos, J. F. S., & Naval, L. P. (2020). Spatial and temporal dynamics of water footprint for soybean production in areas of recent agricultural expansion of the Brazilian savannah (Cerrado). Journal of Cleaner Production, 251, 119482. https://doi.org/10.1016/j.jclepro.2019.119482

Zhao, X., Liao, X., Chen, B., Tillotson, M. R., Guo, W., & Li, Y. (2019). Accounting global grey water footprint from both consumption and production perspectives. Journal of Cleaner Production, 225, 963-971. https://doi.org/10.1016/j.jclepro.2019.04.037

Malone, T. C., & Newton, A. (2020). The globalization of cultural eutrophication in the coastal ocean: causes and consequences. Frontiers in Marine Science, 7, 670. https://doi.org/10.3389/fmars.2020.00670

Food and Agriculture Organization (FAO). (2016b). Handbook on agricultural cost of production statistics: Guidelines for data collection, compilation and dissemination. FAO, Rome, Italy.

Oliveira, A. L. R. D., Filassi, M., Lopes, B. F. R., & Marsola, K. B. (2020). Logistical transportation routes optimization for Brazilian soybean: an application of the origin-destination matrix. Ciência Rural, 51. http://doi.org/10.1590/0103-8478cr20190786

Lo, B., Kasapis, S., & Farahnaky, A. (2021). Lupin protein: Isolation and techno-functional properties, a review. Food Hydrocolloids, 112, 106318. https://doi.org/10.1016/j.foodhyd.2020.106318

Popp, J., Harangi-Rákos, M., Gabnai, Z., Balogh, P., Antal, G., & Bai, A. (2016). Biofuels and their co-products as livestock feed: global economic and environmental implications. Molecules, 21(3), 285. https://doi.org/10.3390/molecules21030285

O’Malley, J., & Searle, S. (2021). “The Impact of the US Renewable Fuel Standard on Food and Feed Prices”. Technical report, International Council on Clean Transportation. https://theicct.org/sites/default/files/publications/RFS-and-feed-prices-jan2021.pdf

van den Burg, S. W., van Duijn, A. P., Bartelings, H., van Krimpen, M. M., & Poelman, M. (2016). The economic feasibility of seaweed production in the North Sea. Aquaculture Economics & Management, 20(3), 235-252. https://doi.org/10.1080/13657305.2016.1177859

Emblemsvåg, J., Kvadsheim, N. P., Halfdanarson, J., Koesling, M., Nystrand, B. T., Sunde, J., & Rebours, C. (2020). Strategic considerations for establishing a large-scale seaweed industry based on fish feed application: a Norwegian case study. Journal of Applied Phycology, 32(6), 4159-4169. https://doi.org/10.1007/s10811-020-02234-w

Taghizadeh-Hesary, F., Rasoulinezhad, E., & Yoshino, N. (2019). Energy and food security: Linkages through price volatility. Energy Policy, 128, 796-806. https://doi.org/10.1016/j.enpol.2018.12.043

Punzi, M. T. (2019). The impact of energy price uncertainty on macroeconomic variables. Energy Policy, 129, 1306-1319. https://doi.org/10.1016/j.enpol.2019.03.015

Girma, F., & Gebremariam, B. (2018). Review on hydroponic feed value to livestock production. Journal of Scientific and Innovative Research, 7(4), 106-109.

Greenfeld, A., Becker, N., McIlwain, J., Fotedar, R., & Bornman, J. F. (2019). Economically viable aquaponics? Identifying the gap between potential and current uncertainties. Reviews in Aquaculture, 11(3), 848-862. https://doi.org/10.1111/raq.12269

Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K. V., Jijakli, H., & Thorarinsdottir, R. (2015). Challenges of sustainable and commercial aquaponics. Sustainability, 7(4), 4199-4224. https://doi.org/10.3390/su7044199

Palm, H. W., Knaus, U., Appelbaum, S., Goddek, S., Strauch, S. M., Vermeulen, T., Jijakli, M. H., & Kotzen, B. (2018). Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquaculture International, 26(3), 813-842. https://doi.org/10.1007/s10499-018-0249-z

Arru, B., Furesi, R., Gasco, L., Madau, F. A., & Pulina, P. (2019). The introduction of insect meal into fish diet: The first economic analysis on European sea bass farming. Sustainability, 11(6), 1697. https://doi.org/10.3390/su11061697

WWF . (2021).  The future of feed: a WWF roadmap to accelerating insect protein in UK feeds. Available at: https://www.wwf.org.uk/sites/default/files/2021-06/The_future_of_feed_July_2021.pdf. Accessed on 15 December 2021

Chia, S. Y., Tanga, C. M., van Loon, J. J., & Dicke, M. (2019). Insects for sustainable animal feed: Inclusive business models involving smallholder farmers. Current Opinion in Environmental Sustainability, 41, 23-30. https://doi.org/10.1016/j.cosust.2019.09.003 
Oonincx, D. G. A. B., & Finke, M. D. (2021). Nutritional value of insects and ways to manipulate their composition. Journal of Insects as Food and Feed, 7(5), 639-659. https://doi.org/10.3920/JIFF2020.0050

Pinotti, L., & Ottoboni, M. (2021). Substrate as insect feed for bio-mass production. Journal of Insects as Food and Feed, 7(5), 585-596. https://doi.org/10.3920/JIFF2020.0110

de Miranda, J. R., Granberg, F., Onorati, P., Jansson, A., & Berggren, Å. (2021). Virus prospecting in crickets—Discovery and strain divergence of a novel iflavirus in wild and cultivated Acheta domesticus. Viruses, 13(3), 364. https://doi.org/10.3390/v13030364

Truzzi, C., Annibaldi, A., Girolametti, F., Giovannini, L., Riolo, P., Ruschioni, S., Olivotto, I., & Illuminati, S. (2020). A chemically safe way to produce insect biomass for possible application in feed and food production. International journal of environmental research and public health, 17(6), 2121. https://doi.org/10.3390/ijerph17062121

Ojha, S., Bußler, S., Psarianos, M., Rossi, G., & Schlüter, O. K. (2021). Edible insect processing pathways and implementation of emerging technologies. Journal of Insects as Food and Feed, 7(5), 877-900. https://doi.org/10.3920/JIFF2020.0121

Sindermann, D., Heidhues, J., Kirchner, S., Stadermann, N., & Kühl, A. (2021). Industrial processing technologies for insect larvae. Journal of Insects as Food and Feed, 7(5), 857-875. https://doi.org/10.3920/JIFF2020.0103       

Lioutas, E. D., & Charatsari, C. (2021). Enhancing the ability of agriculture to cope with major crises or disasters: What the experience of COVID-19 teaches us. Agricultural Systems, 187, 103023. https://doi.org/10.1016/j.agsy.2020.103023

Rzymski, P., Kulus, M., Jankowski, M., Dompe, C., Bryl, R., Petitte, J. N., Kempisty, B., & Mozdziak, P. (2021). COVID-19 pandemic is a call to search for alternative protein sources as food and feed: A review of possibilities. Nutrients, 13(1), 150. https://doi.org/10.3390/nu13010150 

Henry, R. (2020). Innovations in agriculture and food supply in response to the COVID-19 pandemic. Molecular Plant, 13(8), 1095. https://doi.org/10.1016/j.molp.2020.07.011

Choi, H. S., Jansson, T., Matthews, A., & Mittenzwei, K. (2021). European agriculture after Brexit: does anyone benefit from the divorce?. Journal of Agricultural Economics, 72(1), 3-24. https://doi.org/10.1111/1477-9552.12396 

Yao, G., Zhang, X., Davidson, E. A., & Taheripour, F. (2021). The increasing global environmental consequences of a weakening US–China crop trade relationship. Nature Food, 2(8), 578-586. https://doi.org/10.1038/s43016-021-00338-1 

Institute Du Porc (IFIP). (2022). Crise Russo-Ukrainienne : impacts sur les marchés des matières premières pour les filières animals. Available at: https://ifip.asso.fr/crise-russo-ukrainienne-impacts-sur-les-marches-des-matieres-premieres-pour-les-filieres-animales/. Accessed on 1 March 2022.

Food and Agriculture Organization Statistics Division (FAOSTAT). (2021). Available at: https://www.fao.org/faostat/en/#home. Accessed on 1 March 2022.

Gasco, L., Biasato, I., Dabbou, S., Schiavone, A., & Gai, F. (2019). Animals fed insect-based diets: State-of-the-art on digestibility, performance and product quality. Animals, 9(4), 170. https://doi.org/10.3390/ani9040170  

Gasco, L., Finke, M., & Van Huis, A. (2018). Can diets containing insects promote animal health?. Journal of Insects as Food and Feed, 4(1), 1-4. https://doi.org/10.3920/JIFF2018.x001 

Edwards 3rd, H. M., Douglas, M. W., Parsons, C. M., & Baker, D. H. (2000). Protein and energy evaluation of soybean meals processed from genetically modified high-protein soybeans. Poultry Science, 79(4), 525-527. https://doi.org/10.1093/ps/79.4.525 

Sauvant, D., Perez, J. M., & Tran, G. (Eds.). (2004). Tables of composition and nutritional value of feed materials: pigs, poultry, cattle, sheep, goats, rabbits, horses and fish. Wageningen Academic Publishers.

Giraldo, P. A., Shinozuka, H., Spangenberg, G. C., Cogan, N. O., & Smith, K. F. (2019). Safety assessment of genetically modified feed: is there any difference from food?. Frontiers in Plant Science, 10, 1592. https://doi.org/10.3389/fpls.2019.01592      

Coudert, E., Baéza, E., & Berri, C. (2020). Use of algae in poultry production: A review. World's Poultry Science Journal, 76(4), 767-786. https://doi.org/10.1080/00439339.2020.1830012 

Morais, T., Inácio, A., Coutinho, T., Ministro, M., Cotas, J., Pereira, L., & Bahcevandziev, K. (2020). Seaweed potential in the animal feed: A review. Journal of Marine Science and Engineering, 8(8), 559. https://doi.org/10.3390/jmse8080559 

Sońta, M., Rekiel, A., Więcek, J., Batorska, M., & Puppel, K. (2021). Alternative protein sources vs. GM soybean meal as feedstuff for pigs-meat quality and health-promoting indicators. Animals, 11(1), 177. https://doi.org/10.3390/ani11010177

EFSA Panel on Genetically Modified Organisms (GMO), Naegeli, H., Bresson, J. L., Dalmay, T., Dewhurst, I. C., Epstein, M. M., Firbank, L. G., Guerche, P., Hejatko, J., Moreno, F. J., Mullins, E., Nogué, F., Rostoks, N., Serrano, J. J. S., Savoini, G., Veromann, E., & Veronesi, F. (2020). Assessment of genetically modified soybean SYHT 0H2 for food and feed uses, import and processing, under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐DE‐2012‐111). EFSA Journal, 18(1), e05946.

Buzoianu, S. G., Walsh, M. C., Rea, M. C., Cassidy, J. P., Ryan, T. P., Ross, R. P., Gardiner, G. E., & Lawlor, P. G. (2013). Transgenerational effects of feeding genetically modified maize to nulliparous sows and offspring on offspring growth and health. Journal of Animal Science, 91(1), 318-330. https://doi.org/10.2527/jas.2012-5360 

Kebede, H., Liu, X., Jin, J., & Xing, F. (2020). Current status of major mycotoxins contamination in food and feed in Africa. Food Control, 110, 106975. https://doi.org/10.1016/j.foodcont.2019.106975  

Conte, G., Fontanelli, M., Galli, F., Cotrozzi, L., Pagni, L., & Pellegrini, E. (2020). Mycotoxins in feed and food and the role of ozone in their detoxification and degradation: An update. Toxins, 12(8), 486. https://doi.org/10.3390/toxins12080486  

Mahato, D. K., Devi, S., Pandhi, S., Sharma, B., Maurya, K. K., Mishra, S., Dhawan, K., Selvakumar, R., Kamle, M., Mishra, A. K., & Kumar, P. (2021). Occurrence, impact on agriculture, human health, and management strategies of zearalenone in food and feed: A review. Toxins, 13(2), 92. https://doi.org/10.3390/toxins13020092  

Alshannaq, A. F., Gibbons, J. G., Lee, M. K., Han, K. H., Hong, S. B., & Yu, J. H. (2018). Controlling aflatoxin contamination and propagation of Aspergillus flavus by a soy-fermenting Aspergillus oryzae strain. Scientific Reports, 8(1), 1-14. https://doi.org/10.1038/s41598-018-35246-1  

Netherwood, T., Martín-Orúe, S. M., O'Donnell, A. G., Gockling, S., Graham, J., Mathers, J. C., & Gilbert, H. J. (2004). Assessing the survival of transgenic plant DNA in the human gastrointestinal tract. Nature Biotechnology, 22(2), 204-209. https://doi.org/10.1038/nbt934 

Dona, A., & Arvanitoyannis, I. S. (2009). Health risks of genetically modified foods. Critical Reviews in Food Science and Nutrition, 49(2), 164-175. https://doi.org/10.1080/10408390701855993

Korwin-Kossakowska, A., Gralak, B., Faliszewska, G., & Karpiniak, E. (2020). The influence of GMO feed on ecosystem stability of the gastrointestinal tract in different species-a review. Animal Science Papers & Reports, 38(3).  

Diaz-Llano, G., & Smith, T. K. (2006). Effects of feeding grains naturally contaminated with Fusarium mycotoxins with and without a polymeric glucomannan mycotoxin adsorbent on reproductive performance and serum chemistry of pregnant gilts. Journal of Animal Science, 84(9), 2361-2366. https://doi.org/10.2527/jas.2006-213  

Dunn, E. S., Vicini, J. L., Glenn, K. C., Fleischer, D. M., & Greenhawt, M. J. (2017). The allergenicity of genetically modified foods from genetically engineered crops: A narrative and systematic review. Annals of Allergy and Asthma Immunology, 119(3), 2124-222.e3.

Dubois, A. E., Pagliarani, G., Brouwer, R. M., Kollen, B. J., Dragsted, L. O., Eriksen, F. D., Callesen, O., Gilissen, L. J. W. J., Krens, F. A., Visser, R. G. F., Smulders, M. J. M., Vlieg-Boerstra, B. J., Flokstra-de Blok, B. J., & Van De Weg, W. E. (2015). First successful reduction of clinical allergenicity of food by genetic modification: Mal d 1‐silenced apples cause fewer allergy symptoms than the wild‐type cultivar. Allergy, 70(11), 1406-1412. https://doi.org/10.1111/all.12684  

Becton, L., Davis, P., Sundberg, P., & Wilkinson, L. (2022). Feed safety collaborations: Experiences, progress and challenges. Transboundary and Emerging Diseases, 69(1), 182-188. https://doi.org/10.1111/tbed.14297  

Ráduly, Z., Price, R. G., Dockrell, M. E., Csernoch, L., & Pócsi, I. (2021). Urinary Biomarkers of Mycotoxin Induced Nephrotoxicity—Current Status and Expected Future Trends. Toxins, 13(12), 848. https://doi.org/10.3390/toxins13120848   

Magnoli, A. P., Poloni, V. L., & Cavaglieri, L. (2019). Impact of mycotoxin contamination in the animal feed industry. Current Opinion in Food Science, 29, 99-108. https://doi.org/10.1016/j.cofs.2019.08.009

Santo, R. E., Kim, B. F., Goldman, S. E., Dutkiewicz, J., Biehl, E., Bloem, M. W., Neff, R. A., & Nachman, K. E. (2020). Considering plant-based meat substitutes and cell-based meats: a public health and food systems perspective. Frontiers in Sustainable Food Systems, 134. https://doi.org/10.3389/fsufs.2020.00134  

Pinotti, L., Giromini, C., Ottoboni, M., Tretola, M., & Marchis, D. (2019). Insects and former foodstuffs for upgrading food waste biomasses/streams to feed ingredients for farm animals. Animal, 13(7), 1365-1375. https://doi.org/10.1017/S1751731118003622 

Schrögel, P., & Wätjen, W. (2019). Insects for food and feed-safety aspects related to mycotoxins and metals. Foods, 8(8), 288. https://doi.org/10.3390/foods8080288 

Smith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018). Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5(3), 375-386. https://doi.org/10.1007/s40572-018-0206-z

Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment, 702, 134455. https://doi.org/10.1016/j.scitotenv.2019.134455 

Krasucka, P., Bogusz, A., Baranowska-Wójcik, E., Czech, B., Szwajgier, D., Rek, M., Ok, Y. S., & Oleszczuk, P. (2022). Digestion of plastics using in vitro human gastrointestinal tract and their potential to adsorb emerging organic pollutants. Science of The Total Environment, 843, 157108. https://doi.org/10.1016/j.scitotenv.2022.157108  

Advisory Committee on Animal Feedingstuffs (ACAF) (2009). Potential for carry-over of allergens from animal feed into derived animal products. Available at:  https://acaf.food.gov.uk/sites/default/files/mnt/drupal_data/sources/files/multimedia/pdfs/committee/acaf0904.pdf  Accessed on 20 March 2022

Testa, M., Stillo, M., Maffei, G., Andriolo, V., Gardois, P., & Zotti, C. M. (2017). Ugly but tasty: A systematic review of possible human and animal health risks related to entomophagy. Critical Reviews in Food Science and Nutrition, 57(17), 3747-3759. https://doi.org/10.1080/10408398.2016.1162766 

Bingemann, T. A., Santos, C. B., Russell, A. F., & Anagnostou, A. (2019). Lupin: An emerging food allergen in the United States. Annals of Allergy, Asthma & Immunology, 122(1), 8-10. https://doi.org/10.1016/j.anai.2018.09.467 

Gultekin, F., Oner, M. E., Savas, H. B., & Dogan, B. (2020). Food additives and microbiota. Northern clinics of Istanbul, 7(2), 192. https://doi.org/10.14744/nci.2019.92499   

Rinninella, E., Cintoni, M., Raoul, P., Gasbarrini, A., & Mele, M. C. (2020). Food additives, gut microbiota, and irritable Bowel syndrome: A hidden track. International Journal of Environmental Research and Public Health, 17(23), 8816. https://doi.org/10.3390/ijerph17238816 

Saito, Y., Saito, H., & Sembokuya, Y. (2009). Consumer evaluations of pork from hogs raised on recycled food waste. Agricultural Information Research, 18(3), 152-161. https://doi.org/10.3173/air.18.152  

Borrello, M., Caracciolo, F., Lombardi, A., Pascucci, S., & Cembalo, L. (2017). Consumers’ perspective on circular economy strategy for reducing food waste. Sustainability, 9(1), 141. https://doi.org/10.3390/su9010141  

Bhatt, S., Lee, J., Deutsch, J., Ayaz, H., Fulton, B., & Suri, R. (2018). From food waste to value‐added surplus products (VASP): Consumer acceptance of a novel food product category. Journal of Consumer Behaviour, 17(1), 57-63. https://doi.org/10.1002/cb.1689 

Mens, A., Cone, J., van den Borne, B., & Bosch, G. (2021). Capacities of animals to make agri-food systems more circular (No. 1323). Wageningen Livestock Research. Public Report 1323. Available at https://library.wur.nl/WebQuery/wurpubs/fulltext/548324 

Westendorf, M. L. (Ed.). (2000). Food waste to animal feed (1st ed.). Ames: Iowa State University Press  

Jayathilake, N., Aheeyar, M., & Drechsel, P. (2022). Food Waste to Livestock Feed: Prospects and Challenges for Swine Farming in Peri-urban Sri Lanka. Circular Economy and Sustainability, 1-15. https://doi.org/10.1007/s43615-022-00168-8      

Swain, B. B., & Teufel, N. (2017). The impact of urbanisation on crop–livestock farming system: a comparative case study of India and Bangladesh. Journal of Social and Economic Development, 19(1), 161-180. https://doi.org/10.1007/s40847-017-0038-y 

Marinoudi, V., Sørensen, C. G., Pearson, S., & Bochtis, D. (2019). Robotics and labour in agriculture. A context consideration. Biosystems Engineering, 184, 111-121. https://doi.org/10.1016/j.biosystemseng.2019.06.013 

Elahi, E., Weijun, C., Zhang, H., & Abid, M. (2019). Use of artificial neural networks to rescue agrochemical-based health hazards: A resource optimisation method for cleaner crop production. Journal of Cleaner Production, 238, 117900. https://doi.org/10.1016/j.jclepro.2019.117900  

Rukundo, E., Liu, S., Dong, Y., Rutebuka, E., Asamoah, E. F., Xu, J., & Wu, X. (2018). Spatio-temporal dynamics of critical ecosystem services in response to agricultural expansion in Rwanda, East Africa. Ecological Indicators, 89, 696-705. https://doi.org/10.1016/j.ecolind.2018.02.032  

Flach, R., Abrahão, G., Bryant, B., Scarabello, M., Soterroni, A. C., Ramos, F. M., Valin, H., Obersteiner, M., & Cohn, A. S. (2021). Conserving the Cerrado and Amazon biomes of Brazil protects the soy economy from damaging warming. World Development, 146, 105582. https://doi.org/10.1016/j.worlddev.2021.105582 

Weindl, I., Ost, M., Wiedmer, P., Schreiner, M., Neugart, S., Klopsch, R., Kühnhold, H., Kloas, W., Henkel, I. M., Schlüter, O., Bußler, S., Bellingrath-Kimura, S. D., Ma, H., Grune, T., Rolinski, S., & Klaus, S. (2020). Sustainable food protein supply reconciling human and ecosystem health: A Leibniz Position. Global Food Security, 25, 100367. https://doi.org/10.1016/j.gfs.2020.100367 

Verbeke, W., Spranghers, T., De Clercq, P., De Smet, S., Sas, B., & Eeckhout, M. (2015). Insects in animal feed: Acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Animal Feed Science and Technology, 204, 72-87. https://doi.org/10.1016/j.anifeedsci.2015.04.001 

Onwezen, M. C., Van den Puttelaar, J., Verain, M. C. D., & Veldkamp, T. (2019). Consumer acceptance of insects as food and feed: The relevance of affective factors. Food Quality and Preference, 77, 51-63. https://doi.org/10.1016/j.foodqual.2019.04.011 

Altmann, B. A., Anders, S., Risius, A., & Mörlein, D. (2022). Information effects on consumer preferences for alternative animal feedstuffs. Food Policy, 106, 102192. https://doi.org/10.1016/j.foodpol.2021.102192  

Khaemba, C. N., Kidoido, M. M., Owuor, G., & Tanga, C. M. (2022). Consumers’ perception towards eggs from laying hens fed commercial black soldier fly (Hermetia illucens) larvae meal-based feeds. Poultry Science, 101(3), 101645. https://doi.org/10.1016/j.psj.2021.101645 

Montgomery, H., Haughey, S. A., & Elliott, C. T. (2020). Recent food safety and fraud issues within the dairy supply chain (2015–2019). Global Food Security, 26, 100447. https://doi.org/10.1016/j.gfs.2020.100447 

Schiffling, S., & Valantasis Kanellos, N. (2022). Five essential commodities that will be hit by war in Ukraine. The Conversation. https://researchonline.ljmu.ac.uk/id/eprint/16422   

United States Department of Agriculture, Foreign Agricultural Service (USDA). (2022). Grain and Feed Update. Available at: https://www.fas.usda.gov/. Accessed on 1 March 2022.

Patterson, J., Schulz, K., Vervoort, J., Van Der Hel, S., Widerberg, O., Adler, C., Hurlbert, M., Anderton, K., Sethi, M., & Barau, A. (2017). Exploring the governance and politics of transformations towards sustainability. Environmental Innovation and Societal Transitions, 24, 1-16. https://doi.org/10.1016/j.eist.2016.09.001 

Green, A., Nemecek, T., Chaudhary, A., & Mathys, A. (2020). Assessing nutritional, health, and environmental sustainability dimensions of agri-food production. Global Food Security, 26, 100406. https://doi.org/10.1016/j.gfs.2020.100406 

Klapwijk, C. J., Van Wijk, M. T., Rosenstock, T. S., van Asten, P. J., Thornton, P. K., & Giller, K. E. (2014). Analysis of trade-offs in agricultural systems: current status and way forward. Current Opinion in Environmental Sustainability, 6, 110-115. https://doi.org/10.1016/j.cosust.2013.11.012 

Kanter, D. R., Musumba, M., Wood, S. L., Palm, C., Antle, J., Balvanera, P., Dale, V. H., Havlik, P., Kline, K. L., Scholes, R. J., Thornton, P., Tittonell, P., & Andelman, S. (2018). Evaluating agricultural trade-offs in the age of sustainable development. Agricultural Systems, 163, 73-88. https://doi.org/10.1016/j.agsy.2016.09.010 

Rosenzweig, C. E., Antle, J., & Elliott, J. (2015). Assessing impacts of climate change on food security worldwide. Eos, 97. https://doi.org/10.1029/2016EO047387    

Nyström, M., Jouffray, J. B., Norström, A. V., Crona, B., Søgaard Jørgensen, P., Carpenter, S. R., Bodin, Ö., Galaz, V., & Folke, C. (2019). Anatomy and resilience of the global production ecosystem. Nature, 575(7781), 98-108. https://doi.org/10.1038/s41586-019-1712-3  

Brick, C., Freeman, A. L., Wooding, S., Skylark, W. J., Marteau, T. M., & Spiegelhalter, D. J. (2018). Winners and losers: communicating the potential impacts of policies. Palgrave Communications, 4(1), 1-13. https://doi.org/10.1057/s41599-018-0121-9  

Journeault, M., Perron, A., & Vallières, L. (2021). The collaborative roles of stakeholders in supporting the adoption of sustainability in SMEs. Journal of Environmental Management, 287, 112349. https://doi.org/10.1016/j.jenvman.2021.112349  

United Nations Department of Economic and Social Affairs Sustainable Development (UNDESA). (2022). The 17 Sustainable Development Goals. Available at: https://sdgs.un.org/goals. Accessed on 10 February 2022

FAO. (2013). Edible insects: Future prospects for food and feed security. Available at: https://www.fao.org/3/i3253e/i3253e.pdf. Accessed on 10 February 2022

Makkar, H. P., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1-33. https://doi.org/10.1016/j.anifeedsci.2014.07.008 

Grant, W. (2016). The challenges facing UK farmers from Brexit. EuroChoices, 15(2), 11-16. https://doi.org/10.1111/1746-692X.12127   

Swinbank, A. (2017). World trade rules and the policy options for British agriculture post-Brexit. Briefing paper, 7, 12.

Chang, W. W. (2018). Brexit and its economic consequences. The world economy, 41(9), 2349-2373. https://doi.org/10.1111/twec.12685 

Zupaniec, M., Schafft, H. A., Lindemann, A. K., Pieper, R., & Mader, A. (2021). Critical factors for food safety in global commodity flows with a focus on logistics–A case study on Mycotoxin contamination of agri-bulk commodities. Operations and Supply Chain Management: An International Journal, 14(4), 545-563. http://doi.org/10.31387/oscm0470323   

Alava, J. J., Cheung, W. W., Ross, P. S., & Sumaila, U. R. (2017). Climate change–contaminant interactions in marine food webs: Toward a conceptual framework. Global Change Biology, 23(10), 3984-4001. https://doi.org/10.1111/gcb.13667

 

 

Add to smarter communications search Off